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Abstract—Multi-core processors share common hardware resources
between several processor cores. As a consequence, the performance
of one processor core is influenced by the programs executed on the
concurrent cores. We refer to this phenomenon as shared-resource
interference. An explicit consideration of all such interference effects is
in general combinatorially infeasible. This makes a precise worst-case
execution time (WCET) analysis for multi-core processors challenging.

In order to reduce the complexity, WCET analyses for multi-core pro-
cessors coarsely approximate the behavior of the considered applications.
However, current approaches are only applicable to rather restricted
classes of hardware platforms. We propose a framework for the derivation
of WCET analyses for multi-core processors. It relaxes the restricting
assumptions that existing approaches are based on.

The derivation starts from a WCET analysis that makes maximally
pessimistic assumptions about the shared-resource interference. More
precise interference bounds for the concrete system are subsequently
lifted to the approximation of the analysis. The lifted bounds are finally
incorporated in the analysis in order to model the interference in a more
precise way.

I. INTRODUCTION

For a timing-critical application it is important that the time needed
to deliver the results of its calculations does not exceed a deadline
dictated by the physical environment. A timing-critical application
may consist of several programs that interact. Knowledge about the
worst-case execution time (WCET) [1] of each such program allows
us to verify the timeliness of the overall application. It is safe to
replace the WCET of a program by an upper bound on its execution
times (a so-called WCET bound) in this verification step. However,
the timeliness of an application can often only be verified if the
WCET bounds are relatively tight. WCET analyses are used for the
calculation of WCET bounds.

The execution times of a program depend on the possible execution
behaviors at the micro-architectural level of the processor that executes
the program. Modern processors are too complex to exhaustively
simulate or measure the execution times of all possible behaviors.
WCET analyses for those processors need to approximate some
of the micro-architectural details in order to reduce the inherent
complexity [2], [3]. Approximation often comes at the cost of a less
tight WCET bound.

The use of multi-core processors can reduce the weight, the energy
consumption and the production costs of computer systems. Hence,
they are likely to also be used for timing-critical applications in the
long run.

However, multi-core processors consist of several processor cores,
which share common resources such as buses or caches. The resource
sharing has a significant impact on the overall performance of a
system [4] because the cores compete for the shared resources. For
example, an access request to a shared bus may be blocked for
some cycles before it is granted because a concurrent core is granted
access first. This effect is commonly referred to as shared-resource
interference.

The WCET analysis of programs executed on multi-core processors
needs to take into account all possible interference effects due to

resource sharing. An exact consideration of all such effects requires
in general an exhaustive enumeration of all possible interleavings
of accesses to the shared resources by the different processor cores.
Such an enumeration is combinatorially infeasible.

Most of the current approaches to WCET analysis for multi-core
processors [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]
try to find a level of approximation that avoids this complexity without
sacrificing precision too much. Unfortunately, they are restricted to
Time-Division-Multiple-Access (TDMA) bus arbitration or not sound
in the presence of indirect interference effects, which most modern
multi-core platforms exhibit.

Contributions

We propose a framework for the derivation of WCET analyses
for multi-core processors. An instance of our framework—derived
according to the criteria proposed in this paper—is guaranteed to be
a sound WCET analysis. The derivation starts from a baseline WCET
analysis that makes maximally pessimistic assumptions about the
shared-resource interference. We can infer more precise interference
bounds from the specification of the concrete system. Lifting these
bounds to the approximation of the baseline analysis avoids overly
pessimistic assumptions about the interference.

Our iterative overapproximation analyzes each processor core on its
own and still incorporates cumulative information about the concurrent
cores in the lifted interference bounds. In this way, it finds a trade-off
between the performance of analyzing each core in isolation and the
precision of simultaneously considering all processor cores.

Our framework has been successfully used in the development
of a novel analysis [17] that avoids the restrictions of the existing
approaches.

II. RELATED WORK

Most approaches [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15] to WCET analysis or response time analysis for multi-core
processors rely on compositionality [18] in the sense that they start
with a timing analysis that ignores the shared-resource interference.
Subsequently, they add bounds on the direct interference effects to
their results. In modern micro-processors, however, the overall impact
of the interference can exceed the direct interference effects [19]. Thus,
these approaches are not applicable to current hardware platforms.

An approach by Chattopadhyay et al. [16] supports complex
processor core pipelines. It is restricted to TDMA bus arbitration. Most
multi-core processors on the market, however, implement event-driven
bus arbitration protocols.

A recent approach by Kelter and Marwedel [20] supports complex
multi-core processors equipped with event-driven bus arbitration.
However, it relies on the enumeration of all interleavings of accesses
to the shared bus by the different cores. Therefore, we expect it to
not scale to realistic application scenarios.



Figure 1: All six behaviors of an example program executed on a
hardware platform. The program has a WCET of eleven time units.

A novel analysis developed by our group [17] overcomes the
restrictions and simplifying assumptions of previous approaches. To
the best of our knowledge, it is the first approach to the calculation of
co-runner-sensitive WCET bounds that scales to multi-core processors
with out-of-order execution and event-driven bus arbitration.

This paper presents the concepts we applied during the derivation
of our novel analysis. They are embedded in a general and formally
sound framework for the derivation of WCET analyses for multi-core
processors.

III. MOTIVATION

We motivate the key principle of our framework by considering an
example program executed on a hardware platform. Figure 1 shows
all six possible execution behaviors of the program. Each sequence of
boxes represents one execution behavior. White boxes stand for time
units of non-interfered execution. The boxes colored in light blue
represent direct interference effects like cycles blocked at a shared
bus or needed to serve a miss in the shared cache. Dark boxes denote
the prolonging effects of timing anomalies that are a consequence
of earlier interference. A processor core pipeline might, for example,
only speculate in a particular situation if it is blocked at the shared bus.
If the prediction turns out as false, the execution time is prolonged
by more than the blocked cycles. Such indirect interference effects
can be observed in modern multi-core processors [19]. Sound WCET
analyses for such platforms have to take these indirect effects into
account.

The example program has a WCET of eleven time units as its
longest execution behavior takes this long.

In this example, we assume that no execution behavior of the
example program can exhibit more than five direct interference effects.
Such assumptions can for instance be inferred from the specification
of a bus arbiter if the actual set of execution behaviors is unknown.

A. Classical Compositional Analysis

Existing compositional analyses [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15] first calculate a basic timing bound that does not take
into account behaviors exhibiting interference effects. Subsequently,
they add an upper bound on the direct interference effects to the
result. This principle is depicted in Figure 2. The longest behavior
without interference takes five time units. The maximum of five direct
interference effects is subsequently added.

Figure 2: Compositional analyses typically only consider behaviors
without interference. Subsequently, they add an upper bound on the
direct interference effects. In the presence of indirect effects, this is

unsound.

This shows that the common way of decomposing analyses is
efficient but unsound in the presence of indirect interference effects.
In order to be sound, an upper bound on the indirect effects has to
be additionally incorporated.

The indirect interference effects highly depend on the interaction
between the shared resources and the processor cores. As this
interaction is typically not considered by compositional analyses,
they can at best provide very pessimistic bounds on the indirect
interference effects. In our example system, the amount of indirect
interference effects cannot exceed the amount of direct ones. Note
that this is hard or impossible to show for real-world hardware, for
example due to domino effects [21]. The analysis results in a high
overestimation of the WCET as shown in Figure 3.

