
Whole-Function Vectorization

Ralf Karrenberg Sebastian Hack
Saarland University

{karrenberg,hack}@cs.uni-saarland.de

Abstract
Data-parallel programming languages are an important com-
ponent in today’s parallel computing landscape. Among
those are domain-specific languages like shading languages
in graphics (HLSL, GLSL, RenderMan, etc.) and “general-
purpose” languages like CUDA or OpenCL. Current imple-
mentations of those languages on CPUs solely rely on multi-
threading to implement parallelism and ignore the additional
intra-core parallelism provided by the SIMD instruction set
of those processors (like Intel’s SSE and the upcoming AVX
or Larrabee instruction sets).

In this paper, we discuss several aspects of implement-
ing data-parallel languages on machines with SIMD in-
struction sets. Our main contribution is a language- and
platform-independent code transformation that performs
whole-function vectorization on low-level intermediate code
given by a control flow graph in SSA form.

We evaluate our technique in two scenarios: First, incor-
porated in a compiler for a domain-specific language used
in real-time ray tracing. Second, in a stand-alone OpenCL
driver. We observe average speedup factors of 3.9 for the ray
tracer and factors between 0.6 and 5.2 for different OpenCL
kernels.

Categories and Subject Descriptors D.3.4 [Processors]:
code generation, compilers, optimization; C.1.2 [Multi-
ple Data Stream Architectures (Multiprocessors)]: Single-
instruction-stream, multiple-data-stream processors (SIMD)

General Terms Parallelism, Performance, Algorithms,
Optimization

Keywords SIMD, Vectorization, Data Parallelism, Code
Generation, Ray Tracing, OpenCL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO ’11 April 02-06, Chamonix, France.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

1. Introduction
Data-parallel programming is an important concept in to-
day’s parallel computing landscape. A variety of program-
ming languages have been created to support data-parallel
programming over the last decades. Those cover domain-
specific languages (DSLs) like shading languages in graph-
ics (e.g. HLSL, GLSL, RenderMan) or, recently, general-
purpose languages like CUDA or OpenCL. All those lan-
guages share the SIMD concept: A single piece of code is
executed in parallel on different elements of arrays of data.
This does not mean that every instance of that piece of code
executes exactly the same instructions. Consider the exam-
ple in Figure 1. The code given by the control flow graph
(CFG) on the left is applied to four different inputs in paral-
lel. This results in four different execution traces as shown in
the table on the right: For example, instance 1 executes the
blocks a b c e f while instance 3 executes the blocks a b

c e b c e f.

a

b

c d

e

f

Instance Trace

1 a b c e f

2 a b d e f

3 a b c e b c e f

4 a b c e b d e f

Figure 1. Some piece of code and four execution traces.

Diverging control flow makes SIMD execution more
complicated: Instance 1 executes block c but instance 3 ex-
ecutes block d instead. Assuming that block c and d contain
different instructions, they cannot be executed in a SIMD
fashion. The usual solution is that the SIMD program exe-
cutes both branches and compensates for the unwanted ef-
fects: Instance 1 ignores the computations of block d, in-
stance 2 ignores the effects of block c, and so on. This is
also called predicated execution [23].

In practice, this behavior is implemented in different
ways: GPUs perform predicated execution implicitly in
hardware: Each instance of the data-parallel program is
mapped to a scalar core in a multi-core processor. All in-

stances are executed in lock step. A central control unit stalls
a processor on code regions where its instance is inactive.

This paper is concerned with the implementation of data-
parallel languages on processors that require explicit vector-
ization. Such processors have vector register files and ded-
icated SIMD instructions (e.g. Intel’s SSE and IBM’s Al-
tiVec instruction sets). The current register size is 16 bytes
(SSE, AltiVec), with 32 bytes (AVX) and 64 bytes (LRBni,
Larrabee new instructions) on the horizon. The ubiquity of
vector instruction sets and the increase of the vector width
in future architectures motivates the investigation of imple-
menting data-parallel programs on these architectures.

To use SIMD instructions in the presence of diverging
control flow, the programmer or the compiler has to replace
control flow by data flow [2]. For code without loops, this
is commonly called if conversion. For example, consider
the function f in Figure 2 and its version without control
flow f’. The function select chooses, dependent on the
mask value, either s or t. The function f sse in Figure 2
shows how a C/C++ programmer would implement a vec-
torized variant of the same code using intrinsics for Intel’s
SSE instruction set.

There exist several approaches that convert control flow
into data flow to perform vectorization (Section 5 discusses
related work in further detail). Those approaches typically
originate from the parallel computing community, where
parallelization is performed early in the compilation process;
often already on the source level. This has two major disad-
vantages:

1. By transforming control flow to data flow too early in
the compilation process, all analyses and optimizations
in the compiler that make use of control flow informa-
tion are rendered useless. These analyses (for example
conditional constant propagation or loop invariant code
motion) would need to be rewritten to be able to analyze
the predicated vector code.

