
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Optimistic Loop Optimization

Johannes Doerfert
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

doerfert@cs.uni-saarland.de

Tobias Grosser
Department of Computer Science

ETH Zurich, Switzerland
tobias.grosser@inf.ethz.ch

Sebastian Hack
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

hack@cs.uni-saarland.de

Abstract
Compilers use static analyses to justify program optimiza-
tions. As every optimization must preserve the semantics of
the original program, static analysis typically fall-back to
conservative approximations. Consequently, the set of states
for which the optimization is invalid is overapproximated
and potential optimization opportunities are missed. Instead
of justifying the optimization statically, a compiler can also
synthesize preconditions that imply the correctness of the
optimizations and are checked at the runtime of the program.

In this paper, we present a framework to collect, gener-
alize, and simplify assumptions based on Presburger arith-
metic. We introduce different assumptions necessary to en-
able a variety of complex loop transformations and derive a
(close to) minimal set of preconditions to validate them at
runtime. Our evaluation shows that the runtime verification
introduces negligible overhead and that the assumptions we
propose almost always hold true. On a large benchmark set
including SPEC and NPB our technique increases the num-
ber of modeled non-trivial loop nests by a factor of 3.9×.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Compiler, Optimization
Keywords Static Analysis; Presburger Precondition; Pro-
gram Versioning; Polyhedral Model

1. Introduction
The polyhedral model has proven to be a very powerful vehi-
cle for loop optimizations such as tiling, parallelization, and
vectorization [2, 7, 8, 35, 36, 44]. It represents programs by
convex polyhedra and leverages parametric integer program-
ming techniques to analyze and transform them [18–20].

To be faithfully represented in the polyhedral model, a
loop nest has to fulfill several strong requirements [19].
Amongst others, there must be no aliasing, all array sub-
scripts must be affine, loop bounds must be loop invariant,
and so on. Some of these constraints also impact the seman-
tics of the programming language: loop counter arithmetic
and subscript evaluation happens in Z not in machine arith-
metic. Arrays are for example truly multidimensional, thus
no two different index vectors can access the same cell.

There is a trend to also use the polyhedral model on
low-level languages such as C [11] and compiler interme-

diate representations (IRs) such as ORC/WRaP-IT [23],
gcc/graphite [40], and LLVM/Polly [24]. Especially the
semantics of IRs are often too low-level to fulfill all of
the polyhedral model’s requirements upfront. For exam-
ple, LLVM-IR has no proper multidimensional arrays in the
sense of Fortran, loop counter arithmetic might (depending
on the input program and language) use modulo arithmetic,
and aliasing rules are different due to the flat memory model.
Some of these peculiarities can be worked around but usually
this comes at an expense. Either significant increase in com-
pile time, because the polyhedral representation becomes
more complex, or less optimization potential, because of
overapproximations on the program behavior [26], or both.

declare rhs[JMAX][IMAX][5];

for (j = 0; j < grid[0] + 1; j++)
for (i = 0; i < grid[1] + 1; i++)
for (m = 0; m < 5; m++)

P: rhs[j][i][m] = /* ... */;

Figure 1. Simplified excerpt of the compute rhs func-
tion in the BT benchmark as provided in the C implementa-
tion of the NAS Parallel Benchmarks (NPB) [39].

The program in Figure 1 shows a simplified excerpt of the
BT benchmark in the NAS parallel benchmark suite [39].
Several issues prevent the straightforward application of
polyhedral techniques although existing work [32] has
shown that it profits from such loop optimizations. To be
polyhedrally representable it must satisfy three conditions.
1. The references to grid in the loop bounds must be loop

invariant, i.e. these array cells must not be modified in the
loop nest. This involves proving that this array does not
alias with other arrays that are modified in the loop nest.

2. The loop bounds must not overflow since the polyhedral
model is based on arithmetic in Z not machine arithmetic.

3. The accesses must stay in-bounds with regards to the
array allocation, i.e., i < grid[1] + 1 <= IMAX.

All these properties are notoriously hard to verify statically,
if possible at all. However, we can hardly imagine a program
run in which one of these requirements is violated. Hence,
we are in the unsatisfactory situation that we know that these
requirements are fulfilled for every program run of interest
but we are unable to prove it. In this paper we solve this

978-1-5090-4931-8/17$15.00 c© 2017 IEEE CGO 2017, Austin, USA292

declare rhs[JMAX][IMAX][5];

assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++) {
assume grid[1] != MAX_VALUE:
for (i = 0; i < grid[1] + 1; i++) {
for (m = 0; m < 5; m++) {
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid[2] ||

&rhs[j][i][m + 1] <= &grid[0];
rhs[j][i][m] = /* ... */;

(a) Figure 1 with explicit assumptions about the program behaviour.

declare rhs[JMAX][IMAX][5];

assume grid[0] != MAX_VALUE && grid[1] != MAX_VALUE &&
grid[0] + 1 <= JMAX && grid[1] + 1 <= IMAX &&
(&rhs[0][0][0] >= &grid[2] ||
&rhs[grid[0]][grid[1]][5] <= &grid[0]);

for (j = 0; j < grid[0] + 1; j++) {
for (i = 0; i < grid[1] + 1; i++) {
for (m = 0; m < 5; m++) {
rhs[j][i][m] = /* ... */;

(b) Figure 2a after generalizing the assumptions to the whole region.

Figure 2. The first two assumptions prevent integer overflow (Section 4.2) in the loop bounds, the third one out-of-bounds
accesses (Section 4.5), and the last one ensures the absence of overlapping arrays (Section 4.6) and static control (Section 4.1).

problem by an optimistic extension to polyhedral optimiza-
tion. First we identify the properties of programs and low-
level languages that hinder the straightforward application
of polyhedral approaches. Based on the program and these
properties, we derive assumptions under which the polyhe-
dral program description is faithful. These assumptions are
checked at program runtime and if they are met the opti-
mistically applied polyhedral optimization is proven valid.

Reconsider Figure 1. The assumptions needed for the
straightforward application of polyhedral techniques are
shown in Figure 2a. Because the assumptions we derive
are Presburger formulas, they are part of the polyhedral de-
scription of the program and profit from standard polyhedral
transformations. Most important, by projection onto the pa-
rameter space, they can be hoisted out of the loop nest as
illustrated in Figure 2b. This generalization allows for a sin-
gle runtime check that can be verified efficiently.

In summary, we make the following contributions:
1. We identify several properties of programs and low-level

languages that hinder the straightforward applicability of
the polyhedral model (Section 2).

2. Based on these properties, we show how to derive as-
sumptions under which the polyhedral description of the
program is correct (Section 4).

3. We show how these assumptions can be simplified to
speed up their evaluation at runtime (Section 5).

4. We present an algorithm to generate a correct runtime
check that verifies all preconditions (Section 6).

5. Finally, we evaluate an implementation of our approach
in LLVM/Polly on a large set of benchmarks (includ-
ing SPEC and NPB). The number of modeled non-trivial
loops nests increases by a factor of 3.9×, including sig-
nificantly optimized benchmarks (Section 7).

2. Overview
We now discuss semantic differences across common pro-
gram representations and describe the high-level design of a
new assumption framework to overcome these differences.

2.1 Loop Program Semantics Across Languages
We analyze the semantics of loop programs in C as well
as the LLVM intermediate representation (LLVM-IR) and
compare them to the polyhedral model (PM). C is a tradi-

tional high performance language and LLVM-IR a compiler
IR which efficiently represents a variety of languages.

In Figure 3 we list five situations with important seman-
tic differences. In the polyhedral model there is no need to
choose a type and a size for variables and arrays. The latter
can span infinitely in each dimension and arithmetic opera-
tions can be performed in Z. Consequently, the concept of
out-of-bounds accesses or integer overflows does not apply.
Additionally, each array can be placed in a disjunct part of
the infinite memory, thus they are completely disjoint. This
elides the possibility of aliasing, an integral part of low-level
languages like C or LLVM-IR. Additionally, control flow has
to be described statically and often needs to be bounded, thus
dynamic control and (partially) infinite loops are prohibited.

