
A Dynamic Program Analysis to find
Floating-Point Accuracy Problems

Florian Benz
Saarland University

fbenz@stud.uni-saarland.de

Andreas Hildebrandt
Johannes-Gutenberg Universität Mainz
andreas.hildebrandt@uni-mainz.de

Sebastian Hack
Saarland University

hack@cs.uni-saarland.de

Abstract
Programs using floating-point arithmetic are prone to accuracy
problems caused by rounding and catastrophic cancellation. These
phenomena provoke bugs that are notoriously hard to track down:
the program does not necessarily crash and the results are not
necessarily obviously wrong, but often subtly inaccurate. Further
use of these values can lead to catastrophic errors.

In this paper, we present a dynamic program analysis that sup-
ports the programmer in finding accuracy problems. Our analysis
uses binary translation to perform every floating-point computation
side by side in higher precision. Furthermore, we use a lightweight
slicing approach to track the evolution of errors.

We evaluate our analysis by demonstrating that it catches well-
known floating-point accuracy problems and by analyzing the Spec
CFP2006 floating-point benchmark. In the latter, we show how our
tool tracks down a catastrophic cancellation that causes a complete
loss of accuracy leading to a meaningless program result. Finally,
we apply our program to a complex, real-world bioinformatics
application in which our program detected a serious cancellation.
Correcting the instability led not only to improved quality of the
result, but also to an improvement of the program’s run time.

Categories and Subject Descriptors G.1.0 [Numerical Analysis]:
General—Computer arithmetic, Error analysis, Multiple precision
arithmetic

Keywords Dynamic program analysis, program instrumentation,
floating-point accuracy

1. Introduction
Floating-point numbers are almost always mere approximations of
the “true” real numbers: there is an uncountably infinite number
of real values in any open interval on the real line, but any digi-
tal computer provides only finite storage for their representation.
Due to this approximation, floating-point arithmetic is prone to ac-
curacy problems caused by insufficient precision, rounding errors,
and catastrophic cancellation. In fact, writing a numerically stable
program is challenging. However, few programmers are aware of
the intricacies that come with floating-point arithmetic. And even
if a programmer is familiar with the problem per se, he will often
be unable to detect or even prevent it: theoretical results often allow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

only a worst-case analysis that soon becomes overly pessimistic for
complex cases. We lack the proper tools to support the program-
mers in efficiently and effectively finding floating-point problems at
runtime. In the past, floating-point accuracy problems caused pro-
gram failures that cost millions of dollars or even human life. And
even if a numerical inaccuracy does not result in such catastrophic
events, it can cause serious harm if it remains undetected: in many
application scenarios, correct results can hardly be distinguished
from incorrect ones. In such cases, an undetected numerical inac-
curacy in a popular application can lead to countless flawed results.

One of the best-studied examples of an undetected accumulation
of rounding errors was the failure of the MIM-104 Patriot air
defense system in the Gulf War. As a result 28 US Army soldiers
were killed by an Iraqi Scud missile on February 25, 1991. A
government investigation [18] revealed that the system’s internal
clock had drifted by 0.3 seconds after operating for 100 hours.
This was due to a rounding error when converting integer values
to floating-point values.

Another well-studied example occurred at the Vancouver Stock
Exchange. As reported by the Wall Street Journal [20], the index of
the Stock Exchange was initialized at 1000 points in January 1982.

For each trade, the index was updated by first adding the
weighted stock price to the previous index and then truncating
the result to three decimal places. This operation occurred about
3000 times a day and the accumulated truncations led to a loss of
around one point per day. The error remained undiscovered for 22
months. After the discovery, the index was corrected from 524.811
to 1098.892 points. The calculation of the index was then changed
from truncating to rounding.

Both examples drastically demonstrate that floating-point issues
can have dramatic consequences. However, there is only a surpris-
ingly little number of tools that assist the programmers (who are
usually totally unaware of the intricacies of floating-point arith-
metic) in tracking down these problems although the need for easily
usable tools for the dynamic analysis of numeric stability has been
recognized in the literature and cast in the form of demands (e.g. by
Kahan [12]). In the past, both static and dynamic program analyses
have been proposed. Static analyses like Fluctuat [5] provide sound
over-approximations of floating-point problems such as rounding
errors. However, they suffer from imprecision and are heavily de-
pendent on other analyses (e.g. pointer analyses) to disambiguate
the data flow of a program. Therefore, static techniques work ex-
ceptionally well in special domains like embedded systems where
the code does usually not exhibit complex and dynamic data struc-
tures. For large, possibly object-oriented programs, however, they
are less suitable. In contrast, the dynamic program analyses pro-
posed in the past [1, 2, 13] do either not scale to large-scale systems
or make compromises in their analysis power to achieve scalability.

In this paper, we bridge this gap by proposing a dynamic pro-
gram analysis that detects strictly more problems than previous

approaches and scales to relevant real-world applications. In sum-
mary, we make the following contributions:

• Our analysis simulates real arithmetic by performing each
floating-point computation in higher precision side by side to
the original calculation. For every floating-point variable in the
program, we introduce a shadow variable in higher precision.
We use those shadow values to detect catastrophic cancella-
tions and rounding errors. In contrast to a static analysis, we
do not detect all such errors but, because of the higher preci-
sion of the shadow values, we detect significantly more than
all previous dynamic analyses. For the sake of precision, we
formally describe our dynamic program analysis by means of
an operational semantics.

• In addition to the shadow value, we collect additional data for
every floating-point operation. This information is used by a
light-weight slicing technique which helps the programmer to
reconstruct the path of operations along which an error propa-
gated after the program run. This helps in localizing the source
of inaccuracies that propagated to other program points where
they were actually detected.

• We implemented the presented analysis in the Valgrind [16] bi-
nary instrumentation framework. We evaluate the effectiveness
of our tool on pathological floating-point accuracy problems
from the literature as well as on large-scale real-world pro-
grams: the SPEC CFP2006 benchmark suite of floating-point
programs, the Biochemical Algorithms Library (BALL), and
the GNU linear programming kit (GLPK). In all investigated
programs, our program detects accuracy problems with various
consequences, ranging from unnecessarily slow convergence to
meaningless output. We are not aware of any previous auto-
mated study of floating-point accuracy problems on programs
of that scale. Finally, we also present experiments that show the
limits of our approach.

The rest of this paper is structured as follows: The next section
summarizes the foundations of floating-point arithmetic relevant
for this paper and gives an overview of several important classes of
accuracy problems. Section 3 outlines the concepts of the analysis,
Section 4 presents how the programmer interacts with the analysis,
and Section 5 discusses issues of a concrete implementation of the
analysis. Finally, in Section 6 we present an extensive case study of
our analysis.

2. Foundations
We briefly repeat the necessary foundations of IEEE 754 floating-
point arithmetic in this section. We follow the notation and termi-
nology of Goldberg [8] and Higham [10]. The interested reader is
referred to these publications for more detail.