2. Modern compiler infrastructures use virtual instruction
sets as a code exchange format (for example LLVM bit-
code [18] or Nvidia’s PTX) to decouple front ends from
code generators. Those representations commonly use
control flow graphs of instructions to represent the code.
Performing control to data flow conversion already in the
front end destroys the portability of the generated code
for two reasons: First, the transformation would need to
be undone to use the code for architectures that do not
require control to data flow conversion. Second, even if
the target architecture requires control flow conversion,
the front end would need to address several architectural
parameters like the vector width and details about the im-
plementation of masking (see Section 2). Thus, the code
is no longer portable.

1.1 Contributions
We argue that vectorization should be performed late in the
compilation process. We present a code transformation that
performs control to data flow conversion on code represented
in nowadays common intermediate representations such as
LLVM bitcode. More specifically, we cast vectorization as
a program transformation from (and to) control-flow graphs
in static single assignment (SSA) [4] form. In summary, we
make the following contributions:

• We present a whole-function vectorization transforma-
tion of SSA-form control flow graphs for processors with
SIMD instructions. SSA is particularly useful for vector-
ization for those processors because φ-functions give the
locations where blending code (see the select instruc-
tion in Figure 2) has to be placed. Furthermore, we main-
tain the SSA form during our transformation.
• We present a pass that generates predicated code for arbi-

trary control flow on architectures without hardware sup-
port for predicated execution by carefully placing blend
operations.
• We present a data flow analysis that identifies certain con-

straints on the values of variables in different parallel in-
stances. This helps to respect the alignment and consecu-
tiveness restrictions of the memory access instructions of
today’s SIMD architectures. Furthermore, computations
that produce the same value in every instance do not need
to be vectorized and can remain scalar.
• We implemented our algorithm in the LLVM compiler

infrastructure and evaluated it in two practical scenarios.
First, we added it to a compiler for the RenderMan shad-
ing language, a computer graphics DSL that is widely
used for visual effects in the movie industry, and per-
formed experiments with a real-time ray tracer. Second,
we implemented a prototypical OpenCL driver that uses
the presented vectorization algorithm. We show an aver-
age speedup of 3.9 for the ray tracer and speedups be-
tween 0.6 and 5.2 for different OpenCL applications.

1.2 Structure of this Paper
In the next section, we discuss the design features of current
SIMD architectures that are relevant for this paper. In Sec-
tion 3 we briefly outline the data-parallel programs we con-
sider. Section 4 presents the core contribution of this paper,
the whole-function vectorization for SSA-form programs.
Section 5 discusses related work and Section 6 presents our
experimental evaluation.

2. SIMD Instruction Sets
In this section, we discuss the implications of the design of
SIMD instruction sets on the implementation of data-parallel
languages. Usually, the SIMD unit has SIMD registers of a
certain bit width (e.g. 128 for SSE). One such register holds
a vector of values of the same type. Different instruction sets

float f(float a, float b) {

float r;

if (a > b) r = a + 1;

else r = a - 1;

return r;

}

float f’(float a, float b) {

bool mask = a > b;

float s = a + 1;

float t = a - 1;

float r = select(mask, s, t);

return r;

}

__m128 f_sse(__m128 a, __m128 b) {

__m128 mask = _mm_cmpgt_ps(a, b);

__m128 s = _mm_add_ps(a, _mm_one);

__m128 t = _mm_sub_ps(a, _mm_one);

__m128 r = _mm_blendv_ps(mask, s, t);

return r;

}

Figure 2. A scalar program with control flow (f). The same program with control flow replaced by data flow (f ′). An
implementation of the latter using SSE intrinsics (f sse).

provide support for multiple data types. For example, SSE
has comprehensive support to hold either four floats, four
ints, or two doubles. Sometimes, other data types (smaller
ints) are supported as well. For the ease of presentation, we
only regard data types of a fixed, equal size (four bytes).
Throughout the paper, we will refer to the number of ele-
ments of that type that fit into a single register by the SIMD
width W .

Memory Access. Commonly, a vector value is loaded
(stored) by reading (writing) the elements consecutively
from (to) an aligned address. Some instruction sets also
allow accessing unaligned addresses. Those accesses are
typically slower because they might involve touching mul-
tiple cache lines. Furthermore, an access to a potentially
unaligned address is usually signalled by using a special in-
struction, because the aligned load/store instructions raise an
exception upon an unaligned access.

Upcoming architectures [26] will also feature gather
(scatter) operations that can load (store) from (to) a base ad-
dress using a vector of (possibly non-consecutive) offsets.
On architectures without scatter/gather instructions such
non-consecutive accesses are very slow. This is because the
vector elements have to be loaded one by one to different
registers and incrementally moved into the target register.
The efficient consecutive access can be seen as a special
case of gathering with the index vector 〈 0, 1, . . . ,W − 1 〉.
Hence, it will be important for our vectorization pass to track
the consecutiveness and alignment of indices that are used
in loads and stores.

