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Abstract
This paper investigates shallow embedding of DSLs by means of
online partial evaluation. To this end, we present a novel online
partial evaluator for continuation-passing style languages. We argue
that it has, in contrast to prior work, a predictable termination policy
that works well in practice. We present our approach formally using
a continuation-passing variant of PCF and prove its termination
properties. We evaluate our technique experimentally in the field of
visual and high-performance computing and show that our evaluator
produces highly specialized and efficient code for CPUs as well as
GPUs that matches the performance of hand-tuned expert code.

Categories and Subject Descriptors F.3.2 [Semantics of Program-
ming Languages]: Partial evaluation

Keywords DSL Embedding, Partial Evaluation, Continuation-
Passing Style

1. Introduction
To achieve optimum performance, programs have to be transformed
in a way that is beyond the scope of ordinary compiler optimizations.
These transformations have two goals: First, exploit domain knowl-
edge that is lost in the implementation and not accessible to the
compiler. Second, utilize features of the target hardware architecture
to improve performance (vectorization, memory hierarchy, etc.).

One way of achieving this performance is to create a domain-
specific language (DSL) that provides language constructs to express
domain knowledge, and a compiler that leverages this knowledge
to produce highly optimized code for a specific architecture. A
popular approach to implement a DSL is to embed the DSL into a
host language H. One typically distinguishes between two different
styles of embedding [15]:

Deep. The DSL program is represented as a data structure in the
host program.

Consider Figure 1a. In the host language H, the programmer
writes a program pgen that constructs the embedded program
e_spec. Because pgen constructs the embedded program, it can
also construct a version of the embedded program that is partially
evaluated with respect to the inputs s. Then, an optimizer opt
transforms e_spec to e_opt which is finally emitted to target code
by compile. Note that opt as well as compile are written in H.

Deep embeddings allow for powerful, domain-specific optimiza-
tions [7, 31, 39] because the embedded program is available as a

// code in host language
e_spec = pgen(s);
e_opt = opt(e_spec);
compile(e_opt);

(a) Deep embedding

// code in the host language ’s compiler
e_spec = mix(e, s);
e_opt = opt(e_spec);
compile(e_opt);

(b) Shallow embedding

Figure 1. Deep and shallow embeddings. The underlined term
constitutes the embedded domain-specific program.

data structure. For the same reason, deep embeddings can accommo-
date any embedded language. In terms of programming experience,
one drawback of deep embeddings is that the programmer actually
writes a program generator instead of a program. Modern deep em-
bedding frameworks alleviate this problem by “virtualizing” the
host language [7]: Overloading reinterprets a part of the language
constructs to not perform the actual computation but to construct
a representation of that computation. This virtualization is often
not entirely faithful and compromises the illusion of writing the
embedded program in H in several ways: First, the overloading
is not powerful enough to hide this construction entirely and leak
implementation details of the embedding into the host language [27].
Second, the host language can usually not be virtualized entirely.
Third, to reason about the embedded program (the result of pgen),
the programmer ultimately has to understand how the generator
works.

Shallow. The DSL constructs are defined by implementing their
semantics in the host language directly.

Consider Figure 1b. The programmer directly writes the em-
bedded program e in language H. To perform partial evaluation,
shallow embedding needs a partial evaluator mix to be available in
the compiler of H. Both functions, opt and compile are part of the
compiler of H.

Like virtualization but unlike deep embedding, shallow embed-
ding can accommodate only one embedded language: H itself. How-
ever, unlike virtualization, shallow embedding uses the entire lan-
guage H. In contrast to deep embedding, shallow embedding cannot
manipulate the embedded program because it is not available as a
data structure. However, shallow embedding does not suffer from
the programming experience problems that deep embedding does,
because the programmer writes the embedded program directly and
not a program generator. Nevertheless, only a few shallowly embed-
ded high-performance DSLs (e.g. HIPAcc [35] and SYCL [30]) exist.
One reason is that, if no partial evaluator is available for H (which
is usually the case), shallow embedding involves the unpleasant task
of modifying an existing compiler.

1.1 Our Approach
In this paper, we present the continuation-passing style (CPS)-based
language Impala together with a novel online partial evaluator.
Impala enables shallow embedding without having to modify its
compiler (usually). Embedding a DSL into Impala typically means
that the domain-specific constructs are implemented as (higher-
order) functions. These implementations essentially constitute a
tagless interpreter [6]. We obtain the compiled DSL program by
partially evaluating this interpreter with that program. The following
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function constitutes such an “interpreter” to iterate several loop
bodies in a fused manner:
fn fused_iterate(iterate: fn(fn(int)->()) -> (),

bodies: [fn(int)]) -> () {
for i in iterate()

for body in @each(bodies) { body(i) }
}

Specializing a call (via @) to fused_iterate with a function range
and an array of bodies yields the desired fused loop1:
@fused_iterate(|body| range(a, b, body), bodies);

To generate hardware-specific code, the Impala compiler exposes
hardware-specific paradigms through higher-order functions. These
functions can be used to implement a certain DSL construct with
respect to a specific kind of hardware. This way, we enable hardware-
specific code generation without having to dig into Impala’s com-
piler. In the example above, we could replace the argument range
with the compiler-known function vectorize that strip-mines the
loop and vectorizes the resulting innermost loop:
@fused_iterate(|body| vectorize(length, a, b, body), bodies);

Using partial evaluation (PE), we are limited to optimizations
that can be expressed by specializing code. Optimizations that
analyze and rewrite programs are not possible without modifying
Impala’s compiler. We argue that many of such optimizations can
be expressed by proper abstractions in the style of fused_iterate.
Other optimizations that cannot be expressed this way have to be
implemented in Impala’s compiler which has a sufficiently high-
level IR [32] to facilitate this. For the DSLs we present in this paper,
we did not have to modify Impala’s compiler.

1.2 Continuations
To enable embedded DSLs to use non-trivial control flow (see Sec-
tion 5.1 for an example), Impala features continuations as first-class
citizens. Impala represents all control flow (including functions) as
continuations. The following example shows a simple for-loop with
unstructured control flow and its internal representation using CPS.
for i in range(a, b) {

if i == 23
continue()

else if i == 42
break()

else
/*...*/

}
/*next*/

⇒

let break: fn() = || /*next*/;
range(a, b,
|i: int, continue: fn()| {
if i == 23
continue()

else if i == 42
break()

else
/*...*/

}, break)

One important aspect of a partial evaluator is to determine where
to resume partial evaluation after skipping code under a dynamic
condition. Assume the partial evaluator wants to evaluate the call
to range above. Furthermore, assume that a and b are dynamic, i.e.
their values are not known at partial evaluation time. Because the
partial evaluator cannot evaluate the condition of the if i == 23, it
should skip the call to range. However, at which continuation shall
partial evaluation be resumed?

In a direct-style language a suitable resume point can be derived
from the syntactic structure of the language, i.e. the statement after
the skipped statement. In CPS, the “next instruction” is passed as a
parameter and can be an arbitrary continuation (closure) that might
not be syntactically “close”. In the example above, the resume point
is the break continuation passed to range. In this paper, we extend
the notion of a post-dominator (a well-known concept in first-order
control flow) to higher-order programs to derive suitable resume
points.