Figure 3: In order to be sound, such a decomposition of timing
analysis would have to pessimistically assume that each direct effect

leads to an indirect effect. However, this results in a high
overestimation.

As a consequence, the common way of decomposing timing analysis
is not able to provide sound and precise WCET bounds for modern
multi-core processors.

B. Key Principle of our Framework

The derivation of a WCET analysis in our framework starts
from an overapproximation of all behaviors of the program. This
overapproximation is maximally pessimistic with respect to the shared-
resource interference. Each access request to a shared bus can, for
example, be blocked arbitrarily long before being granted by the
arbiter. Similarly, each access to a shared cache can be a hit or a miss.
Figure 4 shows such an overapproximation for our example program.
It contains two infeasible behaviors that cannot be observed when
actually executing the program (dashed box).

Figure 4: The pessimistic overapproximation of all behaviors of the
example program contains two infeasible behaviors (dashed box).

We exploit the upper bound on the direct interference effects to
prune the two infeasible behaviors, which exhibit more than five direct
interference effects. The remaining execution behaviors result in an
exact WCET bound of eleven time units.

In this way, our framework supports the development of timing
analyses that explicitly model the impact of the interference on the
processor cores and, thus, precisely bound the indirect interference
effects.

Note that the pessimistic overapproximation is only a conceptual
starting point. The implementation of the analysis derived from our
framework will not materialize this overapproximation. Instead, it can
directly leave out many of the infeasible behaviors during analysis.

Our example program only exhibits six execution behaviors.
Programs executed on real-world hardware platforms, however, exhibit
too many execution behaviors to exhaustively enumerate them. Thus, it
is common to approximate some of the micro-architectural details [2].
In the next section, we formally show how the principle presented
above can be applied to such approximations.

IV. PROPERTY LIFTING

This section describes the concept of property lifting, which is the
central part of our framework.



A. Concrete Execution Behavior and Time

We consider a multi-core processor consisting of the set Cores of
n processor cores.

Cores = {C1, . . . , Cn}

For simplicity, we assume that each core only runs one program
and that each program may at most be executed once per system
run. This restriction is not inherent to our framework but only made
to simplify the notation. For a more detailed discussion on how to
overcome this restriction, we refer to [22]. In the following, we use
the term system to refer to the combination of the hardware including
the multi-core processor and the software executed on it.

The system may exhibit different execution behaviors depending
on its initial state, external input parameters and clock drift effects.
Let Traces be the set of all execution behaviors of the system. Its
superset Universe additionally contains the spurious behaviors that
might be described by imprecise analyses. Spurious behaviors can,
for example, be sequences of concrete system states that cannot be
observed during any execution of the concrete system.

Universe ⊇ Traces

The program executed on processor core Ci can be assigned an
execution time per execution behavior. This time is given by the
function etCi .

etCi : Universe→ N ∪ {∞}

The WCET of the program executed on core Ci is its maximal
execution time over all execution behaviors of the considered system.

WCETCi = max
t∈Traces

etCi(t) (1)

B. Approximation by Abstract Traces

Modern processors usually exhibit too many execution behaviors to
allow for an exhaustive consideration of all of them. The set Traces
is simply too large. Therefore, it is mandatory to introduce some kind
of approximation. The goal is to not have to argue separately about
each concrete execution behavior.

In our view, an abstract model of the considered system is given
by the tuple (T̂races, γtrace). T̂races is the set of abstract traces of the
model. Depending on the chosen way of approximation, an abstract
trace might for example be a sequence of abstract states in an analysis
based on abstract interpretation [23] or the combination of a sequence
of superblocks [5] and a corresponding sequence of blocking cycle
counts. The function γtrace maps those abstract traces to subsets of
the universe of execution behaviors. Note that P(Universe) denotes
the power set of this universe of execution behaviors.

γtrace : T̂races→ P(Universe)

We say that an abstract model (T̂races, γtrace) is an overapproxima-
tion of Traces iff: ⋃

t̂∈T̂races

γtrace(̂t) ⊇ Traces (2)

We assume that for each core Ci there is an upper bound on its
execution times per abstract trace. This bound shall be given by
UBetCi .

UBetCi : T̂races→ N ∪ {∞}
∀t̂ ∈ T̂races : UBetCi (̂t) ≥ max

t∈γtrace (̂t)
etCi(t) (3)

From (2) and (3) it follows that the abstract model provides an
upper bound to the WCET as defined in (1) by:

max
t̂∈T̂races

UBetCi (̂t) ≥ WCETCi (4)

From now on we only consider abstract models that are overap-
proximations of Traces.

C. Infeasible Abstract Traces

The method used to obtain the set of abstract traces (e.g. a
static analysis exploring abstract states) might introduce imprecision.
Therefore, there may be abstract traces that do not describe any
execution behavior of the considered system. We call them infeasible
abstract traces.

Înfeas = {̂t ∈ T̂races | γtrace(̂t) ∩ Traces = ∅} (5)

Correspondingly, we refer to T̂races \ Înfeas as the set of feasible
abstract traces. In fact, it follows from (5) that the set of feasible
abstract traces is an overapproximation of Traces.⋃

t̂∈T̂races\Înfeas

γtrace(̂t) ⊇ Traces (6)

Based on an abstract model (T̂races, γtrace), which is an overap-
proximation of Traces, we define a set Deriv

(T̂races,γtrace)
of further

abstract models as follows:

Deriv
(T̂races,γtrace)

=

{(T̂races′, γtrace) | T̂races ⊇ T̂races′ ⊇ T̂races \ Înfeas}
(7)

Intuitively, each element of Deriv
(T̂races,γtrace)

is an overapproxima-
tion of Traces. So we can calculate an upper bound to the WCET
based on any member of Deriv

(T̂races,γtrace)
:

∀(T̂races′, γtrace) ∈ Deriv
(T̂races,γtrace)

:

max
t̂∈T̂races′

UBetCi (̂t) ≥ WCETCi

(8)

As a consequence, we can ignore an arbitrarily chosen set of
infeasible abstract traces in an abstract model. A WCET bound based
on the remaining abstract traces is still guaranteed to be sound.

The calculation of WCET bounds is based on upper bounds on
the execution times per abstract trace (3). If an abstract model makes
conservative assumptions about the behavior at the shared resources,
some infeasible abstract traces might assume an amount of shared-
resource interference that exceeds the maximum possible amount for
the concrete system. As upper bounds on the execution times of such
infeasible abstract traces are likely to be very pessimistic, ignoring
those abstract traces—as in (8)—might improve the tightness of the
resulting WCET bound.

However, it depends heavily on the particular abstract model
(T̂races, γtrace) and the upper bounds on the execution times per
abstract trace whether the WCET bound can be tightened by leaving
out some infeasible abstract traces.

We introduced the abstract model to not have to materialize the set
Traces. The definition of infeasible abstract traces, however, is also
based on Traces. Therefore, we cannot directly use this definition to
detect infeasible abstract traces. The following subsection describes
how we can use properties of the system under consideration to detect
some infeasible abstract traces.