Pointers. In general it is not portable to store pointers in
SIMD registers. In the case of SSE, one could put 4 pointers
into a SIMD register in 32 bit mode. If the processor exe-
cutes in 64 bit mode, only 2 pointers could be put into a SSE
register. Therefore, instructions that use pointers in SIMD
registers are uncommon.

Masking. As presented in the introduction, vectorization
translates control flow to data flow. An instance potentially
executes code that it would not have executed in the scalar
version of the program using control flow. Thus, the effects
of these computations have to be undone. This is done by
masking. In the vectorized program, the control condition
is made explicit as a vector of masks. The select function

that is introduced by the control to data flow conversion uses
that mask to blend two values at former control flow joins.
Consider again the SSE code in Figure 2. Assume that the
comparison (_mm_cmpgt_ps) produces the mask

〈 FFFFFFFF16 0000000016 0000000016 FFFFFFFF16 〉

for some program execution. By performing

(mask & s) | (~mask & t)

implemented by _mm_blendv_ps the variable r contains the
correct values for every instance: Instances 0 and 3 contain
the value of a and instances 1 and 2 the value of b.

Some architectures, e.g. Larrabee, have a dedicated mask
register file to store those masks. Furthermore, every instruc-
tion can be given a mask register that controls which vec-
tor elements of the target registers shall be affected by the
instruction. This makes explicit blending using select in-
structions unnecessary.

For operations that can produce side-effects, masking out
results afterwards is not enough: their execution for inactive
instances has to be prevented. This is achieved by splitting
up the operation into scalar, sequential executions guarded
by if-statements (see Section 4.7).

3. Data-Parallel Programs
Our model of a data-parallel program is close to the one
of CUDA and OpenCL. In our setting, a data-parallel pro-
gram is given by a function f . Executing the data-parallel
program f means executing N instances of f . The tempo-
ral order of those instances is unspecified. Moreover, some
of them can run in parallel. Every instance of f obtains the
number of the instance as a parameter called the instance
ID tid. The values of tid are pairwise different for every
instance of f and range from 0 to N .

A straightforward implementation that already exploits
some parallelism subdivides the instance ID range into T
equally-sized parts and distributes those among T threads
(cores). Inside a thread,N/T instances of f run sequentially.
In this paper, we also want to exploit intra-core parallelism
by vector instructions. Hence, we are going to transform f
into a function ~f that executes W instances simultaneously,
where W is the width of the processor’s SIMD registers:
we vectorize the whole function f . A multi-threaded imple-
mentation then applies ~f (N/W)/T times sequentially per
thread:

void apply(vec_func f, input d, int thread, int N) {

int simd_instances = N / W;

int inst_per_th = simd_instances / T;

int start = thread * inst_per_th;

int stop = start + inst_per_th;

for (int tid = start; tid < stop; tid += W)

f(tid, d);

// run rest, if N % W != 0

}

Note that multi-threading among different cores is orthogo-
nal to SIMD vectorization and is disregarded from now on.

3.1 Program Representation
We consider f to be given in a typed low-level representa-
tion. A function is represented as a control flow graph of
instructions. Furthermore, we require that f is in SSA form,
that is every variable has a single static assignment and ev-
ery use of a variable is dominated by its definition. A promi-
nent example of such a program representation is LLVM bit-
code [18] which we also use in our evaluation (Section 6).
We will restrict ourselves to a subset of a language that
contains only the relevant elements for this paper. Figure 3
shows its types and instructions. Other instructions, such as
jumps or arithmetic and comparison operators are straight-
forward and omitted for the sake of brevity.

Types τ = unit |β | ν |π
β = bool | −−→bool

π = ν |π∗
ν = σ |~σ
σ = int | float

Instructions load : π∗ → π
store : π∗ × π → unit

gep : π∗ × int→ π∗
arg : int→ π
phi : π × π → π
tid : int

Figure 3. Program representation types and instructions

This program representation reflects today’s consensus
of instruction set architectures well. Scalar data types (int
and float) also exist in a vectorized form (~σ). However,
there are no vectors of pointers. The gep instruction (“get
element pointer”) performs address arithmetic and can thus
not be vectorized. load (store) takes a base address and
reads (writes) the elements of the vector consecutively from
(to) this address. The bool type is special (we do not allow
taking pointers of it) because its representation differs on
SIMD architectures with implicit and explicit blending (see
Section 2).

The function tid returns the instance ID of the running
instance (see above). phi represents the usual φ-function
from SSA. arg(i) accesses the i-th argument to f . We as-
sume that all pointer arguments to f are aligned to the SIMD
register size.

4. Whole-Function Vectorization
The whole-function vectorization algorithm (short: the vec-
torizer) consists of six phases:

1. Preparatory transformations (Section 4.1).
2. Vectorization analysis (Section 4.2).
3. Mask generation (Section 4.3).
4. Select generation (Section 4.4).
5. CFG linearization (Section 4.5).
6. Instruction vectorization (Section 4.7).