These semantic mismatches can cause miscompilations,
in case they are ignored. Nevertheless, it is common practice
for a polyhedral optimizer to require (and sometimes doc-
ument) that the input code is never called in situations that
result in semantic mismatches. This requirement is not only
hard to validate for programmers, but also hinders the auto-
matic optimization of unvalidated source code.

C LLVM-IR PM
Referentially Transparent Expressions (RT)

not-given not-given required
Expression Evaluation Semantics (EE)

type-
dependent

computation-
dependent

evaluation in
Z

Always Bounded Loops (BL)
no no preferable

Always In-bound Accesses (IB)
sometimes1 no yes

Aliasing Arrays (AA)
possible possible impossible

Figure 3. Semantics of C, LLVM-IR and the polyhedral
model (PM) in different situations.

2.2 Architecture
Our approach allows to model programs that do not com-
pletely match the semantics of the polyhedral model by us-

1 Out-of-Bound accesses to constant sized multi-dimensional arrays are
undefined [1, Section 6.5.6]. However, parametric sized multi-dimensional
arrays do not have a defined bound that could be violated (see Section 4.5).

293

ing optimistic assumptions to overcome the differences. Its
overall design is depicted in Figure 4. We expand the tradi-
tional optimization flow of modeling a loop nest, deriving
a transformation that is valid for all modeled program exe-
cutions, and replacing the original code with an optimized
version. Throughout the modeling and optimization phase
we collect assumptions (Section 4) and generalize these as-
sumptions to preconditions that must hold for the optimized
code to reflect the original program behavior. These precon-
ditions are then simplified (Section 5) and code is generated
to ensure that the optimized loop nest is only executed if at
runtime all preconditions are satisfied (Section 6). If not, it
falls back to the original code.

Figure 4. Architecture Overview

We model assumptions as parametric Presburger formulas
(Section 3.1) that evaluate to false if a certain combination of
program parameters is assumed to not occur during normal
program execution. At the beginning, our assumption set,
which describes the set of valid parameter combinations, is
initialized to the universal set. It contains and consequently
allows all possible parameter combinations. New assump-
tions are registered by analyses or transformations in the
optimization pipeline and restrict the set of valid parame-
ter configurations. As a result, we can optimize programs
that almost match the semantics of the polyhedral model, but
which for rare configurations would be modeled incorrectly.

The optimistic assumptions we present as well as their
simplification and code generation are generic and not tied to
a specific infrastructure. However, to evaluate feasibility and
effectiveness of our approach, we provide an implementation
for the LLVM/Polly loop optimizer [24].

3. Background
First, we provide background on affine expressions and Pres-
burger sets before we introduce a simple core language that
we then model using such sets.

3.1 Presburger Formulas and Sets
We use Presburger sets to describe properties and assump-
tions, as common operations on them are decidable. An n-
dimensional Presburger set s is a parametric subset of Zn. It
is described by a Presburger formula that evaluates to true if
a vector ~x ∈ Zn is element of s and to false otherwise. A
Presburger formula (Figure 5) is a boolean constant, a com-
parison between affine expressions, or a boolean combina-
tion of Presburger formulas. Presburger formulas also permit
quantified variables. Affine expressions can reference local

variables 〈var〉 and unknown but constant parameters 〈par〉.
We also use common extensions not described in Figure 5.

〈aff 〉 ::= 〈int〉 | 〈var〉 | 〈par〉 | 〈aff 〉 + 〈aff 〉
〈pfrm〉 ::= 〈boolean〉 | ¬〈pfrm〉 | 〈pfrm〉 ∧ 〈pfrm〉

| 〈pfrm〉 ∨ 〈pfrm〉 | 〈aff 〉 ≤ 〈aff 〉
| ∀〈var〉: 〈pfrm〉 | ∃〈var〉: 〈pfrm〉

Figure 5. Affine expressions and Presburger formulas. Mul-
tiplication with a constant is reduced to repeated additions.
An example two-dimensional set parameterized inN isD =
{(d0, d1) | 0 ≤ d0 ≤ d1 <N }. An empty set is written
as {~d | false } and an universal one as {~d | true }. We use
named Presburger sets which contain elements from differ-
ently named spaces. The set {(B, (i, j)) | i < j} contains
elements named B. A Presburger relation r is an element of
Zn × Zm and can be written as r = {(i0, i1) → (o0) |
i0 + i1 ≤ o0}. Presburger sets and relations are closed un-
der set operations such as union, intersection, and difference.
Sets can also be projected onto the parameter subspace, de-
noted as πP (·), which eliminates all variables 〈var〉. The re-
sulting set depends only on parameters 〈par〉 and is empty
for a given parameter valuation, iff the original set is empty
for the same parameter valuation, i.a., πρ(D) = {0 ≤ N}.
The operation r−1 denotes the inverse relation, thus inter-
changes domain and range. The image of a relation r under
a set s is written as r(s) := {t | ∃s ∈ S. (s, t) ∈ r}. We
denote the complement of a set s as ¬s.
3.2 Core Language
To illustrate code examples we introduce a core language
(Figure 6) which is an extended version of Feautrier’s SCoP
language [19]. We permit array reads in expressions, thus as
part of base pointers, offset expressions, and control condi-
tions. This allows indirect array access as well as dynamic
control structures. The former is a common byproduct of ar-
rays aggregated in a structure or class, the latter is often used
to deal with variable sized arrays, e.g., the loop bounds are
loaded dynamically from member or global variables. Addi-
tionally, we do not assume in-bounds array accesses.
〈acc〉 ::= 〈exp〉

([
〈exp〉

])
+

〈exp〉 ::= 〈acc〉 | 〈int〉 | 〈var〉 | 〈par〉 | 〈exp〉 + 〈exp〉
〈cmp〉 ::= 〈exp〉

(
< | > | <= | >= | == | !=

)
〈exp〉

| 〈cmp〉 && 〈cmp〉 | 〈cmp〉 || 〈cmp〉
〈stmt〉 ::= declare 〈acc〉; | 〈acc〉 = 〈exp〉; | 〈stmt〉 〈stmt〉

| for
(
〈var〉 = 〈exp〉; 〈cmp〉; 〈var〉 += 〈int〉

)
{ 〈stmt〉 } | if

(
〈cmp〉

)
{ 〈stmt〉 }

[
else { 〈stmt〉 }

]
Figure 6. Grammar for our core language.

While this language is otherwise tailored towards the use in
polyhedral tools, it still allows to argue about the semantic
differences of the polyhedral model and various real-world
programming languages. The 〈acc〉 rule describes accesses
to an array with a possibly multi-dimensional offset. An ex-
pression 〈exp〉 is an affine value (ref. 〈aff 〉 Figure 5) that also
permits array reads as sub-expressions. Loop exit conditions
〈cmp〉 are comparisons of two expressions and logical com-

294

binations thereof. The final rule 〈stmt〉 defines a statement,
the top-level entity of the language. A statement can either
be a declaration of an array, the assignment to an array loca-
tion, a sequence of statements, a loop or a conditional.

for (i = 0; i < N; i++)
for (j = 0; j < M j++)

P: A[j][i] = B[i][j];

Figure 7. Simple core language loop nest.

3.3 Polyhedral Representation of Programs
The polyhedral model is a well known mathematical pro-
gram abstraction based on Presburger sets [21]. It allows
to reason about control flow and memory dependences in
static control programs (SCoPs [19]) with maximal preci-
sion. With the exception of array reads in expressions 〈exp〉,
core language programs can be natively translated into the
polyhedral model. The iteration space IS (aka. domain) of
a program statement S is represented as a parametric sub-
set of Zk, where k denotes the number of loops surrounding
S. Each vector in IS describes the values of the surrounding
loop iteration variables for a dynamic execution of S. The
iteration domain of statement P in Figure 7 can be written as

IP = {(i, j) | 0 ≤ i < N ∧ 0 ≤ j < M}.
The individual array accesses in a statement S are modeled
by a named integer relationAS that relates each dynamic in-
stance of S to the array elements it accesses. In this context,
the named spaces are used to distinguish between accesses
to different arrays. The accesses of statement P in Figure 7
are for example described by the relation

AP = {(i, j)→ (A, (j, i))} ∪ {(i, j)→ (B, (i, j))}.