2.1 The IEEE 754 Standard
A floating-point number has the form

x = ±s× βe

where for each value, the sign, the significant s (also called man-
tissa), and the exponent e are stored. IEEE 754-1985, the arguably
most important floating point standard, uses β = 2. The preci-
sion is the maximum number of digits which can be represented
with the significant. IEEE 754-1985 defines four precisions: single,
single-extended, double, and double-extended. Here we only con-
sider single and double precision since these are the most common
in today’s programming languages.

As the representation uses only a finite number of bits, an error
due to the approximation is unavoidable. Denoting the evaluation
of an expression in floating-point arithmetic by the function fl,

rounding can be represented by the transformation x 7→ fl (x).
Rounding to the nearest representable number is the default and the
only rounding mode considered here. In case of a tie, it is rounded
to the nearest even number. The unit roundoff u, also called the
machine epsilon, is defined as the largest positive number such that

fl (1 + u) = 1

The unit roundoff depends on the base β and the precision p:

u = β/2 · β−p

Let F ⊂ R be the set of numbers which can be exactly represented
by floating-point arithmetic. If x ∈ R lies in the range of F, then

fl (x) = x (1 + ε) |ε| < u

For all a, b ∈ F, the following properties hold

fl (a ◦ b) = (a ◦ b) (1 + ε) |ε| 6 u ◦ ∈ {+,−,×, /}
fl (a ◦ b) = fl (a ◦ b) ◦ ∈ {+,×}

The standard requires that all basic operations are computed as
if done exactly and rounded afterwards. This is stronger than the
properties above as it requires ε = 0 if a ◦ b ∈ F. In floating-
point arithmetic, addition and multiplication are commutative but
no operation is associative.

2.2 Error Sources
The errors sources can be separated into three groups: rounding,
data uncertainty, and truncation.

Rounding errors are unavoidable due to the finite precision. Un-
certainty in the data comes from the initial input or the result of a
previous computation. Input data from measurements or estima-
tions is usually only accurate to a few digits. Truncation arises
when a numerical algorithm approximates a mathematical function.
Many numerical methods take finitely many terms of a Taylor-,
Laurent-, or Fourier series; the terms omitted constitute the trun-
cation error. A truncation error can only be analyzed with knowl-
edge about the function the algorithm computes. Therefore, a tool
working on the program as is can only track rounding errors and
uncertainty from previous computations.

Usually, the discrepancy between a floating-point number and
the corresponding exact number is measured as a relative error.
Throughout this paper, the following definition is used

relative error =

∣∣∣∣ exact value− approximate value
exact value

∣∣∣∣
Note that if the exact value is 0, the relative error is∞.

2.2.1 Error Accumulation
A good example for a number which cannot be exactly represented
in floating-point arithmetic is the decimal number 0.1, which is
periodical in the binary system

(0.1)10 =
(
0.0001100

)
2

The relative error of 0.1 in single precision is close to the unit
roundoff of 2−24 (≈ 5.96× 10−8)∣∣∣∣∣ (0.1)10 − (0.1)sp

(0.1)10

∣∣∣∣∣ ≈ 5.94× 10−8

The error introduced by an approximate representation of a con-
stant is in the same range as the rounding error after a computa-
tion. This error cannot be avoided because a representation of a
real number with a finite number of bits can never be exact for all
numbers.

Figure 1 shows a C program with large error accumulation.
In the end, the value of time is 1999.6588. Thus, time has a

float time = 0.0f;
int i;
for (i = 0; i < 20000; i++) {

time += 0.1f;
}

Figure 1. C program with large error accumulation

relative error of 1.7 × 10−4. This is significantly higher than the
error of the constant 0.1f. If the same program is run with time
in double precision and the constant is still represented in single
precision (i.e. only replacing float with double) the relative error
of time decreases to 1.5 × 10−8. If, in addition to the double
precision variable time, the constant is also represented in double
precision (i.e. removing the f behind the constant) the relative error
is reduced to 3.6× 10−13.

In general, an error introduced by a constant limits the accuracy
of the result. The actual influence depends on the precision and the
numerical stability of the algorithm. An algorithm is numerically
stable if the influence of rounding errors to the result is provably al-
ways small. Thus, numerical stability is a property of an algorithm.
A similar property, called the condition, describes the problem the
algorithm tries to solve. The condition is independent from the al-
gorithm and describes the dependency between the input and the
output of a problem. The condition number is a measurement for
the asymptotically worst case of how strongly changes in the input
can influence the output. If small changes in the input lead to large
changes in the output, the condition number is large. Thus, it is eas-
ier to design algorithms for problems with low condition numbers.
In the example above, it does not matter if the error comes from
a constant, because always adding the same number with an error
tends to accumulate the error. Large errors usually occur due to the
insidious growth of just a few rounding errors and it is hard to find
their origins.

2.2.2 Insufficient Precision
The precision used in a program is usually a trade-off between per-
formance and sufficient accuracy. The example program in Figure 2
uses a constant which is slightly smaller than the unit roundoff.

/* float unit roundoff is 0.00000006f */
float e = 0.00000005f;
float sum = 1.0f;
int i;
for (i = 0; i < 5; i++) {

sum += e;
}

Figure 2. C program with an error due to insufficient precision

In the end, the value of sum is 1.0. Thus, the relative error
of sum is 2.5 × 10−7. Any precision slightly higher than single
precision leads to a correct result. Insufficient precision is usually
hard to discover manually because the error introduced by a single
operation is small. However, large errors can occur due to error
accumulation. Often, double precision is thus used to alleviate these
problems. However, while double precision indeed suffices for
many application scenarios, it can still be insufficient, depending
on the details of the problem.

2.2.3 Catastrophic Cancellation
If two nearby quantities are subtracted, the most significant digits
match and cancel each other. This effect is called cancellation and
can be catastrophic or benign. A cancellation is catastrophic if at
least one operand is subject to rounding. Otherwise, if both quan-
tities are exactly known, the cancellation is benign. A cancellation

can occur when subtracting or adding two numbers because both
operands can be positive or negative. An example for a cancella-
tion is the following computation

1.002× 103 − 1.000× 103 = 2.000× 100

This cancellation is catastrophic if the digit 2 in the first operand
is the result of an error and benign otherwise. An operation with a
cancellation can expose an error introduced by an earlier computa-
tion, but the same operation can be exact if no error has been intro-
duced before. Some formulas can be rearranged to replace a catas-
trophic cancellation with a benign one, but only within the scope
of the particular formula, i.e., this cannot guard against rounding
errors present in the input. One example is the expression x2 − y2,
where x2 and y2 are likely to be subject to rounding. In this case,
a more accurate formula would be (x− y) (x+ y), because here,
the subtraction is done directly on the variables x and y. Assum-
ing that x and y are exactly known, a possible cancellation is thus
guaranteed to be benign in the second variant.

The number of canceled digits can be calculated with the fol-
lowing formula

max{exponent(op1), exponent(op2)} − exponent(res)

where op1 and op2 are the operands, and res the result. A cancel-
lation has happened if the number of canceled digits is greater than
zero. To conclude, for the analysis of floating-point software, it is
crucial to decide whether a cancellation is catastrophic or benign.