D. System Properties

We assume properties to be boolean predicates on execution
behaviors. System properties are properties that hold for each execution
behavior of a concrete system. The existence of a bound on the shared-
resource interference may for example be a system property. Let Prop
be a set of properties of the system under consideration:

Prop = {P1, . . . , Pp}
∀t ∈ Traces : ∀Pk ∈ Prop : Pk(t) (9)

We want to use these system properties to detect some infeasible
abstract traces. But so far, they only argue about execution behaviors of
the concrete system. Therefore, we need to lift them to abstract traces.
This means, we need to find P̂k such that the following criterion holds.

Soundness Criterion (C1):

∀̂t ∈ T̂races :

[ ∃t ∈ γtrace(̂t) : Pk(t) ]⇒ P̂k (̂t)
(C1)

The intuition behind soundness criterion (C1) gets more clear if
we have a look at what it means if P̂k does not hold for an abstract
trace t̂ ∈ T̂races:

¬P̂k (̂t)
⇒
(C1)
∀t ∈ γtrace(̂t) : ¬Pk(t)

⇒
(9)
γtrace(̂t) ∩ Traces = ∅

⇔
(5)
t̂ ∈ Înfeas

(10)

So if a lifted system property does not hold for an abstract trace,
this means that the abstract trace is infeasible. From now on, the
lifted version of any system property shall be identified by the name
of the system property with an additional hat on top.

E. Property Lifting Example

The following example will illustrate how we can find a P̂k (̂t)
satisfying (C1) without using γtrace(̂t) directly, which is mandatory
for an efficient use of an abstract model.

Example: Assume that we have an upper bound on the number of
bus accesses performed by a particular processor core Ci per abstract
trace.

∀t̂ ∈ T̂races :

∀t ∈ γtrace(̂t) :
UB#accessesCi (̂t) ≥ #accessesCi(t)

(a)

We only use γtrace to argue about the soundness of the bounds. But
we assume that each bound is given by a preceding analysis in the
same way as the corresponding abstract trace is.

In addition, we assume to have a lower bound on the number of
cycles that core Ci is blocked at a shared bus per abstract trace.

∀t̂ ∈ T̂races :

∀t ∈ γtrace(̂t) :
LB#blockedCyclesCi

(̂t) ≤ #blockedCyclesCi
(t)

(b)

Now assume that the concrete system we consider uses a Round-
Robin policy to arbitrate its shared bus. Therefore, all its execution
behaviors fulfill the property Prr:

Prr(t)⇔[#blockedCyclesCi
(t)

≤ #accessesCi(t) · (n− 1)

· maxCyclesPerAccess ]

(c)

The intuition behind this system property (implicitly assumed
in [24]) is that with Round-Robin arbitration, each concurrent core
(there are n− 1 of them) can at most perform one access to the bus
before an access of core Ci is granted. Together with an upper bound
on the number of cycles that a granted bus access can at most take to
complete on the concrete system, we arrive at an upper bound on the
number of cycles that any access of core Ci can be blocked at the
bus. Knowledge about how many accesses to the bus are performed
by core Ci allows us to bound the overall amount of bus blocking
experienced by core Ci in a particular execution behavior.

We can safely lift Prr to abstract traces in a way that satisfies
soundness criterion (C1) by applying (a) and (b):

P̂rr(̂t)⇔ [ LB#blockedCyclesCi
(̂t)

≤ UB#accessesCi (̂t) · (n− 1)

· maxCyclesPerAccess ]

(d)

According to (10) any abstract trace t̂ with ¬P̂rr(̂t) can safely be
considered as infeasible. [Example end]

F. Removing Infeasible Abstract Traces

We define a compound property P̂ for abstract traces to be
the conjunction over the lifted versions of the considered system
properties.

∀t̂ ∈ T̂races :

P̂ (̂t)⇔ ∀Pk ∈ Prop : P̂k (̂t)
(11)

If P̂ does not hold for an abstract trace t̂ then this means that t̂ is
infeasible:

¬P̂ (̂t)

⇔
(11)
∃Pk ∈ Prop : ¬P̂k (̂t)

⇒
(10)
t̂ ∈ Înfeas

(12)

We can use P̂ to define an alternative set ̂LessTraces of abstract
traces based on T̂races:

̂LessTraces = {̂t | t̂ ∈ T̂races ∧ P̂ (̂t)} (13)

̂LessTraces is the subset of abstract traces in T̂races that cannot be
classified as infeasible by any of the P̂k.

̂LessTraces ⊇ T̂races \ Înfeas (14)

Consequently, we can derive a sound WCET bound from the abstract
model ( ̂LessTraces, γtrace):

max
t̂∈ ̂LessTraces

UBetCi (̂t) ≥ WCETCi (15)

( ̂LessTraces, γtrace) can improve the precision, as the set ̂LessTraces
potentially prunes some of the infeasible abstract traces still included
in T̂races. In that context, (T̂races, γtrace) is referred to as baseline
abstract model as it is the starting point for further improvements of
precision.

This concludes the description of the concept of property lifting.
Intuitively, the main idea is to start with a sound approximation as
baseline. Lifted versions of system properties are used to detect some
infeasible abstract traces of the baseline approximation. Removing
them may result in more precise WCET bounds.



V. ITERATIVE OVERAPPROXIMATION

Property lifting—as described in Section IV—requires a baseline
abstract model arguing about all processor cores in detail in order
to profit from system properties that interrelate the behaviors of all
processor cores. Section V-A uses an exemplary system property to
illustrate this requirement.

In Section V-B, we derive a compound abstract model from a
set of abstract models—each focusing on one processor core. The
compound abstract model argues about all cores in detail. Hence,
system properties interrelating the behaviors of all cores can effectively
be lifted to it.

However, the high number of abstract traces in the compound
abstract model will likely become unmanageable. Thus, we project
the analysis results from the compound abstract model back to the
different component abstract models (Section V-C). Finally, we present
an iterative approach to overapproximate these projections without
having to materialize the compound abstract model (Section V-D).

A. Relating the Behavior of one Processor Core to that of Other
Cores

Consider system properties that relate the behavior of one processor
core to that of other cores. Such properties are typical for systems
that do not provide performance isolation between their cores [24],
[6].

Example: We introduce a property Pwc that holds for certain systems
that enforce a work conserving bus arbitration policy.

Pwc(t)⇔[#blockedCyclesCi
(t)

≤
∑

Cj∈(Cores\{Ci})

#accessCyclesCj
(t) ] (e)

Essentially, it states that the number of cycles processor core Ci
is blocked at the shared bus cannot exceed the number of cycles in
which concurrent cores (here Cj) are granted access to the shared
bus.

Assume that we have an upper bound on the number of bus access
cycles performed by a particular processor core Cj per abstract trace.

∀Cj ∈ Cores :

∀̂t ∈ T̂races :

∀t ∈ γtrace(̂t) :
UB#accessCyclesCj

(̂t) ≥ #accessCyclesCj
(t)

(f)

Using these upper bounds, we can lift the property Pwc to abstract
traces.