4.1 Preparatory Transformations
Before vectorization, a few preparatory transformations are
performed. Most notably, loops are simplified to ensure that
each loop has exactly one incoming edge and one backedge.
This guarantees the existence of a unique loop header, a
unique loop pre-header (the block from which the loop is
entered) and a unique loop latch (the block from which an
edge leads back to the header). Section 4.6 describes how
the algorithm works on graphs with irreducible control-flow.

4.2 Vectorization Analysis
Most instructions can be simply vectorized by exchanging
them with their vector counterparts (e.g. an add is turned
into a vector add). However, current SIMD architectures and
our language (see Section 3.1) have instructions for address
arithmetic (gep) and memory access (load/store) that take
vectors of addresses. A simple approach would split the
vector containing the offsets apart, duplicate the scalar code
W times, and insert the results back into a vector.

However, we can do better. Before vectorizing, we per-
form a simple forward data flow analysis to infer invariants
on the shapes of the vectorized variables. For example, if we
can prove that the base address plus the offset used by a gep
contains the same value in every instance, we do not need to
duplicate the gep and a possibly following memory access
instruction. In that case we can load the value as a scalar and
broadcast it to a vector when needed.

A more common example are vector elements with con-
secutive values. Assume we have a base address and know
that the values of the offsets are consecutive for consec-
utive instance IDs. Putting the offsets in a vector yields
〈 n, n + 1, . . . , n + W − 1 〉. Using such an offset vector
in a gep gives a vector of consecutive addresses. Thus, the
vector load and store instructions, which load the vector ele-
ments consecutively, can be used directly.

Our analysis tracks the following information for each
variable: Does the variable contain consecutive values for
consecutive instances (c) and is it aligned to the SIMD
width (ca)? The latter allows to use the faster, aligned mem-
ory instructions. The former still avoids splitting but needs
unaligned memory accesses.

Furthermore, it is also important if a variable contains the
same value (s) for every instance and if this value is a mul-
tiple of the SIMD width (sa). Such a variable can be kept

>

c s

ca sa

⊥

Element Property
c consecutive
ca consecutive aligned
s same value
sa same value aligned

(a) Hasse diagram of the lattice L

Element Shape of Vector Example
c 〈 n, n+ 1, , . . . , n+W − 1 〉 〈 3, 4, 5, 6 〉
ca 〈m,m+ 1, . . . ,m+W − 1 〉 〈 0, 1, 2, 3 〉
s 〈 x, x, . . . , x 〉 〈 7, 7, 7, 7 〉
sa 〈m,m, . . . ,m 〉 〈 4, 4, 4, 4 〉

n ∈ int, m = n ·W, x ∈ {int, float}
(b) Concrete value examples

Figure 4. The vectorization analysis lattice L. The lattice is
lifted to a function space whose elements map variables to
elements of L. Note that our notation uses the join, not meet
style, i.e. > is least informative.

scalar and broadcasted into a vector when needed. Further-
more, adding the same value to a vector containing consec-
utive values maintains consecutiveness (equally for align-
ment). If nothing can be said about the shape of a vector,
the analysis value is >. Figure 4 shows the corresponding
lattice.

Figure 5 shows the transfer functions J·K] : (Vars →
L) → (Vars → L) of our analysis. The function a is the
analysis information that maps variables to lattice elements.
The notation a | v 7→ l stands for

λw.

{
l if v = w

a(w) otherwise

The function tid produces values that are consecutive and
aligned. This is because ~f does the work of W consecutive
instances of f . Furthermore, the ID of the first instance is
always divisible byW . Assigning constants creates s values;
an integer constant divisible by W creates an sa value.
Because the arguments to f are the same for every instance,
arg returns s or sa in the case of pointer arguments. This
implies that the caller of the data-parallel program has to
align data to which pointers are passed on SIMD register
boundaries. A load is s if the address is the same for all
instances (s or sa). Additive and multiplicative operators
propagate the information accordingly. The phi-operation
joins the data flow values. All other operators only keep
the same-value information if possible to avoid premature
broadcasting.

Manual inspection yields that J·K] is monotone. Hence,
the usual fixpoint algorithms converge. The initial value on
each program point is ⊥.

Transfer functions for miscellaneous instructions:

Jv ← tidK]a = a | v 7→ ca

Jv ← x ∈ floatK]a = a | v 7→ s

Jv ← phi(x, y)K]a = a | v 7→ x t y

Jv ← n ∈ intK]a = a | v 7→

{
sa if n = mW, m ∈ N
s otherwise

Jv ← load(d)K]a = a | v 7→

{
s if f(d) ∈ {s, sa}
> otherwise

Jv ← arg(i)K]a = a | v 7→

{
sa if i-th arg is pointer
s otherwise

Additive operator ⊕ ∈ {add, sub, gep}:

Jv ← ⊕(x, y)K]a = a | v 7→

a(x), a(y) sa s ca c >
sa sa s ca c >
s s c c >
ca > > >
c > >
> >

Multiplication:

Jv ← mul(x, y)K]a = a | v 7→
a(x), a(y) sa s

sa sa sa

s s

else >

Other arithmetic and comparison operators:

Jv ← op(x, y)K]a = a | v 7→
a(x), a(y) sa s

sa s s

s s

else >

For the sake of simplicity, we skipped function values with ⊥
arguments. They all yield ⊥.