1.3 Contributions
In summary, this paper makes the following contributions:

• We present a novel, pragmatic algorithm for online PE. We discuss
our algorithm on a CPS-based variant of Plotkin’s Programming

1 Impala’s syntax borrows from Rust. |a| x means λa.x.

P BTA Pann cogen Pgen Pspec

mixonline

mixoffline

run

fn Pann(x:int, n:int) -> int {
if n == 0 {
1

} else if n % 2 == 0 {
let r = Pann(x, n/2)
r * r

} else
x * Pann(x, n-1)

}

(a) Pann

fn Pspec(x:int) -> int {
let r = x*x; r*r

}

(b) Pspec with Pgen(4)

fn Pgen’(n:int) -> code {
if n == 0 {
"1"

} else if n % 2 == 0 {
let r:code = Pgen’(n/2);
r + "*" + r

} else
"x*" + Pgen’(n-1)

}

fn Pgen(n:int) -> () {
emit("fn Pspec(x:int) -> int {");
emit(Pgen’(n));
emit("}");

}

(c) Pgen

Figure 2. Partial evaluation and metaprogramming.

Computable Functions (PCF) that captures the semantics of full
as well as partial evaluation. We formally describe a termination
property of our partial evaluator and prove our partial evaluator
correct in that respect (Section 3).
• A crucial aspect of our PE algorithm is the computation of post-

dominators in higher-order programs to designate resume points
for PE. We present a novel control flow analysis (CFA) that locally
computes useful post-dominators during PE (Section 4).
• We show how mapping to different hardware accelerators can be

nicely expressed by higher-order functions. Our approach allows
to weave in platform-specific mapping strategies such as executing
code on a GPU or vectorizing code for a CPU by compiler-known
higher-order functions. We demonstrate that our PE approach
enables an efficient shallow embedding of high-performance DSLs
for visual and high-performance computing in Impala (Section 5).

2. Background and Related Work
As running example to discuss prior work, we review how to
specialize the power function to its exponent.

2.1 Partial Evaluation
In this paper we advocate online partial evaluation [9, 43, 44]. We
directly specialize the source program P (Figure 3d) to the special-
ized or residual program Pspec (see Figure 2b). This corresponds to
the first Futamura [14] projection: Specializing an interpreter P to
an input program produces a compiled version of that program. The
specializer is often called mix in literature.

Specializing the specializer for itself yields a compiler generator
(cogen): a tool that converts an interpreter to a compiler (the third
Futamura projection). For a long time it was unclear how cogen
actually looks like and generating cogen via mix requires mix to be
self-applicable which turned out to be hard in practice. Building
a self-applicable evaluator becomes easier when separating the
input program into static and dynamic parts: the binding time. In
our example, a binding-time analysis (BTA) [23, 26] infers that
everything which depends on x must stay dynamic and annotates the
program accordingly (Figure 2a). Then, the specializer (mixoffline)
runs on that annotated program as opposed to directly running the
specializer (mixonline) on P. For this reason, this technique is called
offline partial evaluation [3, 21, 23]. Glück [16] discusses a self-
applicable online partial evaluator.

Birkedal and Welinder [2] discovered that hand-writing cogen
is actually not more difficult than writing mix. In particular, a hand-
written cogen does not require a bootstrapping process. Thus, cogen
does not necessarily need to be written in the same language as P.
Given the annotated program Pann, cogen produces its generating
extension Pgen (Figure 2c): All static parts of Pann are copied over
to Pgen. Dynamic parts are converted into a program that generates
the specialized program Pspec. Thus, Pgen is parametric in Pann’s
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let rec pow x n =
if n = 0 then
.<1>.

else if even n then
let r = pow x (n/2) in
r * r

else
.<.~x *
.~(pow x (n-1))>.

let Pspec =
.<fun x ->
.~(pow .<x>. 4)>.

(a) MetaOCaml

function pow(x, n)
if n == 0 then
return 1

elseif n % 2 == 0 then
local r = pow(x, n/2)
return ‘[r]*[r]

else
return ‘[x]*[pow(x, n-1)]

end
end

terra Pspec(y: int)
return [pow(y, 4)]

end

(b) Terra

trait Pow { this: Arith =>
def pow(x:Rep[Int], n:Int): Rep[Int]= {
if (n == 0)
1

else if ((n % 2) == 0) {
val r = pow(x, n/2);
r * r

} else
x * pow(x, n-1)

}
}
//...
val o = new Pow with ArithExp
import o._
val Pspec = pow(fresh[Int],4)

(c) Scala/LMS

fn pow(x: int, n: int) -> int {
if n == 0 {
1

} else if n % 2 == 0 {
let r = pow(x, n/2);
r * r

} else {
x * pow(x, n-1)

}
}

fn Pspec(y: int) -> int {
@pow(y, 4)

}

(d) Impala

Figure 3. Specializing the power function to its exponent with meta programming and partial evaluation.

static input. Running Pgen with a specific static input generates a
program Pspec, which is parametric in Pann’s dynamic input. For
example, invoking Pgen(4) generates Pspec (Figure 2b). From a
different point of view, cogen transforms the one-stage program P
into a two-stage program.

The cogen approach is prone to the overapproximation of the
static BTA. It has to produce one Pgen that must work for every
static input of P. Thus, the BTA must always leave d dynamic in the
following example:
fn f(a, b, d) { if a == b { d = 42 } /*next*/ }

An online evaluator, however, which specializes this function for a
and b can exploit the case where a == b and set d to 42.

2.2 Metaprogramming
Metaprogramming allows the programmer to write a program that
generates another program. In other words, the programmer man-
ually implements the generating extension Pgen. For this reason,
metaprograms conceptually look like the pseudocode in Figure 2c
and the programmer can explicitly stage a DSL interpreter [10].
Many projects implement Pgen in a scripting language like Python.
The script is invoked at build-time to generate Pspec—usually in a
low-level language like C. As such scripts simply splice strings,
the residual program may be ill-typed. Other approaches like C++
metaprogramming, Terra [13] (Figure 3b), (quasi-)quotation and
macros in Scheme/Lisp or Racket [49] increase programmer produc-
tivity by incorporating metaprogramming facilities into the language,
but still may construct an ill-typed residual program. MetaML [47]
and MetaOCaml (Figure 3a) on the other hand, guarantee well-
typedness of the residual program if the metaprogram is well-typed.
With PE, well-typedness of the residual program comes for free
because type checking is independently performed prior to special-
ization. All these metaprogramming approaches have in common
that the stage is a feature of the syntax and, hence, in contrast to
PE, it is not possible to write a function which is polymorphic in
the binding time of its parameters. Dynamic staging [11] tackles
this problem by introducing the stage as a first-class citizen to the
language at the cost of an unsound type system.

2.3 DSL Embedding
Carette et al. [6] and Hudak [19] lay the foundation of embedding
a typed language by ordinary functions instead of object terms.
Hofer et al. [17] picked up this idea and carried it to the Scala
world while emphasizing modularity and the ability to abstract over
and compose semantic aspects. Rompf and Odersky [41] coined
the term lightweight modular staging (LMS) and paved the way
for performance-oriented embedded DSLs [7] like OptiML [46] or
Liszt [12]. LMS does not rely on explicit staging capabilities of the
host language Scala. Instead, executing the host program constructs
a second domain-specific program representation like Delite [5]
(deep embedding). Values of type T are wrapped into a type operator
Rep[T] to represent values which are computed in a deferred stage.
Lancet [42] is an online partial evaluator for Java bytecode that
serves as a front-end for LMS, as an alternative to explicit program-
ming with Rep types. Array Building Blocks [33] and Halide [39]

leverage a similar staging mechanism to construct the actual pro-
gram representation with C++ as host language. HIPAcc [35] and
SYCL [30] on the other hand, are shallowly embedded DSLs in
C++. They rely on compiler plug-ins which directly manipulate the
program representation to achieve performance.