2.3 Cancellation of Rounding Errors
Inaccurate intermediate results can still lead to an accurate final
result. Therefore, not all inaccurate values indicate a problem.

One example from Higham [10] for a calculation where more
inaccurate intermediate results lead to a more accurate final re-
sult is the calculation of (ex − 1) /x with a unit roundoff u =
2−24. To obtain a more accurate result, it is better to com-
pute (ex − 1) / ln (ex). For x = 9 × 10−8 the exact result is
1.00000005. The following calculations show that the second for-
mula has more inaccurate intermediate results but the final result
has a relative error that is 1.92× 107 times lower than the error of
the first formula

fl
(

ex−1
x

)
= fl

(
1.19209290×10−7

9.00000000×10−8

)
= 1.32454766

fl
(

ex−1
ln(ex)

)
= fl

(
1.19109290×10−7

1.19209282×10−7

)
= 1.00000006

2.4 Summary
The dynamic program analysis we present in this paper addresses
all issues discussed in this section:

• Error accumulation and insufficient precision is detected by
our analysis by following values through the whole program
with a side-by-side computation in higher precision. In the end,
the accumulation and insufficient precision can be detected by
comparing the original and the shadow value. Of course, our
analysis is not correct in the sense that we pretend that the
shadow values in higher precision are perfect substitutes for the
exact real values. However, our experience shows that side-by-
side calculation in higher precision helps in detecting severe
accuracy problems.

• Our analysis detects catastrophic cancellations by calculating
the canceled bits and the bits that are still exact for every
floating-point addition and subtraction. This is explained in
Section 3.1.

• The cancellation of rounding errors can lead to false positives
in intermediate results. Our analysis addresses this problem by
determining variables that are likely the final result and thus

helps the user to determine if the final result is affected. Error
traces created by the analysis can then reveal that the inaccurate
intermediate results led to an accurate final result. The error
trace is explained in Section 3.2.

3. The Analysis
In the following, we describe a dynamic program analysis which
assists the programmer in finding accuracy problems. The analy-
sis’ main ingredient is a side-by-side computation done with an ar-
bitrary but fixed precision1 which is higher than the precision used
in the client program. The analysis tracks two kinds of information:
For every original value that is computed by the program (this com-
prises variables which are written to memory as well as temporary
results kept in registers), it stores a shadow value which consists
of several components among which is a counterpart of the orig-
inal value in higher precision. Additionally, we compute analysis
information for every executed floating-point instruction. Our anal-
ysis essentially tracks the difference of a floating-point value in the
client program and its corresponding shadow value. If this differ-
ence becomes too large, it is likely that the client program suffers
from accuracy problems. The exact composition of the analysis in-
formation is shown in the first section of Figure 6.

We use two different sets of information (per variable, per in-
struction) because they are both relevant: Accuracy problems usu-
ally materialize as inaccurate contents of variables. From there, it
is helpful to find the instructions that cause the problem and poten-
tially reconstruct how the error propagated to that variable.

An important detail is that the side-by-side computation in our
analysis does not affect the semantics of the program: For example,
a comparison which decides whether a branch is taken can have a
different outcome in higher precision than in the original precision.
We would detect the accuracy problem but still follow the branch
based on the result of the computation in original precision. As a
consequence, the result of the analysis is not equal to the result of
the program as if it would have been executed in higher precision.
This is the desired behavior, because we want to track down prob-
lems in the program running in the original precision.

The results of the side-by-side computation are leveraged in two
ways (further detailed in the following sections): By treating the
shadow values as a potentially better approximation to the exact
real value, we compute the relative error and the cancellation bad-
ness of every instruction. The latter detects catastrophic cancella-
tions and indicates how much more precise a value would have to
be for the cancellation to be benign (see Section 3.1). Furthermore,
we use the shadow values to calculate the relative error on every
instruction and original value. This information can be used to find
the cause of the accuracy problem (see Section 3.2).

Finally, we want to stress that a dynamic program analysis is
never complete. The capability of the presented analysis to detect
floating-point accuracy problems is based on the assumption that
the shadow values are a substitute for the real exact values.

3.1 Cancellation Detection
Because cancellations occur often and benign cancellations have
no impact on the accuracy, it is important to detect if a cancella-
tion is catastrophic or benign. To this end, we define cancellation
badness as an indicator for catastrophic cancellations. The cancel-
lation badness relates the number of bits canceled by an operation
to the bits that where exact before the operation. The exact bits of a
floating-point variable v are determined with respect to the “exact
value” ṽ which is in our analysis stored in the shadow value of v as

1 The precision can be specified by the user before the analysis starts.

a floating-point number in higher precision2:

ebits(ṽ, v) :=

 p if ṽ = v
0 if exponent(ṽ) 6= exponent(v)
ebits′(ṽ, v) otherwise

with

ebits′(ṽ, v) := min {p, | exponent(ṽ)− exponent(ṽ − v)|}
Consider an instruction v′ ← v1 ♦ v2. The number of bits

canceled by executing the instruction is calculated by

cbits := max{exponent(v1), exponent(v2)} − exponent(v′)

The cancellation badness cbad now relates the least number of
exact bits of the operands to the number of canceled bits:

cbad := max{0, 1 + cbits −min{ebits(ṽ1, v1), ebits(ṽ2, v2)}}
If the badness is greater than zero, a catastrophic cancellation hap-
pened. The value of cbad itself indicates how much more precise
the operands would have to be for the cancellation to not be catas-
trophic. If the badness is 0, the cancellation was benign.

Consider the following example:

1.379− 1.375 = 0.004

Here, three digits are canceled. Assuming that the first operand has
four exact digits and the second operand has three exact digits, the
cancellation badness is one. Therefore, the cancellation is catas-
trophic and the result is completely inaccurate. If the same calcu-
lation is done with a second operand with four exact digits, the
cancellation badness is zero and thus the cancellation is benign.
Assuming that the exact fourth digit is 8, the accurate result

1.379− 1.378 = 0.001

has only the exponent in common with the inaccurate result above.
For every instruction the sum of the cancellation badness of ev-

ery execution of that instruction (field scb in an instruction’s analy-
sis information in Figure 6) and the maximum cancellation badness
(mcb) that occurred over all executions of that instruction are main-
tained. Each shadow value tracks the maximum cancellation bad-
ness that occurred in the corresponding original value (field mcb in
an shadow value’s analysis information in Figure 6) and a pointer
to the instruction where this maximum occurred (mcb src).

3.2 Finding Operations that Cause Errors
Consider the pathological example in Figure 3. Naı̈vely, we would

1 float e = 0.00000006f;
2 float x = 0.5f;
3 float y = 1.0f + x;
4 float more = y + e;
5 float diff e = more - y;
6 float diff 0 = diff e - e;
7 float zero = diff 0 + diff 0;
8 float result = 2 * zero;

Figure 3. A program with insufficient precision and catastrophic
cancellation.

expect result to be 0.0 after executing line 8. However, the oper-
ations in line 5 and 6 cause catastrophic cancellations which render
the computed values inexact. This error propagates into variable
result which is not 0.0 at the end. However, the operation on
which result depends, the addition in line 7, does not contribute
to this inaccuracy. All exact bits of diff 0 are preserved. Hence,
the programmer here wants to find the operations in line 5 and 6. Of

2 In the following, the tilde stands for operations and numbers (and sets
thereof) in higher precision.

course, in large programs, the operations contributing to the prob-
lem can be spread over several modules. Thus, it is hard to pinpoint
the problem by just looking at the source code.