Figure 5. Transfer Functions.

4.3 Mask Generation
As already mentioned, control flow may diverge because
a condition might be true for some scalar instances and
false for others. Consequently, all code is executed. The
explicit transfer of control is modeled by mask variables
(short: masks, also often called predicates) on control-flow
edges. If a mask of a CFG edge B → B′ is set to true at
position i, then the i-th instance of the code took the branch
from B to B′. Thus, the mask denotes which elements in a
vector contain valid data on the corresponding control-flow
edge.

The edge masks implicitly define entry masks on blocks:
The entry mask of a block is either the disjunction of the
masks of all incoming edges or—in case of a loop header—a
φ-function with incoming values from the loop’s pre-header
and latch. The masks of the control-flow edges leaving a
block are given by the block entry mask and a potential

mA ← · · ·
...

x1 ← · · ·
c← · · ·

mA→B ← mA ∧ ¬c
mA→C ← mA ∧ c

br c, C,B

A

mB ← mA→B

x2 ← · · ·
...

mB→C ← mB

B

mC ← mA→C ∨mB→C

x3 ← phi(x1, x2)
· · · ← x3

C

Figure 6. Edge and block entry masks. mA, mB , and mC

are the entry masks of the corresponding blocks A, B, and
C. mA→B , mA→C , and mB→C are the block exit masks
connected to the edges A→ B, A→ C, and B → C.

conditional. If a block exits with an unconditional branch,
the mask of its single exit-edge is equal to the entry mask.
If the exit branch is conditional, the exit mask of the “true
edge” of the block is the conjunction of its entry mask and
the branch condition. The exit mask of the “false edge” is
the conjunction of the entry mask and the negated branch
condition. Figure 6 shows three basic blocks A,B,C with
corresponding block entry masks (mA, . . .) and edge masks
(mA→B , . . .).

Loop Masks. Each loop has to maintain a mask that is
true for all instances that are still active in the loop. The
loop can only be exited when this mask is false for all
instances. Therefore, a special φ-function—the loop mask
phi—is generated in the loop header (mB in Figure 7). Its
first incoming value is the mask of the incoming edge from
the pre-header, the second value is the mask of the loop-
backedge.

Loops with multiple exits require additional masks for
each exit. These loop-exit masks store which instances left
the loop over the corresponding edge and replace the former
mask of that exit-edge. They are maintained by two instruc-
tions: a mask update operation (mexit) and a φ-function in
the loop header (mphi). The update operation is the disjunc-
tion of the corresponding edge’s mask and the φ-function.
The φ-function has one incoming value from the pre-header
and one from the latch. The value coming from the latch is
the result of the update operation. The value coming from
the pre-header is an empty mask (all elements set to false)
if the loop is a top-level loop. If the loop is nested, it uses the
corresponding loop mask φ-function of the parent loop.

After mask generation, each loop exit has exactly one
update operation located right before the exit branch and one
φ-function in the header of each loop that is left.

Finally, a combined loop-exit mask is required for select
generation (see Section 4.4). This mask combines all infor-
mation about instances that left the loop in the current it-
eration. In case of a loop that contains more nested loops,
the current iteration of the parent includes all iterations of
all nested loops. Thus, the combined loop-exit mask is a dis-
junction of all accumulated loop-exit masks of exits from
nested loops and the exit conditions of exits from the current
loop.

4.4 Select Generation
Linearization of control-flow is only possible if results of in-
active instances are discarded. This is achieved by inserting
blend operations at control-flow join points and loop latches.
Each φ-function in the original CFG that is not in a loop
header is replaced by a select instruction. φ-functions with
n incoming values are transformed into series of n− 1 con-
nected select instructions.

Loop Blending. Additionally, each loop requires result
vectors in order to conserve the loop live values of instances
that leave the loop early.

Loop live values are those values that are live across
loop boundaries. A value is defined as live across loop
boundaries if it is used either in a subsequent iteration or
outside the loop.

For each loop live value, a result vector that is main-
tained by two instructions—a φ-function and an update
operation—is introduced. The result update operation is a
select which blends the result-φ-function and the corre-
sponding live value depending on the combined loop-exit
mask. This way, the result vector is updated only if one
or more instances left the loop in the current iteration. All
blend operations are performed in the loop latch (right be-
fore branching back to the loop header) and use the com-
bined loop-exit mask as their condition. This enables us to
only insert one select instruction for each loop live value
per loop, regardless of the number of loop-exits. The result-
φ-function is placed in the header of each nested loop and
has two incoming values. The incoming value from the loop
pre-header is undefined for top-level loops (there is no result
until the loop has iterated at least once). For nested loops, the
incoming value is the parent loop’s result-φ-function of the
current loop live value. The incoming value from the loop
latch is the result update operation.