Comparable to other explicit metaprogramming techniques,
LMS essentially requires the programmer to write the generating
extension. However, via overloading and type inference the staged
program is somewhere between P and Pgen (Figure 3c). As the
stage is encoded in the type system, Scala’s type inference works
akin to a local BTA [37]. For example, n % 2 is of type Int.
Thus, the expression is executed when the host program runs. But
since r is of type Rep[Int], executing r * r results in a residual
program containing a multiplication. The implementation of cogen
lies in LMS’ library which implements a * b for Rep[Int]. The
downside of this approach is that for data types unknown to LMS,
the programmer must implement these overloads (“cogen for these
types”) himself. To some extent, this limitation can be alleviated
via parametric polymorphism [36] at the cost of introducing type
variables for each desired staging combination:

def f[I[_]](i: I[Int])= { /*...*/ }

Jovanović et al. [27] present a technique based on Scala macros
to generate a deep embedding from a shallow one. Our approach
on the other hand uses shallow embedding and PE to achieve the
performance of a deeply embedded DSL. Finally, LMS may suffer
from induced divergence while our PE technique may only induce
divergence when run-annotating recursive calls (see below and
Section 3).

2.4 Divergence in Partial Evaluation
Katz and Weise [29] distinguish three classes of divergence that may
occur during PE:

True divergence: If the full evaluation of the program does not
terminate for some inputs, PE might also not terminate.

Hidden divergence: A program may contain unreachable code that
is divergent. Partially evaluating this divergent code may cause the
partial evaluator to diverge.

Induced divergence: The partial evaluator diverges although nei-
ther true nor hidden divergences are present but because the evalua-
tor is too greedy. Consider the counting loop problem [3]:
fn count(i: int, N: int) -> int {
if i < N { count(i+1, N) } else { i }

}

An aggressive partial evaluator might infinitely expand count(0, N),
although full evaluation terminates for every N ≥ 0.

It is easy to avoid all forms of divergence if recursive calls are
not specialized [51]. Hybrid PE [44] on the other hand, does not
give any termination guarantees. For this reason, Hybrid PE uses
annotations similar to our approach.

A well-known technique [1, 9, 14] to avoid at least obvious
endless recursions, is to memoize each specialized call site. If the
evaluator is about to specialize an already cached call, it re-uses a
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call to the cached version instead. This technique does not prevent
the counting loop problem.

LMS has special behavior for a while loop: If the termination
condition is of type Boolean, the loop will be run when the host
program runs; if it is of type Rep[Boolean], LMS will construct a
residual loop. This approach only works since Scala does not provide
continue. LMS also leverages the aforementioned memoization
technique for recursive calls. This has the effect that a counting
while-loop with a dynamic conditional terminates when the host
program runs, whereas a recursive implementation with an Int
counter and a Rep[Int] bound diverges.

Both Similix [25] and Schism [8] are offline evaluators using
BTA. These evaluators will not evaluate a cycle, if the condition
which breaks the cycle remains dynamic. On the one hand, this is
slightly more aggressive than our approach because our approach
will also jump over an acyclic, dynamic conditional. On the other
hand, both evaluators suffer from the inherent imprecisions caused
by the BTA (see above). Furthermore, both evaluators depend on
a CFA [45] which leads to further imprecisions: As argued in
Section 4, in our setting an on-the-fly CFA is more precise than
a CFA which runs once beforehand because evaluating the program
brings full context-sensitivity for free. Lastly, we argue that a single
rule—dynamic branches are skipped—is easier to understand for
the programmer.

Other more complex termination heuristics, like monitoring
the argument sizes of recursive calls have been applied in the
past [22, 24]. We consider such heuristics hard to understand and
account for by the programmer.

3. Partial Evaluation
In this section we first formally discuss our PE technique by studying
the language λcps (Figure 4). Then, we discuss how to embed and
guide the partial evaluator from within a program and how this
affects termination.

3.1 The CPS-Based, Simply-Typed Lambda Calculus
The syntax of λcps is similar to the simply-typed lambda calculus
with an additional fixpoint operator (called letrec) to allow recursion.
Furthermore, λcps uses CPS for function abstractions and appli-
cations. Thus, λcps is a CPS version of Plotkin’s PCF [38]. CPS
introduces mainly two peculiarities compared to Plotkin’s original
PCF:

1. As functions do not return in CPS, we do not allow functions to
return a value. Instead, the actual function is formed by a body.

2. For the same reason, we cannot curry functions. Hence, we allow
arbitrarily long parameter lists.

For the sake of presentation, we restrict the arithmetic to integer
literals and addition. An ifz body tests the first expression—the
condition—for zero. If the test yields true, evaluation will progress
with the second expression as continuation or with the third one
otherwise. Program execution ends with result e upon reaching
an exit body exit e. A skip and skipping body is considered as
expanded syntax, which only appears as intermediate results during
evaluation. It cannot be used by the programmer directly.

We denote the expression language (using e as start symbol) by
L(e). We sometimes refer to a body as program if we want to stress
that a body may contain many sub-bodies. The syntactic structure of
a language induces a syntax tree. We write a � b if we require a to
be a subtree of b. Parameters and identifiers bound in letrecs range
over x. We require all names in the program to be unique in order to
circumvent name capture in the rules. We use the common notation
a to denote a list a1, . . . , an.

In examples we often elide type annotations as the reader can
easily infer them from their surrounding context. As syntactic sugar,
we use where to bind non-recursive functions and whererec to bind
recursive ones. Finally, we sometimes use additional features in

λcps examples like boolean types or more sophisticated branch
constructs.

3.1.1 Typing
As functions do not return, typing rules checking bodies do not yield
a type. A function type fn(t) does not include a return type for the
same reason. Apart from that, rules are standard.

Definition 1 (Expression Normal Form). An expression e is in
normal form iff ~e� = e. We write nf e if we require e to be in
normal form.

Definition 2 (Exits). Let exits(b) B {exit e | exit e � b} be the set
of exits in the body b.

Definition 3 (Well-Typedness). We call a body b well-typed under Γ
iff Γ ` b holds.

Definition 4 (Constant). We call an expression e a constant iff e is
a normal form and ` e : t for some type t.

Remark. These are all literals and functions without free variables.

Definition 5 (Valid Configuration). Let f B λx : t.b be a function
constant. We call an argument list c of constants a valid configuration
for f iff the application f (c) is well-typed. We denote C( f ) as the
set of all valid configurations for f .

3.1.2 Semantics
In the classic lambda calculus each argument to a function evaluates
to a constant. Then, the function is substituted by its body while
replacing all occurrences of the function’s parameters with its
corresponding arguments. During PE however, arguments may not
necessarily be constants.

Expression semantics. The function ~e� evaluates an expression.
If two literals occur in an addition they will be folded (operator ⊕
denotes the arithmetic addition as opposed to the syntactic termi-
nal +). Other additions are evaluated by recursively applying evalu-
ation. Other expressions yield identity. For example, the expression
x + (1 + 2) reduces to x + 3.

Lemma 1 (Strong Normalization Property of Expressions). Evalu-
ating an expression ~e� is strongly normalizing, that is, every ~e�
eventually terminates with an expression in normal form.

Proof. Evaluation of variables, literals and functions is strongly
normalizing by definition. By induction we show that addition is
strongly normalizing, too. �

Body semantics. The semantics of λcps works for partial as well as
for full evaluation. In contrast to expressions, body semantics is not
strongly normalizing due to letrecs. On this account we use a small-
step semantics for body evaluation rules of the form b ⇒ b′. We
read: A body b evaluates in one step to body b′. We write b⇒n b′
in order to specify that b evaluates to b′ in n steps, and b⇒∗ b′ to
specify that b evaluates in finitely many steps to b′.

Definition 6 (Body Normal Form). A body b is in normal form
iff @b′ : b⇒ b′. We write nf b if we require b to be in normal form.