4. Optimistic Assumptions
This section introduces the optimistic assumptions that are
necessary for applicable and sound polyhedral modeling and
optimization. Some of them are, usually in simpler forms,
used in existing compilers, but have been generalized in this
work. Others are, to the best of our knowledge, new or have
not yet been formalized in this way. We use core language
examples to illustrate the semantic differences between the
polyhedral model and real-world programming languages
and thereby motivate the need for optimistic assumptions.

4.1 Referential Transparent Expressions
Expressions 〈exp〉 in the core language are similar to affine
functions 〈aff 〉, but also allow array reads. While affine func-
tions can be naturally represented in the polyhedral model,
expressions containing reads cannot as they are not refer-
entially transparent. If these non-pure expressions are used
in control conditions the control flow is not static but data-
dependent. If they are used in array subscripts, the access
is data-dependent. To represent loops with data-dependent
control or accesses, we optimistically assume expressions to
behave as if they were static, thus not data-dependent but
referentially transparent. As a result, the code shown in Fig-
ure 8 is represented as if the accesses to the UB and Idx

arrays have been hoisted out of the loop. This is correct if
the array offsets are invariant and the corresponding mem-
ory location is not modified. An offset is invariant if it does
not contain loop variables 〈var〉 and all sub-expressions are
referentially transparent too. In order to determine if a poten-
tially invariant read is overwritten, we first compute the set
of all written locations W . To this end, the access relation
of each array write is applied to the iteration domain of the
surrounding statement.W is then the union of the results.

for (i = 0; i < UB[0]; i += 1)
S: A[Idx[0] + i] += B[i];

Figure 8. Invariant memory accesses that can be modeled as
parameters in the domain of S and the access function of A.

As illustrated in Figure 8, it is important to note that the
values of the assumed invariant reads, i.e., Idx[0] and
UB[0], affect the set W . If we denote their parametric
values as Idx0 and UB0, thenW can be written as

W = {(A, (Idx0 + i)) | 0 ≤ i < UB0}.
While W is used to reason about the invariance of the as-
sumed invariant reads, it also depends on their runtime val-
ues. Thus, it is generally not possible to reason about ref-
erentially transparent expressions only at compile time but
runtime checks are needed to verify the assumptions. In or-
der to determine the access relations and the iteration do-
mains in the first place, we use the polyhedral representation
of the region that can be build under the assumption that
data-dependent control flow behaves as if it was static. This
means to treat assumed invariant reads as parameters 〈par〉.

Given the set W , one has to check that all reads r that
have been assumed to be invariant actually are. We denote
the access function of r as Ar and the statement containing
r as R. It remains to test if the read location Ar(IR) is
contained in W or not. If it is not, r is invariant, otherwise
there exists at least one parameter combination for which
Ar(IR) is written inside the analyzed region. Nevertheless,
the optimistically built polyhedral representation remains
sound under the assumptions these parameter valuations do
not occur at runtime. The set of parameter valuations that do
not cause a write to the location Ar(IR) is

ΛRT (r) = πρ(¬(W ∩Ar(IR))).

The intersection of ΛRT for all assumed invariant reads
(AIR) describes the valid parameter combinations under
which all expressions are referentially transparent. Thus,
the referentially transparent assumption is defined as

ΛRT =
⋂

r∈AIR

ΛRT (r).

4.2 Expression Evaluation Semantics
The polyhedral model is a mathematical program abstraction
which evaluates expressions in Z. We denote this expres-
sion evaluation semantics as Precise. However, program-
ming languages like Java, Julia, C/C++ [15], and LLVM-IR
impose more machine dependent semantics on expression
evaluation. The two most common ones are Wrapping, thus

295

the evaluation modulom = 2n for n-bit expressions, and Er-
ror which causes undefined behaviour if the result of Precise
and Wrapping evaluation differs. Note that Precise seman-
tics subsume Error semantics, but not Wrapping semantics.

In order for the polyhedral model to represent the input
correctly, it is necessary to represent the evaluation seman-
tics as well. While it is possible to express Wrapping seman-
tics in Presburger arithmetic [45], practice shows that it has
a vastly negative effect on compile time as well as runtime
of the generated code (Section 7.2). The former is caused by
the additional existentially quantified dimensions that mod-
ulo expressions can introduce, the latter by additional de-
pendences that are only present in case of wrapping (Fig-
ure 9). While integer wrapping rarely occurs when execut-
ing the programs commonly analysed by polyhedral tools,
an automatic approach used on general purpose code should
never silently mis-compile programs for corner-case inputs.

for (i = 0; i <= N; i += 1)
S: A[i + i] = A[i + i + 1];

Figure 9. Loop with dependences only if Wrapping seman-
tics are used. Assuming i to be an 8-bit unsigned value,
loop-carried dependences are then present if N = 27 = 128.

To represent possibly wrapping computations in an efficient
way, we optimistically use Precise semantics. This is sound
for parameter valuations that do not cause any expression to
wrap. We denote these parameter valuations as expression
evaluation assumptions ΛEE . To compute them, each ex-
pression e ∈ 〈exp〉 of the input program is translated twice
to the polyhedral model. First with Precise semantics and
then with Wrapping semantics. We use JeKZ to express the
former translation and JeKZ/mZ for the latter. Both translate
e to a function in the surrounding iteration variables. As-
suming e is part of statement S and surrounded by k loops,
we can compute IW (e), the set of all iterations for which e
would wrap:

IW (e) = {(i) | i ∈ Zk ∧ JeKZ(i) 6= JeKZ/mZ(i)}.
To restrict it to actually executed iterations, IW (e) is inter-
sected with the iteration space IS of the statement S:

IWS(e) = IW (e) ∩ IS.
The negated projection of IWS(e) onto the parameter sub-
space describes the parameter evaluations under which the
evaluation of e with Precise semantics is equal to the eval-
uation with Wrapping semantics, thus the expression eval-
uation assumptions ΛEE(e) for e. The intersection of all
ΛEE(e) yields the preconditions ΛEE that ensure the ab-
sence of wrapping in all control and access expressions:

ΛEE =
⋂

e∈〈exp〉
ΛEE(e) =

⋂
e∈〈exp〉

¬πρ(IWS(e)).

It is important to note that the optimistically generated poly-
hedral representation of the input program is not necessar-
ily sufficient to compute ΛEE . Due to the referential trans-
parency of expressions in the polyhedral model, it is possible

that values are replaced by their definition, thus altering the
domain under which an expression is evaluated. In Figure 10
two equivalent programs are shown if expressions are eval-
uated with Precise semantics but not necessary with Wrap-
ping semantics. While the polyhedral representation of Fig-
ure 10a and Figure 10b can be equal (Figure 10c) the former
might exhibit a wrapping increment expression while the lat-
ter does not. Consequently, it is necessary to utilize the tex-
tual expression and the textual domain to compute ΛEE , not
a polyhedral representations thereof.

for (i = p + 1; i < 10; i += 1)
P: A[i - 1] = A[i - 1] + 1;

(a) Possibly wrapping increment of p.

for (i = p; i < 9; i += 1)
P: A[i] = A[i] + 1;

(b) Safe increment guarded by the loop condition i < 9.

IP = {(i) | 0 ≤ i ≤ 8− p} AP = {(i)→ (A, (i+ p))}
(c) Polyhedral representation of Figure 10a and Figure 10b.

Figure 10. Loops with equal polyhedral representation but
different wrapping behaviour.

4.3 Possibly Unbounded Loops
Possibly unbounded loops are an implementation artifact
that can cause complex, partially unbounded iteration do-
mains and thereby compile time hazards. In practice, pos-
sibly unbounded loops are often caused by parametric loop
bounds with an equality exit condition, thus == or !=. Such
exit conditions are used by programmers but also intro-
duced by canonicalizing program transformations. An exam-
ple loop that is possibly unbounded is shown in Figure 112.
For LB > UB the iteration domain of statement S is un-
bounded, Thus, in the polyhedral representation this param-
eter valuation would cause an infinite loop and thereby com-
pile time hazards while its occurrence in practice would ei-
ther result in an error or render optimizations redundant.

for (i = LB; i != UB; i += 1)
S: ...