A dynamic slice (a data dependence graph of the execution) of
the execution would help the programmer to locate this problem.
However, recording the trace of the whole program execution and
computing the relative errors afterwards can drastically slow down
the analysis, because the result of every operation has to be written
to disk. Instead, we pursue a more light-weight approach: For
every instruction in the program, we maintain two values: The sum
of the relative error of every execution (sre in Figure 6) of that
instruction and the maximum relative error (mre) that occurred
over all executions of that instruction.

Please note that for a shadow value of zero, the concept of
a relative deviation becomes meaningless. To guard against such
cases, our implementation allows the user to specify a threshold t0
such that

relative error =
|shadow value− original value|

max (|shadow value| , |t0|)
The sum over all relative errors is used to compute an average

of the relative errors. If an instruction has a small average relative
error, it is usually unlikely that this instruction is involved in signif-
icant accuracy problems. Hence, this value is used when the anal-
ysis results are presented to the user: Instructions with a compara-
bly high average relative error are listed before instructions with a
lower average relative error.

The maximum relative error is used to enable a light-weight
slicing approach: Whenever the maximum relative error of an in-
structions changes, i.e. the instruction is executed again with a rel-
ative error that is higher than all the relative errors seen in previ-
ous executions, we store the instructions which computed the argu-
ments to that instruction (field mre src in an instruction’s analysis
information in Figure 6). In this way, we obtain insight into the ori-
gins of the values causing the maximum error. After the analysis
run, this information is used to reconstruct a slice along which the
maximum error propagated.

A
dd

32
F0

x4
(b

ad
.c

:8
)

A
dd

32
F0

x4
(b

ad
.c

:7
)

Su
b3

2F
0x

4
(b

ad
.c

:6
)

Su
b3

2F
0x

4
(b

ad
.c

:5
)

A
dd

32
F0

x4
(b

ad
.c

:4
)

0

1
.3

2
×

1
0
−
2

9
.8

7
×

1
0
−
1

3
.9

5
×

1
0
−
8

1
.3

2
×

1
0
−
2

0

Figure 4. Error trace for the variable result in the truncated C
program on the left which suffers from insufficient precision in
line 4 and catastrophic cancellations in lines 5 and 6. The edges
are labeled with the introduced error of the operation they flow out
of.

To reveal the origins of an error, one has to find the operations
which are the cause. Therefore, after the analysis run, the contri-
bution of an operation to the maximum relative error is calculated.
The contribution is called the introduced error of an operation. The
introduced error is calculated as the smallest difference of the max-
imum error of the operation itself and the maximum error of one
of the operations which is a direct predecessor in the error trace.
Special cases occur when an operation is its own predecessor or
when an operation has no predecessor. In these cases, the maxi-
mum error of the operation itself is taken instead of the difference.

Note that the introduced error can be negative, because errors can
be canceled. Figure 4 shows an error trace for the example above.
The edges in the graph are labeled with the introduced error of
the operation producing the value that flows on the edge. One can
directly see that the subtraction in line 5 introduces a large error
of 9.87× 10−1.

Note that the error trace is not necessarily a part of the dynamic
data-dependence graph of the program run. This is because the
maximum relative errors of the instructions in the error trace might
be observed at different instances of the instructions. Hence, the
data flow suggested in the error trace might not have taken place in
the execution of the program, since we only update the source of
the error when the maximum relative error changes (see Figure 6).
However, in our experiments we made the experience that the error
trace very often resembles the actual data flow and is thus very
helpful for getting a first impression on how an error propagates
through a program.

3.3 Operational Semantics
In this section, we formally describe our analysis using a structural
operational semantics. We base our formalization on Valgrind’s
VEX intermediate representation language, mainly because the tool
implementing our analysis is implemented in Valgrind. However,
the subset of VEX we use here is so generic that it does not affect
the applicability of our analysis in other frameworks. Figure 5
shows the excerpt of the VEX grammar relevant for our analysis.

const ::= constant
temp ::= temporary variable
exp ::= temp | const
stmt ::= temp := load(exp) | store(exp, exp)

| temp := get(exp) | put(exp, exp)
| temp := exp | tmp := ♦u exp
| temp := exp ♦b exp

program ::= stmt*

Figure 5. Simplified grammar of the VEX intermediate represen-
tation used in Valgrind. Load and store describe memory accesses
whereas put and get are for accessing registers.

The VEX intermediate representation consists of a sequence of
numbered statements. Valgrind flattens the intermediate represen-
tation to simplify the instrumentation. As a result, an expression
is only a temporary variable or a constant and can not be a tree
of expressions. Statements consist of memory and register writes,
and assignments. The right side of an assignment can be a memory
read, register read, temporary variable, constant, unary operation,
or binary operation.

Figure 6 summarizes the formalization of our analysis. Its first
section shows the analysis information for instructions and vari-
ables. Elements of analysis information are stored in various maps:
µt (µm) implements the store that maps temporaries (memory ad-
dresses) to original values. ∆t (∆m) implements the store that
maps temporaries (memory addresses) to shadow values. Ω maps
addresses of instructions to elements of instruction analysis infor-
mation. The notation A[x← y] stands for λw.w = x ? y : A(w).

In the inference rule section, we only show the rules for load,
store, and the binary operation. Each inference rule is of the form:

side-by-side computation
original computation

〈configuration〉 instruction 〈configuration′〉 instruction′

The rules for put and get are purely technical and do mostly resem-
ble the ones for load and store. Most interesting is the rule for the
binary operator and the computation of the various analysis infor-
mation components outlined in the last section of the figure. For

Analysis information tuple I for an instruction:
Name Domain Description
sre F̃ Sum of relative errors
mre F̃ Maximum relative error
mre src N× N Pair of instruction addresses that point to

the instructions that computed the operands
that caused the maximum relative error

scb N Sum of cancellation badnesses
mcb N Maximum cancellation badness

Shadow value tuple S for a variable:

Name Domain Description
val F̃ Value in higher precision
td N Depth of the computation tree
pc N Address of the instruction that wrote to

the variable lastly
mcb N Maximum cancellation badness
mcb src N Instruction that caused maximum can-

cellation badness

Σ : Addr → Instr Maps an address to an instruction
µm : Addr → F Maps an address to an original value
µt : Temp → F Maps a temporary to an original value
Ω : Addr → I Maps an address to an instruction analysis information

∆m : Addr → S Maps an address to a shadow value
∆t : Temp → S Maps a temporary to a shadow value

s = ∆m [a] ∆t
′ = ∆t [n′ ← s]

a = µt [n] v = µm [a] µt
′ = µt [n′ ← v] ι = Σ [pc+ 1]