A function application first reduces its callee eλ and arguments to
normal form (E-App). The requirement (eλ, e) , (e′λ, e′) ensures that
rules are deterministic; E-App will only trigger if at least the callee
of the application or one of its arguments are not yet in normal form.
If the callee and the arguments are in normal form, E-Appλ will
handle applications with a known function as callee. It will reduce
to the function’s body while substituting all parameters with their
arguments. If the callee is unknown, the application reduces to the
artificial skip body (E-Appskip).

An ifz first evaluates its arguments (E-Ifz) and then selects either
its true or false continuation if possible (E-Ifz> and E-Ifz⊥). Similar
to E-App, rule E-Ifz only triggers if at least one of its expressions are
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type tF int | fn(t) (integer/function type)
expression eF x | l ∈ Z | e + e (variable/literal/addition)

| λx : t.b (abstraction)
body bF e(e) (application)

| ifz(e, e, e) (zero test)
| letrec x = λx : t.b in b (letrec)
| exit e (exit)
| skip b (skip)
| skipping b : b : b (skipping)

Expression: Γ ` e : t

T-Var x : t ∈ Γ

Γ ` x : t
T-Add

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 + e2 : int

T-Int
Γ ` l : int

T-Fun
Γ, x : t ` b

Γ ` λx : t.b : fn(t)

Body: Γ ` b
T-App

Γ ` eλ : fn(t) Γ ` e : t

Γ ` eλ(e)

T-Ifz
Γ ` ec : int Γ ` e> : fn() Γ ` e⊥ : fn()

Γ ` ifz(ec, e>, e⊥)

T-Letrec
Γ, xλ : fn(t) ` λx : t.b : fn(t) Γ, xλ : fn(t) ` bin

Γ ` letrec xλ = λx : t.b in bin

T-Exit Γ ` e : int
Γ ` exit e

T-Skip Γ ` b
Γ ` skip b

T-Skipping
Γ ` b1 Γ ` b2 Γ ` b3

Γ ` skipping b1 : b2 : b3

Expression: ~ · � : L(e)→ L(e)~x� B x ~l� B l ~λx : t.b� B λx : t.b

~e1 + e2� B

{
l1 ⊕ l2 if ~e1� = l1 ∧ ~e2� = l2
~e1� + ~e2� otherwise

Body: b⇒ b′
E-App

~eλ� = e′λ ~e� = e′ (eλ, e) , (e′λ, e
′)

eλ(e)⇒ e′λ(e′)

E-Appλ
nf e

λx : t.b (e)⇒ [e/x]b
E-Appskip

nf eλ nf e eλ , λx : t.b

eλ(e)⇒ skip eλ(e)

E-Ifz
~ec� = e′c ~e>� = e′> ~e⊥� = e′⊥ (ec, e>, e⊥) , (e′c, e

′
>, e

′
⊥)

ifz(ec, e>, e⊥)⇒ ifz(e′c, e
′
>, e

′
⊥)

E-Ifz>
nf e> nf e⊥

ifz(0, e>, e⊥)⇒ e>()
E-Ifz⊥

l ∈ Z l , 0 nf e> nf e⊥
ifz(l, e>, e⊥)⇒ e⊥()

E-Ifskip
nf ec nf e> nf e⊥ ec < Z

ifz(ec, e>, e⊥)⇒ skip ifz(ec, e>, e⊥)

E-Letrec
letrec xλ = λx : t.b in bin ⇒ [λx : t.letrec xλ = λx : t.b in b/xλ]bin

E-Exit
~e� = e′ e , e′

exit e⇒ exit e′
E-Skip

postdom(b) = p

skip b⇒ skipping b : p : p

E-Skipping
p′ ⇒ p′′

skipping b : p : p′ ⇒ skipping b : p : p′′

E-Skippingnf
nf p′

skipping b : p : p′ ⇒ [p′/p]b

Figure 4. Syntax, Typing and Semantics of λcps.

not yet in normal form. In the case that the condition’s normal form
is not a literal, the body reduces to the artificial skip body (E-Ifzskip).

A letrec implements recursion (E-Letrec). An exit evaluates its
expression to terminate evaluation (E-Exit).

Before discussing the artificial skip and skipping body, we have
to define the post-dominators of a body.

Definition 7 (Lambda Lifting). Let X(b) B x : t be the list of free
variables in a well-typed body b under X(b). Then λX(b).b is the
lambda-lifted function [20] of b. As shorthand, we write fb.

Definition 8 (Post-Dominator). Let b be a well-typed body under
X(b). We call p a post-dominator of b iff p = ⊥ or all possible finite
evaluations from b to any exit visits p � b:

∀x ∈ exits(b) : ∀c ∈ C( fb) : fb(c)⇒∗ x → fb(c)⇒∗ p .

Remark. Hence, ⊥ designates the point in execution after all exits(b)
and is always a valid post-dominator—even for diverging programs.
This is a common trick in compilers to implement a sane post-
dominance analysis for programs with no or multiple exits.

Rule E-Skip uses a function postdom(b) to get a post-dominator
p of b. At this point, we are not interested in how post-dominators
are computed. We discuss this in Section 4. We merely re-
quire postdom(b) to exist and to compute a valid but not necessarily
the immediate post-dominator of b. Using p, skip evaluates to a
skipping body while memorizing b and p. The third body is also
set to p. Evaluation progresses there (E-Skipping) until a normal
form is found. Then, the original post-dominator p is replaced by
that normal form in the original body b (E-Skippingnf).

Lemma 2 (Type-Safety).
Progress: If Γ ` b then either b = exit l or ¬nf b.
Preservation: If Γ ` b and b⇒ b′ then Γ ` b′.

Proof. By induction on the rules and Lemma 1. �

Remark. Note that ` b implies that b does not have free variables.

3.2 Full and Partial Evaluation
If we evaluate a program with constants as arguments, we will never
have to handle the case that an expression does not reduce to a
constant. In particular, we will never trigger E-Appskip nor E-Ifzskip.
This means, we will always know a body to continue evaluation.

Lemma 3 (Full Evaluation). Let f be a function constant. Evaluat-
ing f (c) where c ∈ C( f ) never triggers E-Appskip nor E-Ifzskip.

Proof. For the proof of Lemma 2 we have shown that all expressions
collapse to constants during evaluation. Thus, the preconditions for
E-Appskip or E-Ifzskip will never trigger. �

If a program does not contain any letrecs, evaluation will always
terminate.
Lemma 4 (Termination without Letrec). A function constant not
containing letrecs terminates for all inputs.

Proof sketch. Tait [48] proved that the simply-typed lambda cal-
culus is strongly normalizing. If we remove letrecs from λcps, the
resulting language is analogously strongly normalizing. �

Remark. In particular, it is not possible to create a fixed-point
operator like the Y combinator as in the untyped lambda calculus
without relying on letrec. This also means, that all potential loops in
a λcps program are syntactically recognizable by its letrecs. A λcps

program cannot have other causes for divergence.
Now, we study the evaluation of a program b which still contains

free variables. If we lambda-lift all free variables into a function fb,
all variables in fb will be bound and we can perform a full eval-
uation (Lemma 3). If we perform n steps on b we will partially
evaluate b and obtain b′. If we lambda-lift b′ we can perform a full
evaluation on that program. The following theorem states that both
functions still compute the same result:
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Theorem 1 (Correctness). Let b be a well-typed body under X(b).
We define f ′ B λX(b).b′ with b ⇒n b′ for some n ∈ N. If fb(c)
terminates with result l so does f ′(c):

∀c ∈ C( f ) : fb(c)⇒∗ exit l → f ′(c)⇒∗ exit l .
Remark. Note that f ′ uses the free variables of b and not b′. This is
because PE might eliminate some free variables but we would like
both fb and f ′ to have the same signature.