Figure 11. Partially unbounded domain for LB > UB.
In order to keep the iteration domains bounded and concise
while still being able to handle loops with a potentially
unbounded number of iterations we generate preconditions
that prevent unbounded loops statically. Using the example
above we first bring the iteration domain

IS = {(i) |(LB ≤ i < UB) ∨ (UB < LB ≤ i)}
into disjunctive normal form and identify all clauses that do
not bound all loop iteration variables properly. In this ex-
ample the first disjunct provides proper bounds for i while
the second does not provide an upper bound. We denote
the set of unbounded clauses in the domain IS as I∞S . The
negated projection of I∞S onto the parameter space yields
the bounded loops assumption ΛBL(S). All parameter val-
uations that would cause an unbounded number of loop it-

2 Integer wrapping is ignored as modulo computations could prevent it.

296

erations for statement S are precluded by ΛBL(S). Thus,
the intersection of ΛBL(S) over all statements prevents un-
bounded domains all together:

ΛBL =
⋂
S

ΛBL(S) =
⋂
S

¬πρ(I∞S).

Note that for nested loops with dependent conditionals, as
illustrated in Figure 12, prior dimensions are assumed to be
bounded. Hence, the constraints 0 ≤ j < i suffice as bound
for the loop iteration variable j in the domain of S.

for (i = 0; ...; ...)
for (j = 0; j < i; ...)

S: ...

Figure 12. Generic nested loop with dependent conditionals.

4.4 Accesses to Constant-Size Arrays Are In-bounds
Functions that work on multi-dimensional arrays of fixed
size often do not provide sufficient information to prove
that all memory access subscript expressions remain within
bounds. A common reason for this is the use of parametric
array bounds, which appear either just due to inconsistent
code or, as illustrated in Figure 13, due to code that works
only on sub-arrays. In some languages multi-dimensional
out-of-bound accesses are disallowed or result in runtime er-
rors. Other languages linearize multi-dimensional array ac-
cesses and treat them as one-dimensional ones. Such ac-
cesses remain valid even if not all subscript expressions re-
main within the dimension bounds of the multi-dimensional
array as long as the location accessed is valid. While LLVM-
IR retains information about the multi-dimensionality of ac-
cesses for arrays with constant sized dimensions, there is
no guarantee such accesses remain within bounds: “Analy-
sis passes which wish to understand array indexing should
not assume that the static array type bounds are respected”3.

declare A[1024][1024];
declare B[1024][1024];

for (i = start; i < start + num; i++)
for (j = start; j < start + num; j++)

S: A[i][j] = B[i][j];

Figure 13. Parametric accesses to constant-sized arrays.
Accesses to multi-dimensional arrays of constant size that
have affine subscripts in each dimension can be equivalently
expressed as affine one-dimensional accesses. Therefore, ex-
isting integer programming based dependence analysis tech-
niques [19, 37] can be used to compute precise results. How-
ever, out-of-bound memory accesses can introduce spuri-
ous data dependences that prevent otherwise legal program
transformations. To illustrate the problem we consider the
example in Figure 13. The set

IS = {(i, j) | start ≤ i < start + num∧
start ≤ j < start + num}

3 http://llvm.org/docs/GetElementPtr.html#why-do-
gep-x-1-0-0-and-gep-x-1-alias

describes all iterations of S and the relation

AS = {(i, j)→ (A, (1024i+ j))}∪
{(i, j)→ (B, (1024i+ j))}

describes the accesses performed. The source code suggests
that the code is dependence free and that transformations
such as loop interchange are valid. However, if the language
allows for out-of-bounds accesses in the individual offset
expressions, e.g., as LLVM-IR does due to the implicit lin-
earization, the set of data dependences is not empty:

{(i, j)→(i+ 1, j − 1024) |
start ≤ i < start + num− 1 ∧

1024 + start ≤ j < start + num}
For values of j that are larger than 1024 + start, there is
a data dependence from iteration (i, j) to the later iteration
(i+1, j−1024) caused by an out-of-bound memory access.
If we consider only the values of j that do not cause out-of-
bound accesses, the set of data dependences is empty.

As out-of-bound accesses are valid, but uncommon, we
can optimistically assume they never happen, thereby avoid-
ing the spurious dependences. To this end, we first define
constraints to describe out-of-bound memory locations and
then compute the iterations that access such locations. For
an N -dimensional array, where each dimension i has size
si, the out-of-bounds memory locations are described as

MOut = {(~e) |
∨

i=1..(N−1)

(
ei < 0 ∨ si ≤ ei

)
}.

To obtain the set of iterations IOut that perform an out-of-
bound access, we apply for each statement S the reverse
access relation A−1S to the out-of-bound access description
and restrict the result to the statement domain IS, thus:

IOut =
⋃
S

(
IS ∩ A−1S (MOut)

)
The projection of IOut onto the parameter subspace yields a
description of all parameter combinations that trigger at least
one out-of-bound access. Taking the complement, we derive
the assumptions that ensure in-bounds accesses:

ΛIB = ¬πρ(IOut)

4.5 Accesses to Parametric-Size Arrays Are In-bounds
Accesses to multi-dimensional arrays of parametric size are,
similar to their fixed-sized counterparts, modeled in the
compiler IR as one-dimensional accesses. However, even
if the individual subscript expressions were affine (e.g.,
A[i][j]), the linearized result is commonly a polyno-
mial expression (e.g., A[i * n + j]) which cannot be
analyzed with ILP-based techniques. Grosser et. al [26]
presented a delinearization approach that guesses possible
multi-dimensional array accesses by looking for non-affine
monomials in the polynomial access functions. In many
cases, the correctness of this delinearization is not stati-
cally provable, but an assumption can be constructed that
ensures the correctness. Our framework is used to keep track

297

http://llvm.org/docs/GetElementPtr.html#why-do-gep-x-1-0-0-and-gep-x-1-alias
http://llvm.org/docs/GetElementPtr.html#why-do-gep-x-1-0-0-and-gep-x-1-alias

of these delinearization assumptions, to simplify them with
respect to other (independently taken) assumptions, and to
emit optimized runtime checks. In the evaluation (Section 7)
we record delinearization assumptions with the in-bounds
assumptions as ΛIB .

4.6 Arrays Do Not Alias (Overlap)
Alves et al. [4] presented an approach to rule out array alias-
ing at runtime that utilizes the optimistic assumption frame-
work presented in this work. Their runtime check verifies
that two array regions which are accessed via different base
pointers are not overlapping, thus not aliasing. The access
ranges for all possible overlapping arrays are computed in
the same way as the set of written locations W in Sec-
tion 4.1. As a consequence of our extensions, the access
ranges can, similar toW , be dependent on the values of as-
sumed invariant reads and the absence of overflows. Hence,
only the combination of alias assumptions ΛAA and refer-
entially transparent assumption ΛRT allows to handle loops
with assumed invariant loads which might alias other arrays.

To model the example in Figure 1 one has to assume the
first two elements of grid are not overwritten. Aliasing
checks need to argue about the accessed memory regions,
thus they depend on the loop bounds that are not static. At
the same time one cannot assume the loop bounds to be
invariant if any aliasing access could dynamically change
them. Only by assuming and verifying both properties si-
multaneously, a correct model can be built.

5. Efficient Assumptions
Handling assumptions efficiently is important to minimize
compile time and to ensure their fast evaluation at runtime.
The number of assumptions inevitable increases with pro-
gram size, but their cost is often more impacted by the kind
and representation of the assumptions. We exploit flexibil-
ity in the assumptions we take to obtain simpler Presburger
models and use different representations to ensure small con-
straint sets and consequently concise runtime checks.
Constraint Representation: By expressing all assump-
tions as Presburger sets, we can exploit a wide range of
established simplification techniques to remove redundant
constraints, detect equalities [43], and to merge convex
sets [42]. As a result, redundancies in large assumption sets
are reliably eliminated.
Irrelevant Parameter Configurations: Parameter configu-
rations for which both the original and the optimized code
have identical semantics are used to simplify the assump-
tions. As example consider Figure 7 for which, assuming
an array definition B[100][100], the in-bounds assumption
ΛIB = M ≤ 100 ∨ N ≤ 0 is computed. For N ≤ 0 all
access are in-bounds as no access is executed, but also no in-
teresting computation is performed. Consequently, this con-
dition is dropped. Simplification takes place only after all as-
sumptions have been collected, as early simplification could
exclude parameter configurations under which later parts of
the code perform interesting computations.