P̂wc(̂t)⇔ [ LB#blockedCyclesCi
(̂t)

≤
∑

Cj∈(Cores\{Ci})

UB#accessCyclesCj
(̂t) ] (g)

If an abstract model only focuses on one processor core, it has to
assume arbitrary behaviors for the other cores. For now, assume that
the abstract model (T̂races, γtrace) is only focused on core Ci. Thus,
it cannot exclude arbitrarily high numbers of bus access cycles for
all other cores.

∀Cj ∈ (Cores \ {Ci}) :
∀̂t ∈ T̂races :

UB#accessCyclesCj
(̂t) =∞

(h)

As a consequence, the lifted property P̂wc holds for all abstract
traces of the abstract model. Hence, it does not detect any infeasible
abstract traces. [Example end]

This shows that property lifting only profits from properties
interrelating the behaviors of several processor cores if it is applied
to a baseline abstract model that argues about all those cores at the
same time.

B. A Compound Abstract Model

Let Models be a set of identifiers of abstract models.

Models = {M1, . . . ,Mm}

For each Ma ∈ Models there shall be a corresponding abstract
model ( ̂TracesMa , γMa

trace) that is an overapproximation of Traces.

∀Ma ∈ Models :⋃
t̂Ma∈ ̂TracesMa

γMa
trace(t̂Ma) ⊇ Traces (16)

∀Ma ∈ Models : ∀Ci ∈ Cores :

∀t̂Ma ∈ ̂TracesMa :

UBetCi(t̂
Ma) ≥ max

t∈γMa
trace (t̂

Ma )

etCi(t)

(17)

The different abstract models may describe different aspects of the
overall system behavior in detail. In the context of WCET analysis for
multi-core processors, Models could be identical to Cores and each
abstract model could focus on one particular core. The formalism,
however, is not restricted to such an assumption.

Based on the abstract trace sets of previous abstract models, we
can define a set T̂races of compound abstract traces.

T̂races = ̂TracesM1 × · · · × ̂TracesMm (18)

We use projection functions πMa
trace to access the components of

compound abstract traces.

∀(t̂M1 , . . . , t̂Mm) ∈ ̂TracesM1 × · · · × ̂TracesMm :

∀Ma ∈ Models :

πMa
trace((t̂M1 , . . . , t̂Mm)) = t̂Ma

(19)

The mapping of compound abstract traces to subsets of the universe
of execution behaviors can be defined as the intersection over the
mappings of its components. Intuitively, a compound abstract trace
only describes the execution behaviors that all of its components
describe.

γtrace(̂t) =
⋂

Ma∈Models

γMa
trace(π

Ma
trace(̂t)) (20)

It follows from (16), (18) and (20) that the resulting compound
abstract model (T̂races, γtrace) is also an overapproximation of Traces
and thereby fulfills (2) and all its implications. Hence, we can apply
property lifting to it as demonstrated in Section IV.

Our examples for lifted properties were so far based on upper
and lower bounds per abstract trace. As soon as abstract traces are
compositions, we may derive those bounds based on corresponding
bounds for their components. According to (20), a particular bound
for an abstract trace of the compound model can be obtained by
taking the most precise bound value over its components.

LBsomething(̂t) = max
Ma∈Models

LBsomething(πMa
trace(̂t)) (21)

UBsomething(̂t) = min
Ma∈Models

UBsomething(πMa
trace(̂t)) (22)

Example: Reconsider the lifted example property P̂wc as defined
in (g). Let us resume that example after formula (g). This time, we



assume a compound abstract model as baseline. It shall be composed
of one abstract model per processor core.

Models = Cores (i)

Further assume that each abstract model can only provide detailed
information about the processor core it is specialized on. In particular,
this means:

∀Ci ∈ Cores :

∀t̂Ci ∈ ̂TracesCi :

∀Cj ∈ (Cores \ {Ci}) :
LB#blockedCyclesCj

(t̂Ci) = 0∧
UB#accessCyclesCj

(t̂Ci) =∞

(j)

In combination with (21) and (22) this implies the following
equalities:

∀Ci ∈ Cores :
LB#blockedCyclesCi

(̂t) = LB#blockedCyclesCi
(πCi

trace(̂t))∧
UB#accessCyclesCi

(̂t) = UB#accessCyclesCi
(πCi

trace(̂t))

(k)

This allows us to rewrite the lifted property P̂wc as follows:

∀t̂ ∈ T̂races :

P̂wc(̂t)

⇔
(g)
[ LB#blockedCyclesCi

(̂t)

≤
∑

Cj∈(Cores\{Ci})

UB#accessCyclesCj
(̂t) ]

⇔
(k)
[ LB#blockedCyclesCi

(πCi
trace(̂t))

≤
∑

Cj∈(Cores\{Ci})

UB#accessCyclesCj
(π
Cj
trace(̂t)) ]

(m)

This time, the lifted property P̂wc is not guaranteed to hold for
all abstract traces. Hence, it can effectively detect infeasible abstract
traces. [Example end]

However, the cross product in the definition of T̂races already gives
a hint that T̂races might become quite large. Thus, the compound
consideration of several abstract models is likely too complex in most
cases.

C. Projections of the Compound Results

Taking a closer look at the set ̂LessTraces derived from the
compound abstract model, it turns out that we are not really interested
in the set of all combinations of abstract traces from the different
abstract models. It would be sufficient to know for each Ma ∈ Models
which members of ̂TracesMa are contained in a compound abstract
trace of ̂LessTraces. Those subsets can be obtained by projecting
the members of ̂LessTraces to their different components. We define
the projections in a general way on arbitrary subsets ̂SomeTraces of
T̂races.

∀Ma ∈ Models :

πMa( ̂SomeTraces) = {πMa
trace(̂t) | t̂ ∈ ̂SomeTraces}

(23)

Obviously, each projection πMa( ̂SomeTraces) is a subset of the set
of abstract traces of the corresponding abstract model.

∀ ̂SomeTraces ⊆ T̂races :

∀Ma ∈ Models :

πMa( ̂SomeTraces) ⊆ ̂TracesMa

(24)

Please note that ̂SomeTraces is a subset of the cross product over
its projections.

∀ ̂SomeTraces ⊆ T̂races :

̂SomeTraces

⊆ πM1( ̂SomeTraces)× · · · × πMm( ̂SomeTraces)

(25)

Furthermore, it is rather obvious that the projection functions πMa

are monotone.

∀ ̂SomeTraces, ̂OtherTraces ⊆ T̂races :

∀Ma ∈ Models :

[ ̂SomeTraces ⊆ ̂OtherTraces ]

⇒ [πMa( ̂SomeTraces) ⊆ πMa( ̂OtherTraces) ]

(26)

Each projection πMa( ̂LessTraces) is a superset of the feasible ab-
stract traces of the corresponding ̂TracesMa . Consider (27) for a formal
proof of this statement. According to (7), (24) and (27), each abstract
model (πMa( ̂LessTraces), γMa

trace) is a member of Deriv
( ̂TracesMa ,γ

Ma
trace )

.

∀Ma ∈ Models :

(πMa( ̂LessTraces), γMa
trace) ∈ Deriv

( ̂TracesMa ,γ
Ma
trace )

(28)

Thus, each abstract model (πMa( ̂LessTraces), γMa
trace) can be used

to calculate a WCET bound based on it.