Proof sketch. By PCF being confluent [18]. �
In order to prove that PE does not induce divergence, we have to

show that PE will always obtain a normal form in finitely many steps,
if the original program terminates for at least one configuration.

Theorem 2 (Termination Guarantee). Let b be a well-typed body
under X(b). If fb(c) terminates for some valid configuration c of
fb, partially evaluating b terminates to a normal form b′ in finitely
many steps:

(∃c ∈ C( fb) : fb(c)⇒∗ exit l) → b⇒∗ nf b′ .

Proof. Let i be the number of times rules E-Appskip or E-Ifzskip are
triggered during evaluation. We prove the theorem by induction on i.

By Lemma 3 evaluating fb(c)⇒∗ exit l never triggers E-Appskip
nor E-Ifzskip. As an inductive base case, we presume that b⇒n b′
does neither trigger E-Appskip nor E-Ifzskip for any n. This implies
that both evaluations fb(c) ⇒∗ exit l and b ⇒n b′ will trace
through the same functions till b′. Merely, expressions which do
not contribute to control flow might not be constants. Hence, there
exists an n such that b′ = exit e.

For the inductive step we have to show that triggering E-Appskip
or E-Ifzskip i + 1 times still leads to a normal form. Both E-Appskip
and E-Ifzskip trigger E-Skip. By Definition 8 postdom(b) either
retrieves⊥ or a body p � b which preserves b’s termination behavior.
By the induction hypothesis evaluating p along E-Skipping will
finally trigger E-Skippingnf if the original program terminates. �

3.3 Run and Halt Annotations
Until now, we studied partial evaluation of a whole program. In
practice, the programmer only wants to specialize certain parts of the
program while other parts should be excluded from specialization
(Section 5). The compiler searches the program for annotations from
top to bottom. Assume the compiler reaches an annotation as in the
following run-annotated Impala snippet:

@f(args);
/*next*/;

⇒ λ(). @f(args, k) where
k = λ(). /*next*/

Its λcps translation is presented on the right-hand side. During the
search for annotations, all letrecs are substituted in—as in rule E-
Letrec. In practice, we perform the substitution on demand when a
free variable bound by a letrec is encountered. The run annotation @
then causes f(args, k) to be specialized by triggering rule E-App.

As PE should only run until a continuation (e.g. k) outside the
body is called, all remaining free variables, together with any exit,
must be considered local exits for the purpose of evaluation and
the definition of post-dominators in particular. Similarly, a halt
annotation $g(args, l) causes the evaluator to stop specialization
at that point and resume at l.

Run annotations impact the termination of PE. If a run-annotated
code block is unreachable, the partial evaluator might be subject to
hidden divergence:
if i_am_always_false { @i_will_not_terminate(42) }

Under certain circumstances, run annotations might induce diver-
gence. Reconsider the function count from Section 2.4 where the
recursive call is annotated with @. First, let us convert the function
to λcps:
fn count(i: int, N: int) -> int {
if i < N {
@count(i+1, N)

} else {
i

}
}

⇒

letrec count = λ(i, N, ret).
if(i<N, T, F) where
T = λ().
@count(i+1, N, ret)

F = λ().
ret(i)

in /*...*/

After substitution of count and application of E-App the following
program results:
letrec count = λ(i, N, ret).
if(i<N, T, F) where
T = λ(). if(i+1<N, T’, F’) where

T’ = λ(). @count(i+2, N, ret)
F’ = λ(). ret(i)

F = λ(). ret(i)
in /*...*/

This program contains a new call @count. After PE has termi-
nated, the compiler looks for the next run annotation and stumbles
upon that @count. Consequently, rule E-App is triggered again caus-
ing the compiler to diverge.

This situation only emerged because a recursive call has been
annotated. In particular, an annotated call to a function bound via
letrec within its definition like @count in the example above. A
call to a recursive function outside its definition is not recursive
and, thus, does not induce divergence. Hence, annotating all other
calls to count, like @count(0, N, RET), is not problematic. We
want to stress that a single PE run is already Turing-complete. For
this reason, we can completely fold @ackermann(3, 4) to 125. As
outlined above, this call is not recursive.

By Lemma 4 we can statically over-approximate all recursions.
Thus, the compiler can warn the programmer about potentially
dangerous run annotations. Compilers for languages with implicit
recursive bindings (like Impala) must perform a loop analysis [40]
to infer that information.

4. Local Control-Flow Analysis
So far, we assumed that the postdom function in rule E-Skip will
obey Definition 8. The prerequisite for computing post-dominance
is a control flow graph (CFG). If the input program is of first order,
functions cannot be passed as arguments to other functions. Hence,
all callees are statically known and we can directly construct a CFG
from that program.

Higher-order programs may contain calls to parameters. In order
to compute a CFG in this setting, we need to statically know which
functions may actually reach a parameter at runtime. A k-CFA [45]
computes this information for calling contexts of length k. With
increasing k the analysis becomes more costly but also more precise.
Hence, a 0-CFA is context-insensitive, leading to imprecisions as
function arguments are merged from all calling contexts.

One possibility would be to apply a k-CFA prior to partial
evaluation in order to determine an appropriate post-dominator
in the context of a dynamic branch. However, for calls deeper
than k contexts, the analysis information becomes imprecise. The
computed post-dominator might then lie closer to the exits, causing
the evaluator to skip more code than necessary. The programmer
would have a hard time to understand, track and work around such
imprecisions.

For this reason, our partial evaluator follows a different approach.
As long as the evaluator does not hit a dynamic branch (E-Ifzskip)
or call (E-Appskip), the evaluator does not need any post-dominance
information. Until such a point, evaluation has expanded all calls,
resulting in full context-sensitivity. Whenever the evaluator needs
to apply rule E-Skip it runs a local, symbolic, and partially context-
sensitive CFA. This enables construction of a CFG to compute a
post-dominator.

The CFA we employ is local in the sense that it starts at the
run-annotation being partially evaluated and only analyzes functions
currently declared within that scope. We call these functions inside
functions. We call functions declared outside the scope, in particular
functions defined in other translation units or intrinsic higher-order
functions such as nvvm (Section 5), outside functions. Suppose PE
of program start to end in Figure 5a meets a dynamic branch in f.
Function out and higher-order parameter end are not defined within
start’s scope and are thus outside functions. All other functions are
inside.

To precisely deal with references to outside functions or free
variables, i.e. parameters of an outside function, the CFA tracks
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start = λ(/*...*/, end).
/* program already evaluated */
f = λ(). ifz(/*dynamic*/, T, F) where
F = λ(). C(B)
T = λ(). out(A, C) where
A = λ(pa: fn(int)). pa(42)
B = λ(pb: fn()). pb()
C = λ(pc: fn(fn())). pc(N) where
N = λ(). end()

(a) Higher-order λcps program

f T

CF B N

A

⊥

(b) Non-symbolic CFG
f T out A

F C B N end

⊥

(c) context-insensitive CFG

f T outT

C

outC

A outA

F B N end

⊥

(d) Partially context-sensitive CFG

Figure 5. PE from start to end hits a dynamic branch in f.

these symbolically (see below). The CFA handles inside functions
context-insensitively. This mirrors the intuition a programmer has
about control flow and the bodies skipped by PE when encountering
a dynamic branch. For example, PE would skip to the point after a
dynamic if or while construct. For outside functions, the CFA uses
one level of context (see below).