〈µt, µm,∆t,∆m,Σ, pc〉n′ := load (n) 〈µt
′, µm,∆t

′,∆m,Σ, pc+ 1〉 ι
F−LOAD

s = ∆t [n2] ∆m
′ = ∆m [a← s]

a = µt [n1] v = µt [n2] µm
′ = µm [a← v] ι = Σ [pc+ 1]

〈µt, µm,∆t,∆m,Σ, pc〉 store (n1, n2) 〈µt, µm
′,∆t,∆m

′,Σ, pc+ 1〉 ι
F−STORE

∆t
′ = ∆t [n′ ← s′] Ω′ = Ω [pc ← o′]

v1 = µt [n1] v2 = µt [n2] v′ = v1 ♦ v2 µt
′ = µt [n′ ← v′] ι = Σ [pc+ 1]

〈µt, µm,∆t,∆m,Σ, pc〉n′ := n1 ♦ n2 〈µt
′, µm,∆t

′,∆m,Σ, pc+ 1〉 ι
F−BINOP

Abbreviations used:
rel. error rerr := |(s′.val − v′) /d|

d := s′.val 6= 0 ? s′.val : t0

lookup(n, v) := ∃w. (n,w) ∈ ∆t ? ∆t[n] : init
init := (v, 0,−, 0,−)

Analysis information update for an instruction:
o = Ω[pc]
o′.sre = o.sre + rerr
o′.mre = max{o.mre, rerr}
o′.mre src = rerr > o.mre ? (s1.pc, s2.pc)

: o.mre src
o′.scb = o.scb + cbad
o′.mcb = max{o.mcb, cbad}

Shadow value of the result of a binary operator:
s1 = lookup(n1, v1)
s2 = lookup(n2, v2)
s′.pc = pc

s′.val = s1.val ♦̃ s2.val
s′.td = 1 + max{s1.td , s2.td}
s′.mcb = max{s.mcb, cbad}
s′.mcb src = cbad > s.mcb ? pc : s.mcb src

Figure 6. Structural operational semantics for the original and the side-by-side computation

the sake of brevity, we also omit the unary operator. Conceptually,
it equals the binary operator. However, computations that involve
both operands of a binary operator (such as the calculation of the
maximum cancellation badness) have to be adapted accordingly.

4. User Interface
Our tool can automatically collect information for the whole execu-
tion of a client program. Thereby all floating-point instructions and
variables are analyzed and variables are determined that are likely
the final result by the depth of the execution tree leading to them
(field td in an shadow value’s analysis information in Figure 6).

In addition, our implementation enables the user to perform
a more targeted analysis by adding client requests to the source
code of the analyzed program; client request are instructions that
are only interpreted by our analysis and ignored in an execution
without Valgrind.

With the client request, the user can exclude parts of the pro-
gram from the analysis or can run the analysis only on specified
parts. This not only allows to specify which parts are to be an-
alyzed, but also grants access to the information gathered by the
analysis during execution. Thus, via client requests, the relative er-
ror of a variable can be accessed and the error trace of a variable
can be constructed at every point in the program where the variable
is present.

Furthermore, an original value can be replaced with its shadow
value, so that the user can correct a value without fixing all the code
leading to this value in the client program. Thus, the user is given
a simple way to check whether the correction of a value influences
the result of a program.

Another powerful instrument are stages (originally proposed by
Kahan [12]). The basic idea behind this concept is to add break

points, called “stages”, into a program, to observe the errors at
each break point, and to complain if two consecutive stages differ
too much. This is a semi-automatic technique that assumes that
the programmer has an idea where interesting stages are located.
In practice, interesting stages almost always correspond to loop
iterations. Using our tool, the programmer can define multiple sets
of stages that are analyzed independently. An example where stages
prove to be useful is presented in Section 6.1. This example shows
that stages help finding accuracy problems even if the shadow
values on their own fail to do so because of their finite precision.

5. Implementation Details
The analysis presented in Section 3 instruments every floating-
point machine instruction in the program. However, our early ex-
periments showed that this is not sufficient. The basic reason is that
on the assembly level, strict typing is no longer present. As a result,
the types used by Valgrind do not necessarily match the type used
in the source code of the client program. An example is shown in
Figure 7. There, the compiler chose to load the bit pattern represent-
ing a floating-point constant into an integer register whose contents
is then stored to memory. Later on, that memory cell is read into
an SSE register and a floating-point operation is performed on the
loaded value.

This means that the type with which constants are stored in
memory does not have to match the type with which they are
loaded. A naı̈ve implementation would not only instrument the
floating-point but also all integer instructions. However, this would
result in a slow and error-prone implementation with a large mem-
ory overhead.

Instead, we start the instrumentation as late as possible. As a
result, a floating-point variable is tracked from the point where it

movl $0x3356bf95, %eax
movl %eax, -4(%rbp)
...
addss -4(%rbp), %xmm0

movl $0x3356bf95, %eax
movl %eax, -4(%rbp)
...
fadds -4(%rbp)

Figure 7. Extracts from the assembly code for a SSE addition
(left) and a x87 FPU addition (right) of two floating-point numbers.
There are no indications that the loaded values are used in floating-
point instructions later on.

is the result of a floating-point operation. For a constant or a value
given as an input to the program there is no need for a shadow value
as the shadow value would be exactly the same. In the operational
semantics in Figure 6 this is expressed by the function lookup.
Furthermore, we use copy propagation to avoid instrumentation
of instructions that do not affect shadow values such as type cast
operations. However, all reads and writes to the main memory have
to be instrumented as in each such operation a floating-point value
could be involved.

This scheme has the advantage that it does not only simplify
instrumentation and increases the efficiency of the analysis but
it also makes the analysis more robust. Floating-point operations
which are not yet instrumented can only lead to undetected errors
but do not affect the correctness of our analysis. This is due to the
fallback to the original value if no shadow value exits.

6. Evaluation
The capabilities and the performance of the tool are evaluated in
this section. Unless stated otherwise, all analyses are performed on
an x86-64 system with a shadow value precision of 120 bit.

6.1 Wrong Limit of Convergent Sequence
The sequence un converges to 6, but if computed with any finite
precision it converges to 100. The sequence is defined as

un =


2 if n = 0
−4 if n = 1
111− 1130

un−1
+ 3000

un−1un−2
if n > 1

This sequence has been analyzed by Kahan [12] and Muller et
al. [15]. The strange behavior can be explained with the solution
of the recurrence

un =
α · 100n+1 + β · 6n+1 + γ · 5n+1

α · 100n + β · 6n + γ · 5n

where α, β, and γ depend on u0 and u1. For u0 = 2 and u1 = −4
one gets α = 0, β = −3, and γ = 4. However, if computed with
finite precision, roundoff errors cannot be avoided and result in an
α that is not exactly zero. This leads to the different limits.

double u = 2, v = -4, w;
for (int i = 3; i <= 100; i++)
{

FPDEBUG_BEGIN_STAGE (0);

w = 111. - 1130./v + 3000./(v*u);
u = v;
v = w;
printf ("u%d = %1.17g\n", i, v);

FPDEBUG_END_STAGE (0);
}
FPDEBUG_PRINT_ERROR (&" u_100", &v);

Figure 8. C code which tries to compute the sequence un

Therefore, it is clear that after analyzing the computation of un

in Figure 8, no error can be observed because the shadow value is

also 100. However, both values converge at a different rate which
can be observed with stages. The stage report in Figure 9 reveals
that the relative error grows faster than linear in the iterations 4,
18 and in all iterations in between. Thus, the stage concept allows
the detection of this strange behavior which would otherwise have
gone unnoticed.