Impossible or Undefined Behavior: We use parameter
configurations that are impossible or trigger undefined be-
havior to simplify the taken assumptions. Value range infor-
mation, obtained from the underlying data types and through
program code analysis [28], limits the set of valid parame-
ter configurations. We exploit undefined behavior, e.g., to
not generate expression evaluation assumptions ΛEE if a
computation is guaranteed to not overflow. As the relaxed
type system and memory model of compiler IRs is often
insufficient to model necessary language semantics, we use
annotations to carry over missing information. In case of
out-of-bound accesses to fixed-sized arrays, which are unde-
fined in C/C++ but not in LLVM-IR (Section 4.4), we emit
annotations in the C/C++ frontend that guarantee in-bounds
accesses, thus allow to omit in-bounds assumptions.

Positive Assumptions vs. Restrictions: Assumptions can
be modeled as set of valid parameter configurations (posi-
tive assumptions) or as set of invalid parameter configura-
tions (restrictions) and this choice significantly impacts the
representation efficiency. In Section 4, we introduced all as-
sumptions as positive assumptions. However, depending on
how Presburger sets are represented, restrictions can be ad-
vantageous. Polly relies on isl [42], which uses a disjunctive
normal form (DNF) as canonical representation. When col-
lecting positive assumptions, new constraints are added by
intersection. When collecting restrictions, new constraints
are added by computing the union. Intersecting is fast for
single convex polyhedra, where it corresponds to append-
ing constraints. However, when individual assumptions are
represented by a union of convex polyhedra, computing the
DNF of an intersection can increase the size of its represen-
tation drastically due to the distributive property. In contrast,
restrictions grow linearly. In our implementation we use pos-
itive assumptions only for in-bounds assumptions ΛIB and
restrictions otherwise.

Conservative Over-Approximation: In certain cases con-
servative approximations of assumptions allow for more
concise Presburger sets without observable disadvantages
in practice. For example, a simple non-uniform stride (Fig-
ure 14a) can cause a complicated runtime alias check (Fig-
ure 14b) which can be conservatively simplified (Figure 14c).
Since especially existentially quantified dimensions, which
often arise from non-uniform strides or modulo expressions,
have shown to complicate assumptions, we conservatively
approximate assumptions by projecting out such dimen-
sions.

6. Runtime Check Generation
So far we have shown how to take, combine, and simplify
assumptions as preconditions for efficient, sound, and opti-
mistic loop optimizations. At runtime, these preconditions
are evaluated to determine if it is valid to execute the opti-
mistically optimized loop nest or if the conservatively opti-
mized one needs to be used. In either case, it is crucial that
the code that is used to evaluate these preconditions correctly

298

for (i = 0; i < N; i += 5) {
A[i+0] += B[i+0]; A[i+1] -= B[i+1];
A[i+2] += B[i+2]; A[i+3] -= B[i+3];
A[i+4] += B[i+4];

}

(a) Loop with non-uniform stride.

&B[N+4-((N-1)%5)] <= &A[0] ||
&A[N+4-((N-1)%5)] <= &B[0]

(b) Precise alias check

&B[N + 4] <= &A[0] ||
&A[N + 4] <= &B[0]

(c) Simplified alias check.

Figure 14. Complicated and conservatively simplified run-
time alias checks for a simple loop with non-uniform stride.

implies their semantics. In Figure 2b we illustrated how as-
sumptions can be generalized to the whole region. However,
code for runtime checks cannot be simply generated for the
collected and simplified assumption. Two additional chal-
lenges arise in order for the runtime check code to be a, pos-
sibly weaker but sound, precondition.

1. Machines use Wrapping4 semantics (ref. Section 4.2) to
evaluate expressions, not the Precise semantics that is
used to combine and simplify the assumptions in the poly-
hedral model. This discrepancy can cause subtle errors,
especially in the context of expression evaluation assump-
tions ΛEE that may contain large constants.

2. Preconditions can reference assumed invariant reads
(ref. Section 4.1) as part of parameters in the polyhedral
model. These reads have to be “pre-loaded” to make their
values available during the runtime check generation.

Algorithm 1: Runtime check generation.
Input : an affine function q ∈ 〈aff 〉
Output: code that computes q or signals a failure.

1 Function generateAff
(
q
)

2 switch q do
3 case c do return c; // c ∈ 〈int〉
4 case v do return v; // v ∈ 〈var〉
5 case p do // p ∈ 〈par〉
6 return generateParameterOrArrayRead

(
p
)
;

7 case ql + qr do // ql, qr ∈ 〈aff 〉
8 lhs← generateAff

(
ql
)
;

9 rhs← generateAff
(
qr
)
;

10 res← generateOverflowCheckAdd
(
lhs, rhs

)
;

11 generateFailureOnOverflow
(
res
)
;

12 return res;

To bridge the gap between the different expression evalua-
tion semantics we track potential overflows in the runtime
check code. Especially on hardware with build-in overflow
detection for arithmetic operations, this can be implemented
efficiently. For the example in Figure 2b this means that after
each addition we check explicitly for an overflow before we
continue the evaluation of the runtime check code. After the

4 While CPUs use Wrapping semantics, GPUs might not. However, the
argument stays valid for GPUs as they do not use Precise semantics either.

first overflow the runtime check fails and the conservatively
optimized code is executed.

To make the values of assumed invariant reads available
in the runtime check, they have to be hoisted in front of the
analyzed region. While this is generally possible, it is im-
portant that an invariant read should only be pre-loaded un-
der the condition that the memory location can be safely ac-
cessed. For the example in Figure 2b this means that the ac-
cess to grid[1]must not be performed if grid[0] < 0.

The two mutually recursive Algorithms 1 and 2 illus-
trate how we extended code generation for Presburger for-
mula [27] to tackle the additional challenges that come with
sound and efficient runtime check generation. While the first
three cases shown in Algorithm 1 do conceptually not dif-
fer from common code generation for affine functions, the
last case (line 7) was extended. Additional code that detects
a potential overflow at runtime is emitted after each poten-
tially overflowing arithmetic instruction. In case an overflow
occurred, thus a failure is signaled, the conservatively opti-
mized code version has to be executed. It is important not to
cause any side-effect after a problem in the runtime check
has been detected. To this end, pre-loaded assumed invariant
reads have to be guarded explicitly if it cannot be shown that
the memory can be accessed unconditionally.

Algorithm 2: Parameter generation for runtime checks.
Input : a parameter p ∈ 〈par〉 that might reference

assumed invariant reads
Output: code that computes q or signals a failure.

1 Function generateParameterOrArrayRead(p)
2 foreach array read a in p do // a ∈ 〈acc〉
3 if isPotentiallyUndefinedAccess

(
a
)

then
4 Ia ← getDomainForAccess

(
a
)
;

5 generateFailureIfEmpty
(
Ia
)
;

6 bp← getBasePointerAff
(
a
)
; // bp ∈ 〈aff 〉

7 addr ← generateAff
(
bp
)
;

8 foreach offset expression e in a do // e ∈ 〈exp〉
9 noWrap← generateAssumptions(ΛEE(e));

10 generateFailureIfFalse
(
noWrap

)
;

11 eq ← getExpressionAff
(
e
)
; // eq ∈ 〈aff 〉

12 addr ← addr[generateAff
(
eq
)
];

13 l← generateLoad
(
addr

)
;

14 replace a with l in all parameters and expressions;

15 return generateParameter
(
p
)
;

Algorithm 2 illustrates how assumed invariant reads are pre-
loaded on demand. For each assumed invariant read that is
part of a parameter, three conceptual steps are performed.
First, it is ensured that the access is actually performed by
the program. If not, one can either fall back to the con-
servative version, as shown in line 5, or use an arbitrary
but valid value at runtime, as it cannot be referenced by
any executed code. Second, the assumed invariant reads that
are referenced in the offset expressions or the base pointer

299

are pre-loaded first through the (mutual) recursion in line 7
and line 12. Finally, the expression evaluation assumptions
ΛEE for each offset expression have to be checked prior to
the access. If one of them is violated, it is not sound to per-
form the access, as there might be an integer overflow that
was not represented correctly. Thus, the location accessed by
the program might not be the one accessed in the model. The
real location might not be invariant or might just be different
from the one that would have been pre-loaded. In either case,
the conservative optimized version has to be executed.