If the CFA did not handle free variables and outside functions
symbolically, it would at best construct the CFG in Figure 5b.
Propagation from F through C yields the value N for parameter
pb which is precise. However, the CFA did not propagate outside
functions and had to propagate ⊥ to the parameters of the higher-
order functions A and C. This would result in the post-dominator ⊥,
the unique local exit node in the CFG (see Definition 8). Evaluation
would then skip the remainder of the scope.
Symbolic CFA. The call to out may pass other functions to the
inside higher-order function C it receives as argument. For this
reason, we let the call to out symbolically represent any function
reachable from it. The CFA then determines the values B and out
for parameter pc. Similarly, the CFA obtains out for pa.

The CFA never tracks values for the parameters of an outside
function and does not propagate arguments of a call to it. Instead,
the CFA represents control flowing through an outside function with
a symbolic value. In the example, T calls out, which in turn may call
C. The analysis propagates the symbolic value out to C’s parameter
pc, and thus, C may jump back to out.

Merging control flow over all contexts for out leads to an
unacceptable loss in precision. The CFG in Figure 5c has only
a single node for out with edges to nodes A,C and N as these are
the arguments to any call to out. This yields the imprecise post-
dominator N.
Partially context-sensitive CFA. Instead of merging the argu-
ments over all calls when constructing the CFG, we give one level
of context to outside functions. The CFA creates a new symbolic
value for each outside function within the calling context of an in-
side function. This allows the CFG to distinguish control flow from
multiple calls to an outside function to their function arguments. The
CFG in Figure 5d thus separates the calls to out in T, A and C and
their different arguments. The edge from outC to N and its absence
from other out shows the increase in precision. The post-dominator
computed for f is then C.

Figure 5d also shows that we need to add edges from context-
sensitive nodes outC and outA to the node outT . These edges are
required because any function passed to an inside function from
outside, might also call any other function leaked to the outside
function previously.

The CFG approximation is safe for computing post-dominators
because the only way for an outside function out to return to the
scope is via functions passed to it. The CFG does not model control-
flow for diverging or non-returning out. In these cases, however, the
evaluator cannot guarantee termination anyway (see Theorem 2) and
continuing evaluation from the computed post-dominator remains
sound for returning cases.

fn iterate(fld: Field, body: fn(int, int) -> ()) -> () {
let vector_length = 8;
for y in range(0, fld.rows)
vectorize(vector_length , 0, fld.cols, |x| body(x, y));

}
(a) Iterator implementation for SIMD hardware

fn iterate(fld: Field, body: fn(int, int) -> ()) -> () {
let grid = (fld.cols, fld.rows, 1);
let block = (128, 1, 1);
nvvm(grid, block, || {
let x = tid_x()+ntid_x()*ctaid_x();
let y = tid_y()+ntid_y()*ctaid_y();
body(x, y);

});
}

(b) Iterator implementation for NVIDIA GPUs

Figure 6. Different implementations for iterate.

5. Applications and Evaluation
The Impala2 compiler translates the source program into Thorin [32]:
a functional intermediate representation (IR) similar to λcps. Partial
evaluation and other optimizations are performed at that level.
Finally, the compiler either translates to C/CUDA/OpenCL or
LLVM/SPIR/NVVM (see below).
Mapping Algorithms to Different Architectures. In order to ab-
stract from specific target platforms, Impala provides intrinsic
higher-order functions. For example, invoking the following func-
tion vectorizes [28] body for SIMD width L and creates an appropri-
ate loop from a to b:
fn vectorize(L: int, a: int, b: int, body: fn(int) -> ()) -> ();

Likewise, invoking the following function causes body to be exe-
cuted via NVVM on an NVIDIA GPU:
fn nvvm(grid: (int, int, int), block: (int, int, int),

body: fn() -> ()) -> ();

The execution runs in parallel by the threads defined by grid with
the given blocking. Similarly, Impala supports code generation for
CUDA, OpenCL, and SPIR. In contrast to pragma-based solutions
like OpenACC or OpenMP, Impala’s intrinsics integrate seamlessly
into Impala’s type system. This allows the programmer to hide the
use of these functions behind other functions. Consider a higher-
order function iterate in order to iterate over a field:
iterate(fld, |x, y| { /* some loop body */ });

Figure 6 depicts one implementation of iterate which vectorizes
the loop body and one which schedules the loop body on the GPU.
Other iterator implementations may use other intrinsics and/or more
sophisticated blocking schemes.

DSL Embedding. We demonstrate the effectiveness of our partial
evaluator on two examples. First, we present a small framework
for stencil computations in image processing: The framework
essentially is an “interpreter” that applies a stencil to an image.
The aspects of boundary handling, application of the stencil, and
the stencil itself are cleanly separated. PE composes those aspects
together and produces high-performance code that we specialize
for execution on CPU and GPU targets. Second, we present a DSL
for the V-cycle multigrid iteration; a multigrid method widely-used
in high-performance computing. The V-cycle employs different
stencils to smooth the error on different resolutions of the same data.
Passing the V-cycle components as functions to the DSL allows
us to merge multiple components in order to reduce high latency
memory accesses.

5.1 Stencil Computations
A linear filter convolves an image with a filter mask by applying the
filter mask to each pixel. Examples of linear filters are the Gaussian
blur filter, the Laplace operator, or the Sobel operator. Since the filter
mask for linear filters like the Gaussian blur or the Sobel operator

2 http://anydsl.github.io
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GTX 680 Radeon R9 290X Iris 5100 Core i5-4288U

NVVM OpenCL OpenCL OpenCL CPU AVX
LU – X – X – X – X – –

SS 2.84 2.77 2.92 2.78 1.02 0.97 27.26 25.63 94.00 124.84
+ BH 2.26 1.90 2.88 2.81 1.04 0.99 26.15 18.17 28.00 23.60
+ SM 2.23 1.98 3.42 2.85 0.82 0.75 32.01 15.55 42.87 18.31

OpenCV 2.25 4.08 0.89 23.31 24.31

Table 1. Execution times in ms for the Gaussian blur of size 5 × 5
on an image of 4096 × 4096 pixels.

are separable, we split a filter mask of N × M in a row and column
component of size N × 1 and 1 × M, respectively. This reduces the
number of required memory accesses.

Stencil Specialization (SS). We describe linear filters using the
apply_stencil function of our stencil framework. This function
applies a filter mask passed to that function to a field. Using the run
annotation we create a specialization for a given linear filter where
the filter values are propagated into the code instead of reading them
from memory:
let stencil: Stencil = { /* ... */ }; // Gaussian blur
let mut out: Field = { /* ... */ };
for x, y in iterate(out)
out(y)(x) = @apply_stencil(x, y, arr, stencil, /*...*/);

All variants in Table 1 are specialized in this way for the Gaussian
blur.

Loop Unrolling (LU). The iterator functions in Figure 6 abstract
the iteration order. On a GPU, for example, it is beneficial to process
multiple pixels by the same thread. To achieve this, we call body—
passed to iterate as function—multiple times for different iteration
points. This unrolls the iteration space by unroll_factor (4 in the
example below). In order to keep the implementation parametric in
its unroll factor, we use PE for this job:
fn iterate(out: Field, body: fn(int, int) -> ()) -> () {
let unroll_factor = 4;
let grid = (out.cols, out.rows/unroll_factor , 1);
let block = (128, 1, 1);
nvvm(grid, block, || {
let x = tid_x() + ntid_x()*ctaid_x();
let y = tid_y() + ntid_y()*ctaid_y()*unroll_factor;
for i in @range(0, unroll_factor)
body(x, y + i * ntid_y());

});
}

Variants in Table 1 checked in line LU, use this technique.

Boundary Handling (BH). To handle array boundaries, we
clamp the index to the last valid element within the array in the
apply_stencil function. If we consider the row component, we
need only to apply boundary handling at the left and right bor-
der of the image. Therefore, we introduce a region parameter to
apply_stencil:
fn apply_stencil(region: int, /*...*/,

bh_lower: fn(int, int, int, fn(float)) -> int),
bh_upper: fn(int, int, int, fn(float)) -> int)) -> float {

// ...
if region==0 { x = bh_lower(x, 0, arr.cols, return); } // left
if region==2 { x = bh_upper(x, 0, arr.cols, return); } // right
// ...