Stage 0:

(0) 0x7ff000200 (15)
executions: [4, 18]
origin: 0x40089A

Figure 9. The stage report for the code in Listing 8 reveals prob-
lems starting in iteration 4 and ending in iteration 18. As 15 prob-
lems are reported, all iterations between 4 and 18 are affected.

6.2 Walker’s Floating-Point Benchmarks
Walker [19] provides two floating-point benchmarks called fbench
and ffbench.

The program fbench is an implementation of a complete optical
design ray tracing algorithm. The largest relative error discovered is
9×10−13. Thus, the algorithm used in fbench does not suffer from
accuracy problems for the sample data. The program comes with
its own version of the trigonometric functions used, but there is no
difference in stability if the program is run with the trigonometric
functions from the C library.

The second benchmark, ffbench, performs a two-dimensional
Fast Fourier transform. Only 4 out of 131,089 shadow values have
an error. The largest relative error is 9.6 × 10−2. Two additions
produce inaccuracies due to catastrophic cancellation. However, the
inaccuracy stays local and has no influence on the final result.

A program where more than 99% of the variables are accurate
is rare. Even considering that ffbench computes and then inverts
a Fast Fourier transform, so that the program should result in the
same value as the initial one, it requires that no significant digits
are lost in between. Therefore, it depends on the numerical stability
of the algorithm and on the initial values.

6.3 Analysis of expf
Let us now give an example of the limitations of our approach: The
function expf from the GNU C Library computes ex in single pre-
cision. The implementation of the function analyzed here is from
sysdeps/ieee754/flt-32/e expf.c (GNU C Library 2.12.2).
Executing the function expf in higher precision leads to more in-
accurate results because the algorithm used is designed for single
precision and uses precomputed values.

The function is based on Gal’s accurate tables method [6]. First,
n, t, and y are computed such that x can be expressed as

x = n · ln (2) +
t

512
+ delta [t] + y

and then ex can be approximated as

ex ≈ 2ne
t

512
+delta[t]

· (1 + p (y + delta [t] + n · ln (2)))

where p is a second-degree polynomial approximating ex − 1 and
delta [t] and e

t
512

+delta[t] are obtained from tables.
The problem arises when computing n and t. The value of n is

computed with

n = x · 1

ln (2)
+ THREEp22−THREEp22

where THREEp22 = 12582912.0 is a single precision constant
and the operations are performed with single precision.

The remaining part dx of x is computed with

dx = x− n · ln (2)

One would expect n · ln (2) to be equal to x. But for x = 0.09 the
value of n is 0 because the large value of THREEp22 leaves no
significant digits of x when added. This results in dx = x = 0.09
but the shadow value is 1.27 × 10−9. The shadow value is not
exactly 0 because 1

ln(2)
· ln(2) is not exactly 1 as the first factor is a

single precision constant and the second factor a double precision
one. The value of t is computed with

t

512
= dx+ THREEp42−THREEp42

where THREEp42 = 13194139533312.0 is a single precision
constant but the operations are performed with double precision.

With the previous value of dx, one gets t
512
≈ x for the original

value but t
512

= 0 for the shadow value. Thus, t converted to
an integer is 46 in the original program but 0 in the side-by-side
computation.

Because of these differences the values taken from the precom-
puted table do not fit for the shadow value. For x = 0.09 this re-
sults in a relative error between the original and the shadow value
of 1.56× 10−4. However, the original value only has a relative er-
ror of 2.18× 10−8 compared to the exact result. This relative error
is smaller than the single precision unit roundoff and thus cannot
be more accurate.

6.4 SPECfp2006
SPECfp2006 is the floating-point component of the SPEC CPU2006
benchmark suite [3]. Most of the floating-point benchmarks from
SPECfp2006 can be analyzed with our tool. The only exceptions
are zeusmp which fails because Valgrind does not support data seg-
ments bigger than 1 GB, and dealII which does not terminate be-
cause it relies on the internal 80-bit representation of the x87 FPU.
Valgrind however behaves IEEE 754 compliant and only works
with 64 bits for double precision even if it is an x87 FPU instruc-
tion. The reasons for the problems were discovered by Weaver [21].

SPECfp2006 comes with three data sets for each benchmark:
train, test, and ref. The “ref” data sets are the largest. Because of
the slowdown caused by the instrumentation overhead, we focus on
the “test” dataset.

All benchmarks were performed on a quad-core AMD Opteron
processor with 2.5 GHz and 64 GB of RAM. Figure 10 shows the
results for all SPECfp2006 benchmarks we executed. The side-by-
side computation ran with a precision of 120 bit.

Benchmark Original Analyzed Slowdown

bwaves 47.5 s 7920 s 167 x
gamess 0.7 s 381 s 544 x
milc 30.9 s 7860 s 224 x
gromacs 2.1 s 991 s 472 x
cactusADM 4.7 s 4777 s 1016 x
leslie3d 59.8 s 17467 s 292 x
namd 19.8 s 18952 s 957 x
soplex 0.027 s 5.0 s 185 x
povray 0.9 s 400.0 s 444 x
calculix 0.07 s 17.1 s 244 x
GemsFDTD 5.5 s 1146 s 208 x
tonto 1.26 s 404 s 321 x
lbm 9.55 s 2893 s 303 x
wrf 7.68 s 2623 s 342 x
sphinx3 4.41 s 938 s 213 x

Figure 10. Results of the SPECfp2006 benchmarks with the “test”
data sets

6.4.1 Analysis of CalculiX
During our benchmarking, we observed a potential loss of accuracy
in the benchmark CalculiX. Figure 11 shows the first entry of the
mean error file which is sorted by the introduced error. This entry
led to a deeper analysis of DVdot, a function in SPOOLES, a linear
equation solver used by CalculiX, to compute the dot product of
two vectors. As it turns out, it is not the multiplication which causes
large inaccuracies, but rather the addition in this line. This shows
that a globally computed introduced error is not a perfect indicator
for the real origin of the problem. Computed only with knowledge
about the function DVdot, the introduced errors reveal the real
origin.

DVdot (Utilities_DV.c:245) Mul64F0x2 (116,010)
avg error: 1.70635239241881 * 10^1
max error: 1.55742240304371 * 10^6
cancellation badness - max: 0, avg: 0.00
introduced error (max path): 1.55.. * 10^6

Figure 11. Information about the operation with the largest intro-
duced error in CalculiX. The output contains information about the
function name, the place in the source code, the VEX IR operation
name, the execution count, the average and the maximum relative
error and average and maximum cancellation badness of all execu-
tions of the operation in comparison to the side-by-side computa-
tion, and the introduced error computed with the preceding opera-
tions.