∀Ma ∈ Models :

max
t̂Ma∈πMa ( ̂LessTraces)

UBetCi(t̂
Ma) ≥ WCETCi

(29)

But how precise is a WCET bound based on the projection of
̂LessTraces compared to one that is directly based on ̂LessTraces?

In general, we might lose precision by restricting ourselves to the
projections πMa( ̂LessTraces).

WCETCi

≤
(15)

max
t̂∈ ̂LessTraces

UBetCi (̂t)

=
(22)

max
t̂∈ ̂LessTraces

min
Ma∈Models

UBetCi(π
Ma
trace(̂t))

≤
(31)

min
Ma∈Models

max
t̂∈ ̂LessTraces

UBetCi(π
Ma
trace(̂t))

=
(23)

min
Ma∈Models

max
t̂Ma∈πMa ( ̂LessTraces)

UBetCi(t̂
Ma)

(30)

We can prove the second ≤ relation used in (30) by assuming
its opposite and deriving a statement from it that contradicts to the
definition of the minimum.

max
t̂∈ ̂LessTraces

min
Ma∈Models

UBetCi(π
Ma
trace(̂t))

> min
Ma∈Models

max
t̂∈ ̂LessTraces

UBetCi(π
Ma
trace(̂t))

⇒∃t̂∗ ∈ ̂LessTraces : ∃M∗ ∈ Models :

min
Ma∈Models

UBetCi(π
Ma
trace(t̂∗))

> max
t̂∈ ̂LessTraces

UBetC(πM∗trace(̂t))

≥
def.
max

UBetC(πM∗trace(t̂∗))  

(31)

However, we additionally assume each abstract model is focused
on one processor core.

Models = Cores (32)



πMa( ̂LessTraces)

⊇
(14)
(26)

πMa(T̂races \ Înfeas)

=
(5)
πMa( {̂t | t̂ ∈ T̂races ∧ γtrace(̂t) ∩ Traces 6= ∅} )

=
(23)
{πMa

trace(̂t) | t̂ ∈ T̂races ∧ γtrace(̂t) ∩ Traces 6= ∅}

=
(18)
(19)

{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂TracesM1 × · · · × ̂TracesMm ∧ γtrace(t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∩ Traces 6= ∅}

=
(20)
(19)

{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂TracesM1 × · · · × ̂TracesMm ∧
⋂

Mb∈Models

γ
Mb
trace(t̂Mb) ∩ Traces 6= ∅}

=
(16)
{t̂Ma | t̂Ma ∈ ̂TracesMa ∧ γMa

trace(t̂Ma) ∩ Traces 6= ∅}

=
(5)

̂TracesMa \ ̂InfeasMa

(27)

This in particular means that each abstract model has to make
maximally pessimistic assumptions about the execution times of the
cores it is not focused on.

∀Ci ∈ Cores :

∀t̂Ci ∈ ̂TracesCi :

∀Cj ∈ (Cores \ {Ci}) :
UB#etCj (t̂

Ci) =∞

(33)

Under those additional assumptions, we are guaranteed to not lose
any precision by restricting ourselves to WCET bounds based on the
projections πMa( ̂LessTraces).

WCETCi

≤
(15)

max
t̂∈ ̂LessTraces

UBetCi (̂t)

=
(22)

max
t̂∈ ̂LessTraces

min
Ma∈Models

UBetCi(π
Ma
trace(̂t))

=
(32)

max
t̂∈ ̂LessTraces

min
Cj∈Cores

UBetCi(π
Cj
trace(̂t))

=
(33)

max
t̂∈ ̂LessTraces

UBetCi(π
Ci
trace(̂t))

=
(23)

max
t̂Ci∈πCi ( ̂LessTraces)

UBetCi(t̂
Ci)

(34)

So we see that, in general, the projections πMa( ̂LessTraces) can
be used to derive WCET bounds based on them. We do not need
to know all combinations of abstract traces contained in ̂LessTraces.
Under the additional assumptions (32) and (33), we do not lose
any precision compared to WCET bounds derived from ̂LessTraces
directly. However, in most cases we will not be able to precisely obtain
the projections πMa( ̂LessTraces) without first materializing the set

̂LessTraces. As discussed before, it is expected to be computationally
too expensive to derive the set ̂LessTraces. Therefore, we are interested
in overapproximations of these projections.

D. Overapproximating the Projections

This subsection describes an iterative approach that overapproxi-
mates the projections πMa( ̂LessTraces). It starts with very conserva-
tive assumptions about all projections. Intuitively, the overapproxi-
mation of a particular projection can be improved by incorporating
information from the overapproximations of the other projections.

Clearly, it is possible to obtain an overapproximation of a projection
πMa( ̂LessTraces) by considering the abstract model ( ̂TracesMa , γMa

trace)

in isolation and providing the set ̂LessTracesMa . In this case, however,
the lifted versions P̂Ma

k of properties Pk do not help us in detecting
infeasible abstract traces if the Pk need to argue about aspects of
the system that are not modeled by ( ̂TracesMa , γMa

trace). Therefore,
the overapproximation of a projection πMa( ̂LessTraces) should
be able to incorporate (likely cumulative) information from the
overapproximations of the other projections.

We propose an approach that overapproximates each projec-
tion πMa( ̂LessTraces) by a corresponding approximation variable
̂ApproxMa . We use

#           »
Approx to refer to the vector of all approximation

variables.

#           »
Approx = ( ̂ApproxM1 , . . . , ̂ApproxMm) (35)

In the beginning, each ̂ApproxMa is initialized to the corresponding
̂TracesMa .

#           »
Approx← ( ̂TracesM1 , . . . , ̂TracesMm) (36)

Then, the approximation variables are updated according to the
following recursive equation system.

∀Ma ∈ Models :

̂ApproxMa

= {t̂Ma | t̂Ma ∈ ̂TracesMa ∧ P̃Ma(t̂Ma ,
#           »
Approx)}

=: FMa(
#           »
Approx)

(37)

We refer to FMa as the update function of ̂ApproxMa . From (36)
and (37) we can immediately follow that each ̂ApproxMa is guaranteed
to always be a subset of ̂TracesMa .

∀Ma ∈ Models :

̂ApproxMa ⊆ ̂TracesMa
(38)

Therefore, the value range of the vector of approximation variables
can be restricted as follows.

#           »
Approx ∈ P( ̂TracesM1)× · · · × P( ̂TracesMm) (39)



The boolean predicate P̃Ma used in FMa takes an abstract trace
from ̂TracesMa and the current vector of approximation variables as
parameters. It is defined as follows.

∀Ma ∈ Models :

∀t̂Ma ∈ ̂TracesMa :

P̃Ma(t̂Ma ,
#           »
Approx)

⇔ ∀Pk ∈ Prop : P̃Ma
k (t̂Ma ,

#           »
Approx)

(40)

The P̃Ma
k are properties that overapproximate the

P̂k lifted to the compound abstract model. They shall
fulfill the following criterion with respect to the P̂k.