7. Evaluation
To evaluate the assumptions collection, the simplification,
and the runtime check generation, we run Polly on the
LLVM Test Suite, the NPB Suite, and the C/C++ bench-
marks of the SPEC 2000 as well as 2006 benchmark suite.
The evaluation is restricted to non-trivial regions, thus loop
nests that contain at least two loops or two statements with
memory accesses (both read and write) inside loops. This
granularity is the finest one could except polyhedral op-
timizations to be effective, thus transformations like loop
interchange or loop fusion/fission to be applicable. All per-
formance numbers are generated with an Intel(R) Xeon(R)
E3-1225. We used the default input size for the LLVM Test
Suite, train input for SPEC, and the W input class for NPB.

SPEC 2006 SPEC 2000
(a) w/ Λ (b) w/o Λ (a) w/ Λ (b) w/o Λ

#S 191 89 35 83 5 24
#D 34 4 12 29 3 12
#E 5.2M 16k 61k 729k 78k 11k

NPB LLVM Test Suite
(a) w/ Λ (b) w/o Λ (a) w/ Λ (b) w/o Λ

#S 50 2 2 431 62 133
#D 41 5 1 85 9 39
#E 214k 48k 2 5.2M 89k 97k

Figure 15. #S denotes the number of analyzed non-trivial
loop nests (a) and how many had statically infeasible as-
sumptions (b). #D shows how many of these were executed
by the test suite (a) and how many violated the assumptions
(b). #E denotes how often they were executed (a) and how
often they violated an assumption (b).

7.1 Applicability
Figure 15 presents statistics about the applicability of our ap-
proach (w/ Λ) compared to Polly without assumptions (w/o
Λ). First #S, gives the number of non-trivial regions that
were analyzed (a) together with the number of regions for
which infeasible assumptions were taken (b). As an exam-
ple, Polly analyzes 191 non-trivial regions in SPEC 2006.
Out of which 35 do not require any assumptions to be taken
and 191 − 35 = 156 do. However, not all 156 regions will
actually be optimized. For 89 regions statically infeasible as-
sumptions were taken, thus the regions were dismissed dur-

ing the modeling. Summarized, optimistic assumptions al-
low to optimize almost three times as many non-trivial re-
gions in the SPEC 2006 benchmarks. Line #D shows how
many of these distinct loop nests were executed during a run
of the test suite (a) and how many of them violated the as-
sumptions in at least one execution (b). In terms of dynamic
total (#E), SPEC 2006 executed the optimized regions 5.2
million times (a) and in 16k of these executions the runtime
checks did not hold (b). All but 6 dynamic misspeculations
were caused by a single loop nest in the 403.gcc benchmark.
Similarly we can identify one loop nest in each of the bench-
mark suites to account for 82% of all runtime check failures.

SPEC 2006 SPEC 2000
(a) w/ Λ (b) (a) w/ Λ (b)

ΛIB 5 5 6 5
ΛEE 611 389 82 30
ΛBL 42 42 6 6
ΛAA 132 132 52 52
ΛRT 553 103 6 6

NPB LLVM Test Suite
(a) w/ Λ (b) (a) w/ Λ (b)

ΛIB 1021 124 258 101
ΛEE 773 129 671 202
ΛBL 0 0 23 20
ΛAA 14 14 258 258
ΛRT 1 1 162 80

Figure 16. The Λ∗ rows show how many non-trivial assump-
tions were taken (a) and not implied by prior ones (b).

The Λ∗ rows in Figure 16 show how often assumptions
were taken (a) and then how often they were not already
implied by prior ones (b). Though, the order in which the
assumptions are taken influences the second number, we
believe it is interesting to see how often assumptions are
already implied, thus have no impact on the runtime check.

7.2 Modeling Choices, Simplification, and Versioning
Especially the expression evaluation assumptions ΛEE and
the bounded loop assumptions ΛBL are alternatives to an
otherwise complex and costly representation. While the lat-
ter are currently required in the optimization pipeline, the
former can be avoided by explicitly modeling Wrapping se-
mantics. However, the compile time will increase for various
benchmarks between 3% and 3k%, causing a timeout after
500s of compile time for 8 of them.

Simplifications (Section 5) generally reduce compile
time. However, due to heuristics which exploit the constraint
representation and newly exposed optimization opportuni-
ties, compile time increases can be observed in certain situ-
ations. The most important change we see is the elimination
of compile time hazards. An example is the Linpack [17]
benchmark. It is optimized in less than 3 seconds with as-
sumption simplifications but requires more than 500 seconds
without.

300

If the assumptions are not taken but the optimistically op-
timized version is unconditionally executed, we see overall
compile time improvements of up to 24%. The runtime de-
crease without runtime checks stays below 4% of the overall
execution time.

7.3 Sound and Automatic Polyhedral Optimization
Our assumptions allow to apply existing polyhedral ap-
proaches [4, 25, 32, 33] in a sound and automatic way on
low-level code without the need for manual pre-processing.
For our motivating example, the compute_rhs function
of the BT benchmark from the NPB suite (excerpt shown
in Figure 1 and 2), this would be an 6×fold speedup with 8
threads reported by Mehta and Yew [32].

In addition, we can observe speedups in general purpose
codes. The most interesting case is the P7Viterbi func-
tion of the 456.hmmer benchmark in the SPEC 2006 bench-
mark suite. The innermost loop in this function cannot be
vectorized by LLVM due to the loop carried dependences
induced in the middle part of the loop5. However, the top as
well as bottom part perform independent computations that
do not cause loop carried dependences. The loop distribution
performed by Polly exposes the vectorization opportunity in
the bottom part to LLVM, which reduces the total execution
time of 456.hmmer (on the reference input) by 28% com-
pared to clang-3.8 -O3.

Finally, the optimistic assumptions allow to optimize loop
nests written in the programming style used by Julia or the
boost::ublas C++ library. In both cases arrays (and matri-
ces) are structures that contain not only the data but also
their size. The latter is then dynamically loaded inside the
loop nest, e.g., as upper bound for loops. This programming
style causes data-dependent control flow (ref. Section 4.1),
potential multidimensional out-of-bound accesses (ref. Sec-
tion 4.5) as well as potentially aliasing accesses (ref. Sec-
tion 4.6). Without our optimistic assumptions manual inter-
vention is necessary for all programs written in this style.

8. Related Work
Optimistic assumptions are special preconditions, a topic
well studied over the years [12, 14, 29]. Especially in the
context of runtime check elimination for safe languages, sev-
eral methods have been proposed [10, 22, 34, 38, 48]. These
approaches generate an optimistic assumption, or precondi-
tion, to exclude out-of-bounds array accesses. In contrast,
we employ them as a means to ensure a correct abstraction,
simplify dependences, and to allow more optimization. Nev-
ertheless, the two in-bounds related assumptions ΛIB share
similarities with many of the algorithms and methods pro-
posed in the literature; one of the oldest being by Cousot
and Halbwachs [14]. With their abstract interpretation based
on a relational domain, they can e.g., prove the absence of
out-of-bounds accesses in classical SCoPs [19].

5 LLVM does not by default perform loop distribution and the available
implementation works, in contrast to Polly, only on innermost loops.

Integer overflows have been detected statically [13] as
well as dynamically [15]. The work closest to our non-
wrapping assumption ΛEE derives input filters to prevent
integer overflows [31]. As they completely give up control
constraints in favor of performance, we believe our assump-
tions could tighten and simplify their checks significantly.

The polyhedral extraction tool (PET) [45] might produce
piecewise defined, partially unbounded iteration domains
that are not easy to deal with and can cause compile time
hazards. PET also explicitly models wrapping for unsigned
integer which we have found to be expensive and not benefi-
cial in practise. Alternatives [6] are not generally applicable
for the loops of interest. In abstract interpretation, Urban and
Miné [41] developed a termination analysis that implicitly
derives bounded assumptions ΛBL for structured code.