After spotting a potential problem, we manually modified the
function DVdot in SPOOLES to print out input causing large in-
accuracies and to see if the insertion of a more accurate value in-
fluences the final result (see in Figure 12). The reset causes the
deletion of all shadow values and thus, no previous inaccuracies in-
fluence the observation. If one starts the tool with the analysis dis-
abled, then the begin and end client requests cause that only DVdot
is observed and one obtains a good output of the mean errors of the
operations in DVdot. After the computation of sum, the error of the
variable is checked against the error bound of 10−2. If the error is
greater, the error and the content of the arrays are printed. At the
end of the function, the variable sum is set to the shadow value.
As the shadow value provides a significantly better result, this is a
correction of the value of sum.

double DVdot(int size , double y[], double x[]) {
FPDEBUG_RESET ();
FPDEBUG_BEGIN ();

double sum = 0.0;
for (int i = 0; i < size; i++) {

sum += y[i] * x[i];
}

double errorBound = 1e-2;
if (FPDEBUG_ERROR_GREATER (&sum , &errorBound)) {

FPDEBUG_PRINT_ERROR (&" sum", &sum);
for (int j = 0; j < size; j++) {

printf ("x[%d] = %.20g\n", j, x[j]);
printf ("y[%d] = %.20g\n", j, y[j]);

}
}
FPDEBUG_INSERT_SHADOW (&sum);
FPDEBUG_END ();

return sum;
}

Figure 12. Shortened DVdot function with error detection and
correction

During a run with the provided “test” data set, the function
DVdot produces a relative error greater than 10−2 in 28 cases. In

three of these cases the relative error is even greater than 10−1.
This means that in the worst case, no digit is correct. In that case,
the original and the shadow value differ by a factor of nearly 1.76.

The error correction influences 8.5% of the floating-point num-
bers in the output of CalculiX. Some of the numbers differ in every
digit. The “test” data set describes a cantilever beam under shear
forces. The correction does not affect the computed stresses but the
computed displacements. However, all of the influenced displace-
ments are smaller than 10−10; therefore, the influence may be neg-
ligible for this simulation. Nevertheless, one sees that the naı̈ve im-
plementation of an inconspicuous mathematical function can have
an impact on the accuracy of a whole computation.

The whole mean error file, sorted by the introduced error, is
shown in Figure 13. The multiplication only has operands which
are seen as “exact” and thus only produces a relative error smaller
than the double precision unit roundoff of 2−53 (≈ 1.11× 10−16).
Whereas the addition receives the results of the multiplications as
an input and produces large errors due to catastrophic cancellation.

DVdot (Utilities_DV.c:248) Add64F0x2 (116,010)
avg error: 2.72694149800805 * 10^-4
max error: 1.61405640329709 * 10^0
cancellation badness - max: 3, avg: 0.01
introduced error (max path): 1.61.. * 10^0

DVdot (Utilities_DV.c:248) Mul64F0x2 (116,010)
avg error: 3.96985521613801 * 10^-17
max error: 1.10661002489201 * 10^-16
cancellation badness - max: 0, avg: 0.00
introduced error (max path): 1.10.. * 10^-16

Figure 13. Mean errors of floating-point operations in DVdot

The average relative error of the addition is large because a dif-
ference between the original and the shadow value can be intro-
duced by a single addition but is considered by every addition later
on.

6.5 BALL
Our original motivation for developing a dynamic analysis frame-
work for numerical stability came from the field of structural bioin-
formatics, where huge amounts of often noisy data are routinely
analyzed using highly complex numerical methods. In this section,
we present our first application of the developed tool to a subset of
the Biochemical Algorithms Library (BALL) [11], a rapid applica-
tion development framework for structural bioinformatics.

Our first experiments were performed on version 1.4 of BALL
and were focused on the optimization of molecular structures
against the Amber force field. To this end, we used the program
add hydrogens which is distributed along with BALL’s source
code. First, add hydrogens reads a molecular input structure from
a PDB-file, performs a number of required pre-processing steps
(such as normalization of atom names and types, inference of miss-
ing bonds and of missing atoms). It then sets up one of currently
three force fields (we used the default, Amber96) and minimizes
the potential energy with respect to the atomic coordinates of the
newly added atoms (in a typical use-case, these will mostly be hy-
drogens) using one of a number of configurable optimizers (we
kept the default conjugate gradient for 500 optimization steps).

A global analysis of add hydrogens reports several potential
problematic areas in BALL’s functionality for structure optimiza-
tion, i.e., in the Amber implementation and the molecular opti-
mizer. These areas have been analyzed in-depth, but only one area
has an accuracy problem that verifiably influences the final result.
However, this area includes calls to methods which are reported as
potentially problematic but are not problematic if analyzed alone.

The main problem encountered is a catastrophic cancellation
in a double precision subtraction. In the worst case, 23 bits are
canceled. While this number would be relatively unproblematic at
double precision with 53 bit, the operands here are both results of
single precision computations and thus can have at most 24 exact
bits. Therefore, it is not surprising that the cancellation badness is
greater than zero.

The inaccuracy affects the computation of the conjugate gradi-
ent computation, i.e., the search for a descent direction, in comput-
ing the minimum energy conformation of a molecular system. If
the inaccuracy is fixed by computing the numbers used in the sub-
traction in double precision, the run-time for minimizing the energy
of the protein 2PTH with an upper bound of iterations is reduced
by 28% and – much more importantly – the result is closer to the
optimum.

Thus, with minimal effort in the application of our novel tool,
we have been able to identify a problematic situation in a frame-
work that has been in use since 1996, have been able to rectify it
using higher precision, and have not only succeeded in improving
the quality of the computation, but surprisingly also reduced the
runtime.

6.6 GLPK
Linear programming solvers are prone to rounding errors and there-
fore are interesting targets for an analysis. We performed an analy-
sis of the GNU Linear Programming Kit (GLPK) [7] with an inte-
ger linear problem mentioned by Neumaier and Shcherbina [17]

min −x20
s.t. (s+ 1)x1 − x2 > s− 1,

−sxi−1 + (s+ 1)xi − xi+1 > (−1)i (s+ 1)
for i = 2 : 19,

−sx18 − (3s− 1)x19 + 3x20 > − (5s− 7) ,
0 6 xi 6 10 for i = 1 : 13,
0 6 xi 6 106 for i = 14 : 20,
all xi integers,

The problem consists of 20 integer variables. For s = 6, the
problem is solvable, but several solvers are unable to find the
solution

x = (1, 2, 1, 2, . . . , 1, 2)T

GLPK in version 4.47 reports that the “problem has no integer
feasible solution”. The important constraint is

0 6 xi 6 106 for i = 14 : 20

For GLPK we found that the problem is solvable if 106 is replaced
by a number between 2 and 21871. Therefore, we analyzed and
compared the runs for the upper bounds 21871 and 21872.