The usage of result vectors enables us to vectorize all
kinds of loops. This especially includes control-flow with
multiple nesting levels, multiple exits and edges exiting mul-
tiple loops. Figure 7 shows an example of mask and select
operations in a loop.

x2 ← phi(x3, x1)
mB ← phi(mB→B ,mA→B)
mphi ← phi(mexit , 0)
r′x ← phi(rx, undef)

...
x3 ← · · ·
cB ← · · ·

mB→B ← mB ∧ cB
mB→C ← mB ∧ ¬cB
mexit ← mphi ∨mB→C

rx ← select(mB→C , x3, r
′
x)

br cB , B,C

B

mC ← mexit

· · · ← rx
C

mA ← · · ·
x1 ← · · ·

...
mA→B ← mA

A

Figure 7. Mask and select generation for a loop. In gen-
eral, each exit is assigned a mask operation mexit and a φ-
functionmphi . The mask operation updates the exit mask by
setting elements of instances that leave the loop in the cur-
rent iteration to true. The φ-function holds the current exit
mask. Note that, after this pass, the mask of the edgeB → C
is mexit instead of mB→C . The select r′x in the latch and
the φ-function rx form the result vector of loop live value
x. Each time an instance leaves the loop, the corresponding
element of x is blended into the result vector.

4.5 CFG Linearization
After all mask and select operations are inserted, all control
flow, except for loop backedges, is effectively encoded by
data flow and can thus be removed. To this end, the basic
blocks have to be put into a sequence that preserves the
execution order of the original CFGG: If a blockA executed
before B in every possible execution of G, then A has to be
in front of B in the flattened CFG G′. If the CFG splits up
into two paths, one path is chosen to be executed entirely
before the other.

The decision which path to execute first is currently non-
deterministic. Employing a special heuristic instead is likely
to improve the generated code. Such a heuristic can e.g. take
into account the code size or register pressure of the different
paths.

The ordering is determined by topologically sorting the
blocks recursively over the loop tree of G. The result is a
CFG that only has conditional branches remaining at loop
exits and unconditional branches at loop entries. All other
branches can be removed. Figure 8 shows the flattened CFG
of the example in Figure 6.

mA ←
...

x1 ← · · ·
c← · · ·

mA→B ← mA ∧ ¬c
mA→C ← mA ∧ c

mB ← mA→B

x2 ← · · ·
...

mB→C ← mB

mC ← mA→C ∨mB→C

x3 ← select(mA→C , x1, x2)
· · · ← x3

Figure 8. The flattened control-flow of Figure 6 with value
blending.

Note that our vectorization analysis (Section 4.2) allows
us to exclude regions of the CFG from linearization that are
entirely marked as s (“same value”). For such regions, com-
plete linearization is not likely to improve runtime perfor-
mance. Analogously, we also do not have to generate select
statements, so that such regions basically remain untouched.

For linearized regions, an optimization similar to branch-
on-superword-condition-codes (BOSCC) [27] can be ap-
plied. Such a technique reintroduces branches after lin-
earization to skip blocks of instructions if a mask is true

or false for all instances.

4.6 Irreducible Control-Flow
If the CFG of a function is irreducible (e.g. if there is a loop
that has more than one header), the commonly used tech-
nique for many program analysis algorithms is to apply node
splitting [14] to transform the CFG into reducible code be-
fore the analysis. However, this can result in an exponential
blowup of the code size [8].

Our algorithm is able to deal with irreducible control-flow
without code duplication: During CFG linearization, one of
the headers of an irreducible loop has to be chosen to be the
primary header. This results in only the mask of the incom-
ing edge of this header being updated in every iteration, entry
masks from the other headers remain untouched. If control-
flow during a later iteration reaches a join point with one of
these headers, the incoming mask might falsely “reactivate”
an instance that already left the loop.

In order to handle irreducible control-flow directly, we
have to ensure that these masks are joined with the loop mask
in the first iteration only. This is achieved by performing
the blend operations at those join points with a modified
mask: In the first iteration, the new active mask is given by
a disjunction of the current active mask with the incoming
mask from the other header. In all subsequent iterations, it is
given by a disjunction with false, which means the current
loop mask is not modified.

4.7 Instruction Vectorization
After linearization, the actual transformation into vector
code is applied. Vectorizing a single instruction is basically
a one-to-one translation from the scalar instruction to its
SIMD counterpart. This holds for all instructions except for
function calls and memory operations.

If f contains external calls that can not be vectorized, na-
tive vector-functions can be used. Such functions can either
be built-in (such as vectorized variants of sin, sqrt, floor,
etc.) or supplied by the user and can receive a mask if re-
quired.

If the current mask is not true for all instances, memory
operations and calls to external, non-native functions have to
be split intoW guarded scalar operations. This is because we
have to conservatively expect them to produce side effects
that we do not want to occur for inactive instances.