}

fn iterate(/*...*/) -> () {
let limits = /* lower and upper limits for each region */;
for y in $range(0, out.rows)
for region in @range(0, 3) // left, center, right
let bounds = limits(region);
for x in $range(bounds(0), bounds(1))
@body(x, y, region);

}

Now, the iterate function iterates over different regions of each
line instead of naïvely iterating over the whole image. Due to
the run annotation on the loop which iterates over the regions,
boundary checks will only appear in the residual code for the left
and right regions and will be specialized into apply_stencil. The

programmer passes the functions for boundary handling as higher-
order arguments to the stencil DSL, for example:

fn clamp_low(idx: int, low: int, up: int, out: fn(float)) -> int {
if idx < low { low } else { idx }

}
fn const_low(idx: int, low: int, up: int, out: fn(float)) -> int {

if idx < low { out(1.0f) } else { idx }
}

The function const_low always skips further computations in the
case that idx lies outside the given range by passing the constant
1.0f to the continuation out. This is the return continuation in
apply_stencil. During PE it is important to infer that the function
passed to out is the proper post-dominator (see Section 4).

Scratchpad Memory (SM). The stencil operation of the filter has
high spatial locality and neighboring elements are read by multiple
threads. Therefore, we can first load data for a group of threads to
fast scratchpad memory (shared or local memory) and read then
the neighboring elements from this scratchpad. This allows also to
fuse the row and column component of the filter into a single kernel
using scratchpad memory as output memory for the first component
and as input memory for the second component. Fusing multiple
components is outlined in Section 5.2.

Evaluation. For the measurements we use a separated version of
the Gaussian blur filter with a 5 × 5 filter mask and an image of
4096 × 4096 pixels. All specialized versions are generated from
the same generic description using PE. Table 1 shows the median
execution time in ms on the GTX 680 using the CUDA 6.5 drivers
and toolkit, on the R9 290X using the Catalyst 15.7 drivers, on the
Iris 5100, and on the Intel Core i5-4288U. On the GPU, the median
of seven runs is used while 27 runs are used on the CPU.

The last line shows the execution for hand-tuned CUDA,
OpenCL, and CPU (vectorized C++) implementations from
OpenCV (version 2.4.10), a state-of-the-art image processing tool-
box. The CUDA implementation in OpenCV is provided by NVIDIA
experts and uses similar optimizations: the filter is separated, the it-
eration space is unrolled, border handling is limited to thread blocks
at the image border, and fast on-chip scratchpad memory is used to
stage data. The OpenCL implementation in OpenCV is provided by
AMD experts and merges the row and column component in a single
kernel: First, the data is loaded to fast on-chip scratchpad memory
and the column component is executed, storing its results again to
the scratchpad memory. Then, the row component is executed, load-
ing its input from scratchpad and storing the result back to device
memory. On the CPU, the row component is manually vectorized
8-fold using double-pumped SSE. The column component uses
superword-level parallelism (SLP), unrolling multipe loop iterations
so that the compiler can merge them easily into vector operations.
The schedule applies always first the row component and then the
column component. This allows to hold the intermediate results in
cache. It can be seen from Table 1 that the specialized versions we
obtain through PE even outperform the hand-tuned implementations
in OpenCV.

At the same time, our implementation is more concise: The hand-
tuned CUDA version from OpenCV consists of 251 lines of CUDA
code plus 386 lines of kernel instantiations for different filter mask
sizes and boundary handling modes. The kernel implementation in
OpenCL requires 142 lines of OpenCL code; boundary handling is
realized via macros that wrap memory accesses. For the CPU im-
plementations, more than 1500 lines of code are required, providing
specialized implementations for different data types, kernel sizes,
and target instruction sets (SSE, Neon). Our Impala implementation
requires 88 lines of code.

We use the run annotations highlighted in the sample codes to
trigger PE; none of them annotates a “dangerous” recursive call
(see Section 3.3). We need halt annotations only to prevent loops
iterating over the field to be evaluated at compile time.
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5.2 The V-Cycle Multigrid Solver
The basic idea of the multigrid method is to smooth the error (e. g.,
using an iterative method like Jacobi or Gauss-Seidel) on different
resolutions of the same data. The V-cycle describes one possible
multigrid iteration [4, 50]. To transform data between different
resolutions of the multigrid the algorithm uses the restrict and
interpolate methods. On each level, the error is smoothed (smoother)
and estimated (residual). This process is recursive and starts at the
finest resolution.

For a V-cycle DSL we would like to have the different methods
pluggable. Using Impala (see Figure 7), we pass the multigrid
components as higher-order functions to vcycle. Furthermore, we
use the iterate function introduced in Section 5.1. The partial
evaluator inlines the multigrid components, unrolls the recursion and
propagates other inputs (stencils, etc.). Furthermore, the evaluator
weaves in the special higher-order functions for hardware-specific
code generation. By providing specialized iterate implementations
for CPU and GPU, we map the same algorithm to different target
platforms.

This is a naïve implementation as each multigrid component
is run after another. However, hand-tuned implementations of the
V-cycle might merge multiple multigrid components in order to
save unnecessary memory accesses. In Impala we achieve the same
optimization by custom iterate functions that compute multiple
components at once. As an example, consider the computation of
the residual component followed by the restrict component: Instead
of computing the residual for the whole field first and then restrict
the field produced by the residual, we compute the residual only for
two rows and restrict the residual before the next rows are processed.
This pipelined processing allows to hold the result of the restrict
component in cache on the CPU and allows to merge compute
kernels on the GPU when using scratchpad (local or shared) memory.
On the GPU, this has the same effect as loop fusion. Figure 8
illustrates this for the CPU. The index passed to the residual and
restrict component refer to the temporary field. The offset to the
current row of the other fields are tracked in the Field object and are
used when accessing field elements. Merging the two components is
only valid if the operation of the multigrid components is known: in
our example, the restrict component is allowed to access two rows
only. Otherwise, a larger temporary array has to be allocated and
pre-computed before applying restrict.

Results. While we have shown in Section 5.1 that we achieve
competitive performance for stencil codes, the multigrid iteration
offers optimization opportunities when components are scheduled
in a clever way. Figure 9 shows the speedup we get by merging the
residual and restrict components for the first level of the V-cycle
(smooth, residual, restrict, interpolate). The speedup is between
11 % on the CPU and up to 20 % on the GPU. Considering only
the residual and restrict component, the computation is 25 % (27 %)
faster on the CPU (AVX) and 42 % (45 %) faster on the GPU when
using NVVM (SPIR). For AVX, we vectorize only the smooth
and residual component since restrict and interpolate are otherwise
slower due to their memory access pattern. On the Iris 5100, the
execution takes 16 % longer when the two components are merged.
Note that this is expected since the scratchpad memory is mapped to
slow global memory in the Iris 5100 architecture. Consequently, the
specialization for the Iris 5100 would not make use of scratchpad
memory.