For the upper bound 21871, our analysis reveals that−21871 is
stored in a double precision value and occurs correctly in operations
that are influenced by a tree of preceding operations with depth
159. As the largest tree of preceding operations measured has also
a depth of 159, it is likely that this operation has an influence on
the final result.

Increasing the upper bound by one to 21872 leads to noticeable
changes in the result of the analysis. As before, −21872 is also
stored in a double precision value and occurs in a operation that is
influenced by a tree of depth 161. Here, 161 is the maximum depth
of a tree of preceding operations. However, the original value is 0
and the shadow value is exactly −21872.

This shows that floating-point issues detected by our analysis
lead to the wrong result of GLPK. Our analysis gives more details
on the highly inaccurate value and automatically outputs an error
trace for it, but a deeper analysis is beyond the scope of this paper.

7. Related Work
A manual rounding error analysis is one of the best ways to prove
the stability of algorithms and to find errors because it works with a
mathematical model of floating-point arithmetic. But because it has
to be done by a human expert, it is only feasible for small programs.

Surprisingly few tools have been developed to assist the pro-
grammer in locating floating-point accuracy problems. Recent ap-
proaches are based on a static analysis (e.g. Fluctuat [9]) or try
to dynamically detect or correct errors (e.g. automated error cor-
rection by Langlois [14]). A static analysis has the advantage that
properties can be proven, however, often only with large error
bounds. Furthermore, static approaches suffer from the incapabil-
ity of disambiguating heap accesses as common in static analyses.
Hence, such approaches only work well on scalar computations.

Brown et al. [2] designed an analysis to determine if floating-
point operations can be optimized by going to a lower precision
or by replacing floating-point with fixed-point arithmetic. This is
of interest e.g. for synthesizing FPGAs. Their tool FloatWatch
also builds on Valgrind. To employ fixed-point arithmetic, they
track the overall range of all floating-point values. In addition, they
track the maximum difference between single and double precision
computations by performing all double precision operations side by
side in single precision.

An et al. [1] present a dynamic binary analysis called FPInst
based on DynInst to calculate errors side by side. In contrast to
our analysis, the shadow values do not contain values in higher
precision but an absolute error in double precision. Their functions
for computing the error of instructions are derived from work by
Dekker [4]. The formulas from Dekker enable higher precision
floating-point arithmetic on top of lower precision arithmetic, but
here the formulas are used to track the error throughout a program.
Applied to the simple error accumulation shown in Section 2.2.2,
the functions presented by An et al. give an error that alternates
and does not monotonously increase like the real error. This shows
that Dekker’s formulas can not always be used to compute error
accumulation and also explains the large discrepancies between the
computed error and the real error in their examples.

Lam et al. [13] present a dynamic binary analysis based on
DynInst to find floating-point operations where digits are canceled.
This work can be seen as the one most similar to ours. Their analy-
sis works by tracking all cancellations and reporting them. To min-
imize the output, the number of reports for the same instruction
is decreased logarithmically. Finally, the number of cancellations
per instruction and the average number of canceled bits per instruc-
tion are computed. However, the approach does not distinguish be-
tween benign and catastrophic cancellations, reducing its applica-
bility in practice. Because most cancellations are benign, the user
is left with many false positives.

8. Conclusions
In this paper, we presented a dynamic program analysis to detect
floating-point accuracy problems. To our knowledge, it is the first
dynamic analysis that detects catastrophic cancellations and uses a
light-weight slicing approach at tracing accuracy problems through
the program. We implemented our analysis in the Valgrind dynamic
binary instrumentation framework and exercise it on large-scale
benchmark programs in all of which we detect accuracy problems
of varying severity: one problem slows down the convergence of
an algorithm, other ones cause catastrophic cancellation leading
to totally insignificant output of the problem. We showed how our
analysis helps in tracking down and successfully fixing the causes
of these issues.

9. Acknowledgments
This work is partly supported by the Intel Visual Computing Insti-
tute in Saarbrücken.

References
[1] D. An, R. Blue, M. Lam, S. Piper, and G. Stoker.

FPInst: Floating point error analysis using dyninst, 2008.
http://www.freearrow.com/downloads/files/fpinst.pdf.

[2] A. W. Brown, P. H. J. Kelly, and W. Luk. Profiling floating point value
ranges for reconfigurable implementation. In Proceedings of the 1st
HiPEAC Workshop on Reconfigurable Computing, pages 6–16, 2007.

[3] S. P. E. Corporation. SPEC CPU2006 benchmarks.
http://www.spec.org/cpu2006/.

[4] T. J. Dekker. A floating-point technique for extending the
available precision. Numerische Mathematik, 18:224–242, 1971.
10.1007/BF01397083.

[5] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and
F. Védrine. Towards an industrial use of FLUCTUAT on safety-critical
avionics software. In FMICS ’09, pages 53–69. Springer-Verlag, 2009.

[6] S. Gal. An accurate elementary mathematical library for the IEEE
floating point standard. ACM Trans. Math. Softw., 17:26–45, March
1991.

[7] GNU Linear Programming Kit, ver. 4.47.
http://www.gnu.org/software/glpk/.

[8] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23:5–48, 1991.

[9] E. Goubault and S. Putot. Static analysis of finite precision com-
putations. In VMCAI’11, pages 232–247, Berlin, Heidelberg, 2011.
Springer-Verlag.

[10] N. J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, second edition edition, 2002.

[11] A. Hildebrandt, A. K. Dehof, A. Rurainski, A. Bertsch, M. Schu-
mann, N. Toussaint, A. Moll, D. Stockel, S. Nickels, S. Mueller, H.-P.
Lenhof, and O. Kohlbacher. BALL - biochemical algorithms library
1.3. BMC Bioinformatics, 11(1):531, 2010.

[12] W. Kahan. How futile are mindless assessments of roundoff in
floating-point computation?, 2006. http://www.cs.berkeley.edu/ wka-
han/Mindless.pdf.

[13] M. O. Lam, J. K. Hollingsworth, and G. W. Stewart. Dynamic floating-
point cancellation detection. In WHIST 11, 2011.

[14] P. Langlois. Automatic linear correction of rounding errors. BIT
Numerical Mathematics, 41:515–539, 2001.

[15] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Hand-
book of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[16] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI ’07, pages 89–100. ACM,
2007.

[17] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-
integer linear programming. Mathematical Programming, 99:283–
296, 2004. 10.1007/s10107-003-0433-3.

[18] U. G. A. Office. Patriot missile defense: Software problem led to
system failure at Dhahran, Saudi Arabia, GAO report IMTEC 92-26,
1992. http://www.gao.gov/products/IMTEC-92-26/.

[19] J. Walker. Floating-point benchmarks.
http://www.fourmilab.ch/fbench/, retrieved on 2011-03-03.

[20] The Wall Street Journal November 8, 1983, p.37.
[21] V. Weaver. SPEC CPU2006 problems of valgrind.

http://thread.gmane.org/gmane.comp.debugging.valgrind.devel/1488/,
retrieved on 2011-03-03.