For example, a shader might call a renderer to trace a
ray (see Section 6) inside the true-part of an if-statement
that is not executed by all instances. Similarly, we have
to prevent the execution of a store operation for inactive
instances. Thus, we have to guard each scalar execution
by an if-construct that skips the instruction if the mask
of that instance is false. Unfortunately, this involves a lot
of extract-, insert-, and branch-operations that reduce the
overall benefit of vectorization.

However, we can optimize such a store operation by gen-
erating a load-blend-store sequence of vector operations that
is faster than an if-cascade with scalar stores as described
above. Another way to circumvent this issue is hardware
support of conditional load/store instructions as e.g. AVX
will provide.

Additionally, any memory operation marked as > by our
data-flow analysis (Section 4.2) has to be split independent
of the mask information. This is by reason that we can not
guarantee that the addresses of the different instances point
to consecutive memory locations. If the operation is marked
as c, we can still use unaligned memory access operations.

5. Related Work
Generating code for parallel hardware architectures is being
studied since the emergence of vector computers and array
processors. A lot of research went into parallelizing scien-
tific (Fortran) programs; especially the analysis and auto-
matic transformation of loop nests [3, 10]. Allen et al. [2]
pioneered control flow to data flow conversion to help the
dependence analyses to cope with more complex control
structures. In our setting, we do not have to perform de-
pendence analysis or find any parallelism; it is implicit in
the programming model we consider. We use control flow
to data flow conversion as a technique to implement data-
parallel programs on SIMD processors. Furthermore, Allen
et al. perform their transformation on the syntax tree level.
We however consider control flow to data flow conversion
on arbitrary control flow graphs in SSA form.

Another strain of work bases on explicit instruction-level
parallelism (ILP) for automatic vectorization. There, inner
loops are unrolled several times such that multiple instances
of the same instruction are generated and vectorized. Sev-
eral authors discuss the issues of this approach with SIMD
instruction sets [9, 16, 20, 29]. Since those techniques only
consider inner loops, they only vectorize acyclic code re-
gions.

In general, the control-flow conversion of Allen et al. is
very similar to our mask generation pass, but it only tar-
gets vector machines that support predicated execution [23].
Predicated execution is a hardware feature that performs im-
plicit blending of results of operations. For machines with-
out predication, we are the first to show how masking of ar-
bitrary control flow can be implemented using blend opera-
tions.

Superword-level parallelism (SLP) [17] describes the oc-
currence of independent isomorphic statements (statements
performing the same operations in the same order) inside a
basic block, independent of loops. Such statements can be
combined to SIMD instructions similar to instructions un-
rolled inside loops. Shin [28] extended the approach to also
work in the presence of control-flow by using predicates.
Unfortunately, this technique introduces overhead for the
packing and unpacking of vectors that makes the approach
unusable for smaller fractions of code. Also, it is restricted
to code-regions without loops.

Our approach can be seen as a generalization of outer-
loop vectorization (OLV) [19, 21, 25, 30] that unrolls outer
instead of inner loops. However, OLV does not allow for
diverging control flow inside the outer loop in contrast to
our algorithm.

On the language side, there are many different data-
parallel languages that automatically compile to parallel
and/or vector code, like NESL [7], Ct [13], and CGiS [11].
Modern, GPGPU-oriented languages like CUDA [22] or
OpenCL [15] execute code in SIMT (Single Instruction,
Multiple Threads) fashion. On a GPU, a thread roughly cor-
responds to an element in a vector register. To our knowl-
edge, no existing CPU driver for these languages currently
employs a technique similar to whole-function vectoriza-
tion. They solely rely on multi-threading to implement par-
allelism.

In graphics, there is a number of different domain-specific
languages (DSLs) that allow the user to program scalar code
that is executed in parallel for different input data. RTSL [24]
for example lets the user write shaders (i.e. functions that
describe material properties) in scalar code that is automati-
cally transformed to vector code usable by packet ray tracing
systems.

Our model of computation is inspired by the GPGPU-
style languages. However, our pass comes so late in the
compilation phase (immediately before machine-dependent
code generation tasks) that the source language’s influence is

negligible. We argue that all languages mentioned here can
be mapped to the language core presented in Section 3 and
thus can profit from our algorithm. In the following section,
we show this for two languages: RenderMan and OpenCL.

6. Experimental Evaluation
We implemented the algorithm presented in this paper in the
LLVM compiler framework and evaluated the runtime of the
vectorized programs in two real-world scenarios: shading
in real-time ray tracing and a custom OpenCL driver. All
experiments were conducted on a Core 2 Quad at 2.8 GHz
with 4 GB of RAM. The vector instruction set is Intel’s
SSE 4.1 with 4 floats/ints per register. The machine ran
in 64 bit mode, thus 16 vector registers were available.

6.1 Vectorized Shaders for Ray Tracing
We integrated our vectorizer into a shading-language com-
piler for the real-time ray tracer RTfact [12] that uses
LLVM to compile RenderMan shaders to x86 machine code.
Shaders are well-suited for whole-function vectorization.
They are very compute-intensive and only perform aligned
and consecutive memory accesses. Hence, there is almost no
overhead due to splitting vectors.