Invariant code hoisting is a well known optimization [3].
However, we are not aware of any approach that optimisti-
cally hoists array reads in combination with dynamic alias
checks as we do. Alternatively, control flow overapproxima-
tion [9, 33] can be used either in conjunction or as an approx-
imative replacement. Though, for the latter, the optimisation
potential will be limited. The delinearization and non-alias
assumptions have already been discussed elsewhere [4, 26].
We integrate them into a general assumption framework.

LLVM [30] natively shares boolean assumptions between
passes, but there is no simplification performed. Hoenicke et
al. [29] used static analysis to identify statements for which
the execution inevitably fails. While we currently skip op-
timizations if the needed assumptions are known-infeasible,
we could similarly flag such regions as suspicious.

Lastly, we share ideas and problems with other runtime
variant selection schemes [5, 16, 33, 46, 47], though we cur-
rently only generate all or nothing assumptions. Pradelle et
al. [36] describe how to manually generate and dynamically
select different program versions through polyhedral opti-
mizations. Utilizing our assumption framework, it would be
possible to automatically generate such optimized variants
based on different assumptions made during scheduling.

9. Conclusion
In this work we present a set of optimistic assumptions that
formally describe necessary and sufficient preconditions to
optimize low-level code with polyhedral approaches. These
assumptions are precise for programs with affine conditions
and memory accesses and allow over-approximations for
others. Our implementation automatically collects and sim-
plifies all necessary assumptions to apply polyhedral opti-
mizations on LLVM-IR programs in a sound and automatic
fashion. The run-time checks that verify statically undecid-
able assumptions dynamically are (close to) minimal and in-
duce only little overhead. At the same time our simplifica-
tions reduce both compile and runtime significantly. Over-
all, this work enables complex and sound optimizations for
general purpose code with unexpected corner cases.
Acknowledgements We thank Swissuniversities for support through the
PASC initiative (ComPASC) and ARM Inc. for supporting Polly Labs.

301

References
[1] The ANSI C standard (C11). Technical Report WG14 N1570,

ISO/IEC, 2011.

[2] Aravind Acharya and Uday Bondhugula. PLUTO+: Near-
complete Modeling of Affine Transformations for Parallelism
and Locality. In Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
PPoPP 2015, pages 54–64, New York, NY, USA, 2015. ACM.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

[4] Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexan-
dros Lamprineas, Tobias Grosser, Fabrice Rastello, and Fer-
nando Magno Quintão Pereira. Runtime Pointer Disambigua-
tion. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2015, pages 589–606,
New York, NY, USA, 2015. ACM.

[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin
Zhao, Alan Edelman, and Saman Amarasinghe. PetaBricks: A
Language and Compiler for Algorithmic Choice. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, pages 38–
49, New York, NY, USA, 2009. ACM.

[6] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. Chains
of Recurrences - Method to Expedite the Evaluation of
Closed-form Functions. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC
’94, pages 242–249, New York, NY, USA, 1994. ACM.

[7] Riyadh Baghdadi, Albert Cohen, Sven Verdoolaege, and Kon-
rad Trifunović. Improved Loop Tiling Based on the Removal
of Spurious False Dependences. ACM Trans. Archit. Code
Optim., 9(4):52:1–52:26, January 2013.

[8] Vinayaka Bandishti, Irshad Pananilath, and Uday Bond-
hugula. Tiling Stencil Computations to Maximize Parallelism.
In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC
’12, pages 40:1–40:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[9] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Al-
bert Cohen, and Cédric Bastoul. The Polyhedral Model is
More Widely Applicable Than You Think. In Proceedings of
the 19th Joint European Conference on Theory and Practice
of Software, International Conference on Compiler Construc-
tion, CC’10/ETAPS’10, pages 283–303, Berlin, Heidelberg,
2010. Springer-Verlag.

[10] Rastislav Bodı́k, Rajiv Gupta, and Vivek Sarkar. ABCD:
Eliminating Array Bounds Checks on Demand. In Proceed-
ings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI ’00, pages 321–
333, New York, NY, USA, 2000. ACM.

[11] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sa-
dayappan. A Practical Automatic Polyhedral Parallelizer and
Locality Optimizer. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’08, pages 101–113, New York, NY,
USA, 2008. ACM.

[12] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and
Francesco Logozzo. Automatic Inference of Necessary Pre-
conditions. In Proceedings of the 14th International Confer-
ence on Verification, Model Checking, and Abstract Interpre-
tation - Volume 7737, VMCAI 2013, pages 128–148, New
York, NY, USA, 2013. Springer-Verlag New York, Inc.

[13] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Ri-
val. The ASTREÉ Analyzer. In Proceedings of the 14th Eu-
ropean Conference on Programming Languages and Systems,
ESOP’05, pages 21–30, Berlin, Heidelberg, 2005. Springer-
Verlag.

[14] Patrick Cousot and Nicolas Halbwachs. Automatic Discov-
ery of Linear Restraints Among Variables of a Program. In
Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’78, pages
84–96, New York, NY, USA, 1978. ACM.

[15] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Un-
derstanding Integer Overflow in C/C++. In Proceedings of
the 34th International Conference on Software Engineering,
ICSE ’12, pages 760–770, Piscataway, NJ, USA, 2012. IEEE
Press.

[16] Johannes Doerfert, Clemens Hammacher, Kevin Streit, and
Sebastian Hack. SPolly: Speculative Optimizations in the
Polyhedral Model. IMPACT 2013, page 55, 2013.

[17] Jack Dongarra. The linpack benchmark: An explanation. In
Proceedings of the 1st International Conference on Super-
computing, pages 456–474, London, UK, UK, 1988. Springer-
Verlag.

[18] Paul Feautrier. Parametric Integer Programming. RAIRO
Recherche Op’erationnelle, 22, 1988.

[19] Paul Feautrier. Dataflow analysis of array and scalar ref-
erences. International Journal of Parallel Programming,
20(1):23–53, 1991.

[20] Paul Feautrier. Some efficient solutions to the affine schedul-
ing problem. part ii. multidimensional time. International
Journal of Parallel Programming, 21(6):389–420, 1992.

[21] Paul Feautrier and Christian Lengauer. Polyhedron Model. In
Encyclopedia of Parallel Computing, pages 1581–1592. 2011.

[22] Andreas Gampe, Jeffery von Ronne, David Niedzielski, and
Kleanthis Psarris. Speculative Improvements to Verifiable
Bounds Check Elimination. In Proceedings of the 6th Interna-
tional Symposium on Principles and Practice of Programming
in Java, PPPJ ’08, pages 85–94, New York, NY, USA, 2008.
ACM.

[23] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Co-
hen, David Parello, Marc Sigler, and Olivier Temam. Semi-
automatic Composition of Loop Transformations for Deep
Parallelism and Memory Hierarchies. Int. J. Parallel Pro-
gram., 34(3):261–317, June 2006.

[24] Tobias Grosser, Armin Größlinger, and Christian Lengauer.
Polly—performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing Letters,
22(04):1250010, 2012.

[25] Tobias Grosser and Torsten Hoefler. Polly-ACC Transparent
Compilation to Heterogeneous Hardware. In Proceedings of

302

the 2016 International Conference on Supercomputing, ICS
’16, pages 1:1–1:13, New York, NY, USA, 2016. ACM.

[26] Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sa-
dayappan, and Sebastian Pop. Optimistic Delinearization of
Parametrically Sized Arrays. In Proceedings of the 29th ACM
on International Conference on Supercomputing, ICS ’15,
pages 351–360, New York, NY, USA, 2015. ACM.

[27] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhe-
dral AST Generation Is More Than Scanning Polyhedra. ACM
Trans. Program. Lang. Syst., 37(4):12:1–12:50, July 2015.

[28] W. H. Harrison. Compiler Analysis of the Value Ranges for
Variables. IEEE Trans. Softw. Eng., 3(3):243–250, May 1977.

[29] Jochen Hoenicke, K. Rustan Leino, Andreas Podelski, Martin
Schäf, and Thomas Wies. It’s Doomed; We Can Prove It. In
Proceedings of the 2Nd World Congress on Formal Methods,
FM ’09, pages 338–353, Berlin, Heidelberg, 2009.