Furthermore, we compare the performance of our specialized
V-cycle implementation against the performance of generated im-
plementations by HIPAcc, a DSL framework for stencil computa-
tions [35]. HIPAcc provides CUDA and OpenCL back ends for ex-
ecution on GPUs. We use the HIPAcc implementation from [34],
which uses the same V-cycle components as our implementation.
For the first level of the V-cycle, our normal implementation has the
same performance on the Iris 5100 (32.54 ms vs. 32.81 ms), is 8 %
faster on the Radeon R9 290X (2.26 ms vs. 2.43 ms), and is 9 %
slower on the GTX 680 (4.78 ms vs. 4.35 ms). Our merged imple-

fn vcycle(field: Field, lvls: int, vsteps: int, ssteps: int,
smoother: fn(/* ... */) -> (),
residual: fn(/* ... */) -> (),
restrict: fn(/* ... */) -> (),
interpolate: fn(/* ... */) -> ()) -> Field {

// allocate memory for all lvls: Sol, RHS, Res, Tmp
fn vcycle_rec(lvl: int) -> () {
if lvl == lvls-1 {
for i in range(0, ssteps) // solve by ssteps smooths
if i>0 { swap(Sol(lvl), Tmp(lvl)); }
for x, y in iterate(Sol(lvl))
solver(x, y, /*fields*/);

} else {
for i in range(0, ssteps) pre-smoothing
if i>0 { swap(Sol(lvl), Tmp(lvl)); }
for x, y in iterate(Sol(lvl))
solver(x, y, /*fields*/);

for x, y in iterate(Res(lvl)) compute residual
residual(x, y, /*fields*/);

for x, y in iterate(RHS(lvl+1)) restrict residual
restrict(x, y, /*fields*/);

vcycle_rec(lvl+1); recurse
for x, y in iterate(Sol(lvl)) interpolate error and
interpolate(x, y, /*fields*/); coarse grid correction

for i in range(0, ssteps) post-smoothing
if i>0 { swap(Sol(lvl), Tmp(lvl)); }
for x, y in iterate(Sol(lvl))
solver(x, y, /*fields*/);

}
}
for i in range(0, vsteps) { vcycle_rec(0); }

}

let res = @vcycle(field, lvls, vsteps, ssteps,
jacobi, residual, restrict, interpolate);

Figure 7. V-cycle implementation in Impala.

fn iterate_rr(Sol: Field, Res: Field, RHSF: Field, RHSC: Field,
residual: fn(/* ... */) -> (),
restrict: fn(/* ... */) -> ()) -> () {

let mut tmp: Field = { /* ... */ }; // temp array for 2 rows

for y in $range_step(0, Res.rows, 2)
for yi in @range(0, 2)
for x in $range(0, Res.cols) // residual for two rows
@residual(x, yi /* ... */ Sol, tmp, RHSF);

for x in $range(0, RHSC.cols) // restrict the residual
@restrict(x, 0 /* ... */ tmp, RHSC);

}

Figure 8. Merging residual and restrict on the CPU.
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Figure 9. Speedup from merging the residual and restrict computa-
tion for the first level (4096×4096) of the V-cycle (smooth, residual,
restrict, interpolate). The speedup over HIPAcc implementations is
also given where available.

mentation (see Figure 9) outperforms the HIPAcc implementations
on the Radeon R9 290X by 34 % and on the GTX 680 by 12 %.

Discussion. Our implementation can be easily extended to express
different multigrid iterations. It is actually sufficient to change the
recursion in the V-cycle implementation in order to get the schedule
for the W-cycle multigrid iteration.

The evaluation has shown that we can map the same high-level
description to different target platforms by providing target-specific
mappings. Moreover, we merge multiple components as shown
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exemplarily for the residual and restrict components. This yields
specialized implementations that outperform the implementations
generated by HIPAcc, which has no support for kernel fusion.

6. Conclusions
In this paper, we present a novel partial evaluation strategy and its
application to shallow embedding of DSLs. To this end, we formally
define full as well as partial evaluation and prove its correctness
and termination property on a CPS-based variant of PCF. Every
invocation of the partial evaluator will terminate if full evaluation of
that program terminates. The termination behavior of the program
is retained in a predictable way: The partial evaluator skips dynamic
branches and continues at the post-dominator. To efficiently com-
pute post-dominators on parts of higher-order programs with free
variables we presented a local, partially context-sensitive CFA. In
order to steer the evaluator from within the language, we introduce
run- and halt-annotations. As long as run annotations are not placed
on recursive calls, PE will not induce divergence. Annotating a call
to a recursive function is not problematic.

We apply our partial evaluator on higher-order functions to em-
bed high-performance DSLs and generate optimized code for dif-
ferent hardware architectures. We evaluate our technique experi-
mentally in the field of visual and high-performance computing and
show that our evaluator produces highly specialized and efficient
code for CPUs as well as GPUs that matches the performance of
hand-tuned expert code.

Acknowledgments
This work is supported by the Federal Ministry of Education and Research (BMBF)
as part of the ECOUSS project as well as by the Intel Visual Computing Institute Saar-
brücken. It is also co-funded by the European Union (EU), as part of the Dreamspace
project. Furthermore, the authors would like to thank Marcel Köster for helping with
many parts of the compiler.

References
[1] L. O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, University of Copenhagen, 1994.
[2] L. Birkedal and M. Welinder. Hand-writing program generator generators. In

PLILP, 1994.
[3] A. Bondorf and J. Jørgensen. Efficient analyses for realistic off-line partial

evaluation. JFP, 1993.
[4] W. L. Briggs, H. Van Emden, and S. F. McCormick. A Multigrid Tutorial,

volume 2. SIAM, June 2000.
[5] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and

K. Olukotun. A heterogeneous parallel framework for domain-specific languages.
In PACT, 2011.

[6] J. Carette, O. Kiselyov, and C.-C. Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. In APLAS, 2007.

[7] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Oder-
sky, and K. Olukotun. Language virtualization for heterogeneous parallel com-
puting. In OOPSLA, 2010.

[8] C. Consel. A tour of Schism: a partial evaluation system for higher-order
applicative languages. In PEPM, 1993.

[9] W. R. Cook and R. Lämmel. Tutorial on online partial evaluation. In DSL, 2011.
[10] K. Czarnecki, J. O’Donnell, J. Striegnitz, and W. Taha. DSL implementation

in MetaOCaml, Template Haskell, and C++. In Domain-Specific Program
Generation, 2004.

[11] P. Danilewski, M. Köster, R. Leißa, R. Membarth, and P. Slusallek. Specialization
through dynamic staging. In GPCE, 2014.

[12] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,
F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. Liszt: a
domain specific language for building portable mesh-based PDE solvers. In SC,
2011.

[13] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: A multi-stage
language for high-performance computing. In PLDI, 2013.

[14] Y. Futamura. Partial evaluation of computation process—an approach to a
compiler-compiler. Systems, Computers, Controls, 1999. Reproduction of the
1971 paper.

[15] J. Gibbons and N. Wu. Folding domain-specific languages: Deep and shallow
embeddings. In ICFP, 2014.

[16] R. Glück. A self-applicable online partial evaluator for recursive flowchart
languages. Softw., Pract. Exper., 42, 2012.

[17] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding of
DSLs. In GPCE, 2008.

[18] B. T. Howard and J. C. Mitchell. Operational and axiomatic semantics of pcf. In
LFP, 1990.

[19] P. Hudak. Modular domain specific languages and tools. In Software Reuse,
1998.

[20] T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In
FPCA, 1985.

[21] N. D. Jones. Mix ten years later. In PEPM, 1995.

[22] N. D. Jones and A. J. Glenstrup. Program generation, termination, and binding-
time analysis. In GPCE, 2002.

[23] N. D. Jones, P. Sestoft, and H. Søndergaard. Mix: A self-applicable partial
evaluator for experiments in compiler generation (extended abstract). In MFPS,
1987.

[24] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, Inc., 1993.

[25] J. Jørgensen. Similix: a self-applicable partial evaluator for Scheme. In Partial
Evaluation, 1998.

[26] U. Jørring and W. L. Scherlis. Compilers and staging transformations. In POPL,
1986.
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