Soundness Criterion (C2):

∀ #           »
Approx ∈ P( ̂TracesM1)× · · · × P( ̂TracesMm) :

∀t̂Ma ∈ ̂TracesMa :

[∃(t̂M1 , . . . , t̂Ma−1) ∈ ̂ApproxM1 × · · · × ̂ApproxMa−1 :

∃(t̂Ma+1 , . . . , t̂Mm) ∈ ̂ApproxMa+1 × · · · × ̂ApproxMm :

P̂k(t̂M1 , . . . , t̂Ma−1 , t̂Ma , t̂Ma+1 , . . . , t̂Mm) ]

⇒ P̃Ma
k (t̂Ma ,

#           »
Approx)

(C2)

Criterion (C2) allows us to show that each approximation variable is
guaranteed to be an overapproximation of the corresponding projection
after arbitrary sequences of updates of the approximation variables:

∀Ma ∈ Models :

πMa( ̂LessTraces) ⊆ ̂ApproxMa
(H1)

Proof: As a consequence of (24), the claim in (H1) trivially holds
for the initial values of the approximation variables as specified in
(36). For the general case, however, we assume the hypothesis (H1)
to hold after a given sequence of approximation variable updates.
In an inductive way, we can use this assumption to show that the
hypothesis is preserved by an additional simultaneous update of
an arbitrarily chosen set of the approximation variables. For the
details of this induction step, please refer to (41) and (42). The
inequation chain in (41) shows that all sets contained in it are
in fact equal. This information is used in (42) to show that the
FMa(

#           »
Approx) are guaranteed to be supersets of the projections

πMa( ̂LessTraces). According to the equation system given by (37),
the approximation variables ̂ApproxMa are updated to the values of
the functions FMa(

#           »
Approx). This proves that the simultaneous update

of an arbitrarily chosen set of approximation variables is guaranteed
to preserve the hypothesis given by (H1). �

As a consequence of (42), we can optionally use the alternative
definitions of the update functions FMa given in (43). Their use is
equivalent to the use of the definitions in (37). Depending on the
implementation details of an instance of our framework, it could be
more straightforward to use one style of definition or the other.

∀Ma ∈ Models :

FMa(
#           »
Approx)

:= {t̂Ma | t̂Ma ∈ ̂ApproxMa ∧ P̃Ma(t̂Ma ,
#           »
Approx)}

(43)

It follows from hypothesis (H1) that we can bound the content of
the sets ̂ApproxMa from above and from below.

̂TracesMa

⊇
(38)

̂ApproxMa

⊇
(H1)
πMa( ̂LessTraces)

⊇
(27)

̂TracesMa \ ̂InfeasMa

(44)

As a consequence of (7) and (44), we see that each abstract model
( ̂ApproxMa , γMa

trace) is a member of Deriv
( ̂TracesMa ,γ

Ma
trace )

.

∀Ma ∈ Models :

( ̂ApproxMa , γMa
trace) ∈ Deriv

( ̂TracesMa ,γ
Ma
trace )

(45)

Thus, each abstract model ( ̂ApproxMa , γMa
trace) can be used to

calculate a WCET bound based on it.

∀Ma ∈ Models :

max
t̂Ma∈ ̂ApproxMa

UBetCi(t̂
Ma) ≥ WCETCi

(46)

In addition, the P̃Ma
k shall fulfill the following criterion.

Monotonicity Criterion (C3):

∀ #           »
Approx,

#             »

Approx′ ∈ P( ̂TracesM1)× · · · × P( ̂TracesMm) :

∀t̂Ma ∈ ̂TracesMa :

[ ∀Mb ∈ Models :

̂Approx′Mb ⊆ ̂ApproxMb ]

⇒ [ P̃Ma
k (t̂Ma ,

#             »

Approx′)⇒ P̃Ma
k (t̂Ma ,

#           »
Approx) ]

(C3)

Let
#           »
Approx be the vector of approximation variables after an

arbitrary sequence of updates of the approximation variables. Criterion
(C3) allows us to show that the following additional hypothesis holds:

∀Ma ∈ Models :

FMa(
#           »
Approx) ⊆ ̂ApproxMa

(H2)

Proof: According to (36) and (37), the hypothesis (H2) trivially
holds for a vector

#           »
Approx just initialized. For the inductive step,

assume that hypothesis (H2) holds for a given vector
#           »
Approx of

approximation variables. Let
#             »

Approx′ be the successor of
#           »
Approx after

the simultaneous update of an arbitrarily chosen set of approximation
variables:

#             »

Approx′ = ( ̂Approx′M1 , . . . , ̂Approx′Mm) (47)

∀Ma ∈ Models :

̂Approx′Ma ∈ { ̂ApproxMa , FMa(
#           »
Approx)}

(48)

It follows from (H2) and (48) that each component of
#             »

Approx′ is
a subset of its corresponding counterpart in

#           »
Approx.

∀Ma ∈ Models :

̂Approx′Ma ⊆ ̂ApproxMa
(49)



πMa( ̂LessTraces)

=
(23)
{πMa

trace(̂t) | t̂ ∈ ̂LessTraces}

=
(13)
{πMa

trace(̂t) | t̂ ∈ ̂LessTraces ∧ P̂ (̂t)}

⊆
(25)
{πMa

trace(̂t) | t̂ ∈ πM1( ̂LessTraces)× · · · × πMm( ̂LessTraces) ∧ P̂ (̂t)}

⊆
(H1)
{πMa

trace(̂t) | t̂ ∈ ̂ApproxM1 × · · · × ̂ApproxMm ∧ P̂ (̂t)}

⊆
(38)
{πMa

trace(̂t) | t̂ ∈ ̂TracesM1 × · · · × ̂TracesMm ∧ P̂ (̂t)}

=
(18)
{πMa

trace(̂t) | t̂ ∈ T̂races ∧ P̂ (̂t)}

=
(13)
{πMa

trace(̂t) | t̂ ∈ ̂LessTraces}

(41)

πMa( ̂LessTraces)

=
(41)
{πMa

trace(̂t) | t̂ ∈ ̂ApproxM1 × · · · × ̂ApproxMm ∧ P̂ (̂t)}

=
(19)
{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂ApproxM1 × · · · × ̂ApproxMm ∧ P̂ (t̂M1 , . . . , t̂Ma , . . . , t̂Mm)}

=
(11)
{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂ApproxM1 × · · · × ̂ApproxMm ∧ ∀Pk ∈ Prop : P̂k(t̂M1 , . . . , t̂Ma , . . . , t̂Mm)}

⊆
(C2)
{t̂Ma | t̂Ma ∈ ̂ApproxMa ∧ ∀Pk ∈ Prop : P̃Ma

k (t̂Ma ,
#           »
Approx)}

=
(40)
{t̂Ma | t̂Ma ∈ ̂ApproxMa ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

⊆
(38)
{t̂Ma | t̂Ma ∈ ̂TracesMa ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

=
(37)
FMa(

#           »
Approx)

(42)

We assume that the update functions FMa can be applied to
#             »

Approx′

in the same way as to
#           »
Approx. Equation (50) shows that FMa(

#             »

Approx′)
is a subset of FMa(

#           »
Approx).

FMa(
#             »

Approx′)

=
(37)
{t̂Ma | t̂Ma ∈ ̂TracesMa ∧ P̃Ma(t̂Ma ,

#             »

Approx′)}

=
(40)
{t̂Ma | t̂Ma ∈ ̂TracesMa

∧ ∀Pk ∈ Prop : P̃Ma
k (t̂Ma ,

#             »

Approx′)}

⊆
(C3)
(49)

{t̂Ma | t̂Ma ∈ ̂TracesMa

∧ ∀Pk ∈ Prop : P̃Ma
k (t̂Ma ,

#           »
Approx)}

=
(40)
{t̂Ma | t̂Ma ∈ ̂TracesMa ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

=
(37)
FMa(

#           »
Approx)

(50)

Based on those results, it is straightforward to show that the
hypothesis also holds for

#             »

Approx′, which concludes the inductive

proof of (H2):

̂Approx′Ma

=
(48)

{
̂ApproxMa

FMa(
#           »
Approx)

⊇
(H2)
FMa(

#           »
Approx)

⊇
(50)
FMa(

#             »

Approx′)

(51)

�

The intuition behind (H2) is that the update of an approximation
variable is guaranteed to never increase its set of abstract traces. As
the calculation of the WCET bounds is based on the abstract trace
sets, we can be sure that the update of some approximation variables
can never result in worse WCET bounds.