[30] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Run-
time Optimization, CGO ’04, pages 75–, Washington, DC,
USA, 2004. IEEE Computer Society.

[31] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and
Martin Rinard. Sound Input Filter Generation for Integer
Overflow Errors. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, pages 439–452, New York, NY, USA,
2014. ACM.

[32] Sanyam Mehta and Pen-Chung Yew. Improving Compiler
Scalability: Optimizing Large Programs at Small Price. In
Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2015,
pages 143–152, New York, NY, USA, 2015. ACM.

[33] Simon Moll, Johannes Doerfert, and Sebastian Hack. Input
Space Splitting for OpenCL. In Proceedings of the 25th In-
ternational Conference on Compiler Construction, CC 2016,
pages 251–260, New York, NY, USA, 2016. ACM.

[34] David Niedzielski, Jeffery Ronne, Andreas Gampe, and
Kleanthis Psarris. A Verifiable, control flow aware constraint
analyzer for bounds check elimination. SAS ’09.

[35] Irshad Pananilath, Aravind Acharya, Vinay Vasista, and Uday
Bondhugula. An Optimizing Code Generator for a Class of
Lattice-Boltzmann Computations. ACM Trans. Archit. Code
Optim., 12(2):14:1–14:23, May 2015.

[36] Benoı̂t Pradelle, Philippe Clauss, and Vincent Loechner.
Adaptive Runtime Selection of Parallel Schedules in the Poly-
tope Model. In Proceedings of the 19th High Performance
Computing Symposia, HPC ’11, pages 81–88, San Diego, CA,
USA, 2011. Society for Computer Simulation International.

[37] William Pugh. The Omega Test: A Fast and Practical Integer
Programming Algorithm for Dependence Analysis. In

Proceedings of the 1991 Conference on Supercomput-
ing, Supercomputing ’91, pages 4–13, New York, NY, USA,
1991. ACM.

[38] Feng Qian, Laurie J. Hendren, and Clark Verbrugge. A Com-
prehensive Approach to Array Bounds Check Elimination for
Java. In Proceedings of the 11th International Conference on
Compiler Construction, CC ’02, pages 325–342, London, UK,
UK, 2002. Springer-Verlag.

[39] S. Seo, G. Jo, and J. Lee. Performance characterization of the
NAS Parallel Benchmarks in OpenCL. In Workload Charac-
terization (IISWC), 2011 IEEE International Symposium on,
pages 137–148, Nov 2011.

[40] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li,
Tobias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian
Pop, Jan Sjödin, and Ramakrishna Upadrasta. Graphite two
years after: First lessons learned from real-world polyhe-
dral compilation. In GCC Research Opportunities Workshop
(GROW’10), 2010.

[41] Caterina Urban and Antoine Miné. A Decision Tree Abstract
Domain for Proving Conditional Termination. In 21st Inter-
national Static Analysis Symposium (SAS’14), volume 8373
of Lecture Notes in Computer Science, page 17, Munich, Ger-
many, September 2014. Springer.

[42] Sven Verdoolaege. Integer set coalescing. In In 5th Interna-
tional Workshop on Polyhedral Compilation Techniques, IM-
PACT ’15.

[43] Sven Verdoolaege. Isl: An Integer Set Library for the Poly-
hedral Model. In Proceedings of the Third International
Congress Conference on Mathematical Software, ICMS’10,
pages 299–302, Berlin, Heidelberg, 2010. Springer-Verlag.

[44] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José
Ignacio Gómez, Christian Tenllado, and Francky Catthoor.
Polyhedral Parallel Code Generation for CUDA. ACM Trans.
Archit. Code Optim., 2013.

[45] Sven Verdoolaege and Tobias Grosser. Polyhedral Extraction
Tool. In In Proceedings of the International Workshop on
Polyhedral Compilation Techniques, IMPACT ’12.

[46] Daniel von Dincklage and Amer Diwan. Optimizing Pro-
grams with Intended Semantics. In Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA’09, 2009.

[47] Michael J. Voss and Rudolf Eigemann. High-level Adaptive
Program Optimization with ADAPT. In Proceedings of the
Eighth ACM SIGPLAN Symposium on Principles and Prac-
tices of Parallel Programming, PPoPP ’01, pages 93–102,
New York, NY, USA, 2001. ACM.

[48] Thomas Würthinger, Christian Wimmer, and Hanspeter
Mössenböck. Array Bounds Check Elimination for the Java
HotSpot&Trade; Client Compiler. In Proceedings of the 5th
International Symposium on Principles and Practice of Pro-
gramming in Java, PPPJ ’07, pages 125–133, New York, NY,
USA, 2007. ACM.

303

A. Artifact Description
A.1 Abstract
The work described in this paper has been fully implemented
as an extension of the open source LLVM/Polly project and
has been contributed to the Polly project repository. All
it takes to test our implementation is a recent version of
LLVM, Clang, and Polly.

Interactive scrips and a step-by-step description to repro-
duce the experiments and validate the implementation are
available at:
github.com/jdoerfert/CGO17_ArtifactEvaluation

A.2 Software Versions
We used the software versions shown in Table 1 for the
evaluation in Section 7.

Software Version (git/svn/release)

LLVM bdf16bd (svn: r288240)
Clang 1f955bd (svn: r288231)
Polly b60757c (svn: r288521)

LLVM Test Suite 1d312ed (svn: r287194)
NPB 3.3 Serial C

SPEC 2006 1.1
SPEC 2000 1.3.1

Table 1. Software versions used for the evaluation.

A.3 How Delivered
We provide a docker image to ease the machine set up.
Additionally, interactive python scripts download, build, and
run the experiments. We also describe how to get, build, and
run everything manually.

A.4 Hardware Dependencies
We recommend 40 GB of free disk space and at least 8 GB
of main memory.

A.5 Software Dependencies
A C11/C++11 compatible compiler as well as common build
tools (cmake, python2, virtuelenv, git, grep, sed, . . .).

A.6 Datasets
SPEC2000 and SPEC2006 have been used in our evaluation,
but experiments can also be run on the openly available
LLVM nightly test suite.

A.7 Installation
The installation is identical to the source installation of
LLVM/Polly. The test environment may require some ad-
ditional setup to be performed, but scripts are provided that
automate these steps.

A.8 Experiment Workflow
Most experiments are compilations with enabled statistic
collection. The data on the applicability and the effect of
the proposed assumptions is then reported to the user and
can be summarized using the provided scripts. Additionally
compile time and runtime measurements can be run. The test
environment (lnt) that is used in our documentation allows to
run both automatically. It also displays the results through a
local web server.

A.9 Evaluation and Expected Result
The statistics that are collected by Polly (-mllvm -stats)
show how often assumption were needed to apply polyhe-
dral optimizations as well as which assumptions have been
taken. To output such information per source location use
the remark system of LLVM (-Rpass-analysis=polly).
More sophisticated experiments are described here:
github.com/jdoerfert/CGO17_ArtifactEvaluation

A.10 Experiment Customization
The compiler can be run on other C/C++ benchmarks to
evaluate the effects there.

A.11 Notes
Please see
github.com/jdoerfert/CGO17_ArtifactEvaluation
for more information, scripts and other resources.

304

github.com/jdoerfert/CGO17_ArtifactEvaluation
github.com/jdoerfert/CGO17_ArtifactEvaluation
github.com/jdoerfert/CGO17_ArtifactEvaluation

	Introduction
	Overview
	Loop Program Semantics Across Languages
	Architecture

	Background
	Presburger Formulas and Sets
	Core Language
	Polyhedral Representation of Programs

	Optimistic Assumptions
	Referential Transparent Expressions
	Expression Evaluation Semantics
	Possibly Unbounded Loops
	Accesses to Constant-Size Arrays Are In-bounds
	Accesses to Parametric-Size Arrays Are In-bounds
	Arrays Do Not Alias (Overlap)

	Efficient Assumptions
	Runtime Check Generation
	Evaluation
	Applicability
	Modeling Choices, Simplification, and Versioning
	Sound and Automatic Polyhedral Optimization

	Related Work
	Conclusion
	Artifact Description
	Abstract
	Software Versions
	How Delivered
	Hardware Dependencies
	Software Dependencies
	Datasets
	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customization
	Notes