Example: Coming back to the example of Sections V-A and V-B,
we can further lift the property P̂wc—as defined in equation (m)—in
a way that satisfies criteria (C2) and (C3):

P̃Ci
wc (t̂Ci , ( ̂ApproxC1 , . . . , ̂ApproxCn))

⇔[ LB#blockedCyclesCi
(t̂Ci) ≤∑

Cj∈(Cores\{Ci})

max
t̂
Cj∈ ̂

ApproxCj

UB#accessCyclesCj
(t̂Cj ) ]

(n)



Note that the right-hand side of the inequation in property P̃Ci
wc

does not depend on the abstract trace t̂Ci . It contains cumulative
information about the processor cores competing against Ci. Thus,
this right-hand side is constant over all evaluations of P̃Ci

wc during
an update of ̂ApproxCi . Therefore, we can precompute the constant
right-hand side based on the other approximation variables before
updating ̂ApproxCi . The constant right-hand side can subsequently be
used in an integer linear programming constraint. [17] [Example end]

Moreover, we can use hypothesis (H2) to show that all sets contained
in the following cyclic inequation chain are equal.

FMa(
#           »
Approx)

=
(37)
{t̂Ma | t̂Ma ∈ FMa(

#           »
Approx) ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

⊆
(H2)
{t̂Ma | t̂Ma ∈ ̂ApproxMa ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

⊆
(38)
{t̂Ma | t̂Ma ∈ ̂TracesMa ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

=
(37)
FMa(

#           »
Approx)

(52)

An interesting consequence of (52) is that, in particular, the
following equation holds.

{t̂Ma | t̂Ma ∈ ̂ApproxMa ∧ P̃Ma(t̂Ma ,
#           »
Approx)}

=
(52)
{t̂Ma | t̂Ma ∈ ̂TracesMa ∧ P̃Ma(t̂Ma ,

#           »
Approx)}

(53)

Using (53) in the induction step (42) of the soundness proof
instead of (38) allows us to replace the last ⊆ by an equal. With
this improvement in place, we see that (42) has only left a single
⊆. This means, we can exactly point out where the update of an
approximation variable may lose precision compared to the projections
of the compound consideration of all models at once. The compound
consideration of all models only keeps those t̂Ma that occur in a
combination with abstract traces from the other models that fulfills
all lifted properties P̂k. However, the specially lifted properties P̃Ma

k

may lead to different results. In their presence, an abstract trace
t̂Ma is not pruned as soon as for each P̂k there is a particular
combination with abstract traces from the other models that fulfills
P̂k—this is a consequence of (C2). The intersection of those sets of
combinations of abstract traces for the different P̂k could possibly be
empty for a particular t̂Ma . In that case, this t̂Ma is not contained in
πMa( ̂LessTraces), but in its overapproximation ̂ApproxMa .

Please note that the additional abstract traces introduced in this
way by overapproximation are inherent to considering each abstract
model on its own. They can occur even if we choose the P̃Ma

k in
a way that the ⇒ in criterion (C2) can be shown to be replaceable
by a ⇔. This inherent amount of overapproximation only depends
on the abstract models ( ̂TracesMa , γMa

trace) and the way in which the
P̂k are chosen. Of course, it might lead to further overapproximation
if we choose the P̃Ma

k in a way that we cannot prove the additional
equivalence relation.

VI. ADVANTAGES OF THE FRAMEWORK

This section highlights the benefits of using our framework.
Standard derivation procedure: The framework is a common

starting point for the derivation of future WCET analyses for multi-
core processors. It has been successfully used in the development of
a novel analysis that avoids the restrictions of previous approaches
(cf. Section II).

Soundness guarantee: We show in this paper that an instance
of our framework is a sound WCET analysis. This soundness is a
consequence of a sound baseline analysis and the property lifting
according to the criteria presented above. A sound baseline analysis
is easily obtained by adapting a single-core WCET analysis in a
way that makes it maximally pessimistic with respect to the shared-
resource interference [17]. Hence, our framework essentially reduces
the soundness proofs of its instances to showing the soundness of the
property lifting steps involved in their derivations.

Assumptions about the system always explicit: The declarative
style of our framework makes it mandatory to explicitly list all
properties that a derived analysis assumes about the system under
analysis. This makes sure that a derived analysis does not rely on
implicit assumptions (except those that its baseline analysis already
relies on).

Clean separation between concrete system and approximation:
Existing analyses often try to directly incorporate properties of the
concrete system in their level of approximation. However, this is
mostly based on intuition and, thus, very error-prone. The concept
of property lifting, in contrast, provides a clean separation between
system properties and their implications on the approximation.

Trade-off between efficiency and precision: The iterative over-
approximation (Section V-D) forms a trade-off between the efficiency
of analyzing the programs of one processor core in isolation (Sec-
tion V-A) and the precision of performing a simultaneous consideration
of the detailed behaviors of the programs executed on all processor
cores (Section V-B).

Not limited to multi-core processors: The principles presented
throughout this paper are not limited to the analysis of multi-core
processors. Some of the techniques used in single-core WCET analysis
can also be seen as instances of our framework. The micro-architectural
analysis, for example, typically has no notion of loop bounds. Thus,
it pessimistically assumes that each loop body in the program can
be executed indefinitely. Loop bounds of the concrete program are
subsequently lifted to the level of approximation that the path analysis
operates on. The lifted loop bounds are typically implemented as
additional constraints in an implicit path enumeration [25].

VII. FRAMEWORK INSTANTIATION WORKFLOW

Figure 5 sketches the typical workflow of deriving WCET analyses
as instances of our framework. A derivation that only relies on the
concept of property lifting (cf. Section IV) comprises two logical
steps. The derivation of an analysis that iteratively overapproximates
the results of properties lifted to a compound abstract model (cf.
Section V) requires an additional lifting step.

We successfully used our framework for the derivation of two
novel WCET analyses for multi-core processors with a shared bus and
Round-Robin bus arbitration: a co-runner-insensitive analysis and a
co-runner-sensitive one [17]. This section describes—at a high level—
how the derivation of each of these analyses follows the instantiation
workflow sketched in Figure 5.

The derivation of our co-runner-insensitive analysis comprises two
steps:

Step 1: The derivation starts from a baseline analysis focusing on
one core and assuming that each access request to the shared bus can
be blocked indefinitely by the bus arbiter. Furthermore, we consider a
system property that bounds the maximum amount of blocked cycles
per access to the shared bus under Round-Robin arbitration.

Step 2: The Round-Robin property is lifted to the baseline analysis.
The lifted property is subsequently added to the implementation of
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Figure 5: Framework Instantiation Workflow

the baseline analysis in order to prune infeasible behavior at its level
of approximation.

The derivation of our co-runner-sensitive analysis, in contrast,
comprises three steps:

Step 1: The derivation starts from a compound baseline abstract
model that consists of one co-runner-insensitive analysis per processor
core. Thus, the compound baseline analysis argues about all processor
cores. We consider a property that bounds the blocked cycles of the
core under analysis based on the access cycles of the concurrent cores
assuming a work-conserving bus arbitration (like e.g. Round-Robin).

Step 2: The work-conserving property is lifted to the baseline
abstract model. However, it would be unpractical to enumerate all
combinations of abstract traces of the analyses for the different cores
(since the compound abstract model is defined as cross product over
its components).

Step 3: Hence, we further lift the already lifted property to the
component analysis only focusing on the core under analysis. To this
end, we assume per concurrent core the maximum amount of access
cycles possible in any interval no longer than the current WCET
bound of the core under analysis. The resulting analysis starts by
calculating the co-runner-insensitive WCET bound for the core under
analysis. Then, it calculates upper bounds on the concurrent access
cycles and subsequently recalculates the WCET bound. This process
is repeated until a fixed point is reached.

VIII. EXPERIMENTAL EVALUATION

We evaluate our analysis prototype for multi-core processors with
ARM R© instruction set, a shared memory bus, and Round-Robin bus
arbitration. Our experiments consider cores with in-order pipelines
(five stages) as well as cores that support out-of-order execution
(Tomasulo dynamic scheduling, three functional units, and speculative
execution). We also consider two scenarios with respect to the local
instruction memories of the cores. First, we assume a local instruction
scratchpad that is statically initialized with all programs executed on
the core. Secondly, we consider a local instruction cache (1KiB size,
least-recently-used [LRU] replacement policy) that is connected to
the shared bus. Table II lists the four resulting core configurations.
All core configurations assume a local LRU data cache of size 1KiB.
The shared bus connects the cores to an SRAM background memory
that serves accesses with a fixed latency of ten cycles. Note that we
do not precisely model any particular commercial processor.

We consider a dual-core, a quad-core, and an octa-core processor
per core configuration. For each resulting hardware configuration, we
calculate a co-runner-insensitive WCET bound per benchmark. Our
benchmark suite contains 31 benchmarks of the Mälardalen suite [26]

and six larger programs generated from SCADE models1. We assume
non-preemptive task scheduling as providing timing guarantees for
preemptive multitasking is an unsolved problem for realistic hardware
platforms. Note that we do not perform response time analysis. This
work focuses on WCET analysis.

Our experiments take about 107 minutes on a quad-core Intel R©

CoreTM i7 processor clocked at 2.4 GHz and provided 8 GiB of main
memory.

We normalize the WCET bound and the analysis runtime per
benchmark and considered processor to the corresponding values of
an analysis that ignores the shared-bus interference. Table I lists the
geometric means of the resulting factors for the considered hardware
platforms.

The results underline the strong impact of the shared-bus interfer-
ence on the WCET bounds: the average deviation factors of the WCET
bounds from bounds ignoring the interference reach up to 1.756 (3.267,
6.284) for dual-core (quad-core, octa-core) processors. However, note
that the calculated WCET bounds are co-runner-insensitive. Thus,
they implicitly assume arbitrarily aggressive bus access behavior of
the programs executed on the concurrent cores. As we have shown
before [17], a co-runner-sensitive analysis can lead to a significant
reduction of the WCET bounds.

In contrast to classical compositional approaches [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], our analysis prototype
supports hardware platforms exhibiting indirect interference effects
(cf. Section III). We estimate the additional cost of considering indirect
interference effects by comparing the analysis runtime to the runtime
of an analysis that ignores all interference effects (which is the main
part of classical compositional timing analysis). The average increase
in analysis runtime is moderate (up to 5.4 percent) for hardware
platforms with in-order execution or instruction scratchpads (Conf io

is ,
Conf ooo

is , Conf io
ic ). The combination of out-of-order execution and

instruction caches (Conf ooo
ic ), however, leads to a significantly higher—

though still bearable—increase in analysis runtime (up to 15.9 percent
on average). Intuitively, the complexity of modeling the pipeline
features multiplies with the complexity of modeling the shared-bus
interference by non-determinism. Note that these runtime results are a
significant improvement compared to the numbers we reported in our
earlier work. The improvement stems from engineering improvements
(which are not in the scope of this paper) of the implementation of
our analysis.

The average runtime increase factors for dual-core, quad-core, and
octa-core processors with the same core configuration are essentially
identical for all our experiments (the small deviations are caused
by the heavy use of hash sets in our prototype implementation).
Intuitively, for the considered processor core configurations, the core
pipelines already converge for each access to the shared bus in a
dual-core processor. As a consequence, further cycles blocked at
the shared bus do not result in new pipeline states. An optimization
(fast-forwarding of converged chains [17]) in our analysis prototype
exploits this convergence. For analyses relying on the enumeration
of all interleavings of bus access requests by the different processor
cores [20], in contrast, each additional core increases the analysis
runtime by a factor. Thus, such analyses do not scale to high numbers
of processor cores.

IX. FUTURE WORK

Our current prototype implementation only takes into account
shared-bus interference. We plan to also consider shared caches and

1http://www.esterel-technologies.com/products/scade-suite



Conf io
is Conf ooo

is Conf io
ic Conf ooo

ic
2-Core 4-Core 8-Core 2-Core 4-Core 8-Core 2-Core 4-Core 8-Core 2-Core 4-Core 8-Core

WCET bound 1.579 2.728 5.022 1.660 2.978 5.609 1.677 3.024 5.714 1.756 3.267 6.284
analysis runtime 1.033 1.033 1.028 1.054 1.046 1.051 1.050 1.037 1.038 1.159 1.152 1.149

Table I: Average deviation factors of WCET bound and analysis runtime of the calculation of co-runner-insensitive WCET bounds with respect to an
analysis assuming no interference

in-order
execution

out-of-order
execution

local
instruction
scratchpad

Conf io
is Conf ooo

is

local
instruction

cache
Conf io

ic Conf ooo
ic

Table II: Evaluated processor core configurations

cache coherence in a future version of our tool. A long-term goal is
the modeling of commercially available multi-core processors with
our techniques.

Furthermore, we plan to study the impact of complex processor
core features like store buffers and speculation on the performance of
our analysis approach. In this context, we will investigate performance
improvements of our tool in order to further reduce the performance
overhead due to the consideration of shared-resource interference.
As a result of our studies, we will give recommendations for the
design of future multi-core hardware platforms to enable their use in
timing-critical embedded system.

X. SUMMARY

We present a framework for the derivation of WCET analyses for
multi-core processors. It centers around the concept of property lifting.
Instances of the framework are sound WCET analyses. The framework
has been successfully used in the development of a novel analysis
that avoids the restrictions of existing approaches.
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