Table 1 shows the performance of each shader applied
to a sphere lit by two point light sources at a resolution of
512×512 pixels. We compare the rendering performance of
automatically vectorized shaders against scalar versions of
the shader that are executed sequentially.

Ray Tracing Performance (fps)

Shader Native Scalar Vectorized Speedup

Brick - 8.8 31.4 3.6x
Checker 34.5 8.8 31.8 3.6x
Glass - 0.9 4.5 5.0x
Granite - 7.2 24.6 3.4x
Parquet - 4.3 18.6 4.3x
Phong 35.5 14.1 32.5 2.3x
Screen - 4.6 22.7 4.9x
Starball - 4.5 20.0 4.4x
Venus - 7.6 25.7 3.4x
Wood - 4.4 19.1 4.3x

Average - 6.5 23.3 3.9x

Table 1. Ray tracer performance for ten different
shaders [6] in frames per second. “Native” refers to
highly optimized, internal SIMD shaders of the renderer.

The vectorized versions of the shaders outperform their
scalar counterparts by an average factor of 3.9. For some
shaders we observe super-linear speedups up to 5.0. This
has two reasons: First, the ray tracer internally also works
with vectors and needs to split them in the case of sequential
shading. This overhead is not there in vectorized shading.
Second, the data layout used by the ray tracer enables for a

better cache locality in the vectorized case. The whole trans-
formation and compilation process (including LLVM’s JIT)
takes less than 100ms for any shader. This allows for dy-
namic recompilation at the runtime of the renderer which is
important in graphics. Compared to highly optimized SIMD
shaders directly integrated into the renderer we are within
10% of the best possible performance.

6.2 OpenCL
In the second part of our evaluation we built a custom
OpenCL [15] driver. We implemented a sufficiently com-
plete fraction of the OpenCL API to run a set of diverse test
applications. The driver internally uses LLVM for OpenCL-
specific runtime code modification, vectorization, and code
generation.

Vectorization. Enabling whole-function vectorization in
OpenCL requires several program transformations, which
we will briefly describe here. A more detailed description of
the driver is beyond the scope of this paper.

If the application uses more than one dimension for its
input data, the driver has to choose one SIMD dimension
for vectorization. Depending on the chosen dimension, the
kernel has to be adjusted to the modified data size which is
now divided by the SIMD width W . Our driver currently
always uses the first dimension, but a heuristic that analyses
memory accesses via indices given by get_global_id()

of the different dimensions could by applied instead.
The results of our data-flow analysis (Section 4.2) allow

us to optimize frequent cases where consecutive and aligned
elements of arrays are accessed using the local ID incre-
mented by a multiple of the local size (which is divisible
by W).

In order to support OpenCL’s barrier()-statement we
implemented a synchronization scheme inside our driver that
is not thread-based but uses function splitting in a coroutine
style. Synchronization is non-trivial because kernels are al-
lowed to synchronize in-between loop iterations, which re-
quires all threads of a group to execute loop iterations in
lock-step. Our system avoids costly callbacks to the driver
or the operating system and even enables inter-optimization
of the required code with the kernel itself.

Benchmarks. All the benchmark applications except for
AOBench [1] are taken directly from AMD’s Stream Soft-
ware Development Kit [5]. AOBench is a minimal ambient
occlusion ray tracer. The SDK serves as the basis for all of
our measurements: it is compiled with our OpenCL driver
instead of AMD’s. We further employ AMD’s clc tool to
generate LLVM bitcode files from OpenCL code.

Table 2 shows the runtime performance of a diverse set
of applications ranging from compute-intensive kernels (e.g.
BlackScholes) to kernels that are dominated by memory
access operations (e.g. Histogram). This demonstrates that
the vectorizer can handle real-world applications, but it also
shows its limitations: Other than shaders, OpenCL kernels

OpenCL Kernel Performance (milliseconds)

Application Input Size AMD (4) Scalar (1) Scalar (4) Vectorized (1) Vectorized (4) Speedup

AOBench 1,0242 5880 37037 10000 24390 6250 1.5x
BlackScholes 65,536 70 13 3.7 2.4 0.8 5.2x
FastWalshTransform 1,048,576 80 80 33 100 30 0.8x
Histogram 8,1922 120 410 310 710 430 0.6x
Mandelbrot 8,1922 72800 4000 1700 1800 800 2.2x
NBody 4,096 50 160 50 57 16 2.8x
MatrixTranspose 10,0002 4400 1220 470 900 340 1.4x

Table 2. Average kernel execution times of our OpenCL driver for different applications (100 iterations). Parentheses denote
the number of threads used, the speedup refers to scalar against vectorized mode without multi-threading. The column labelled
“AMD” denotes the performance of AMD’s proprietary OpenCL CPU driver.

frequently modify arrays in a non-consecutive way, which
incurs large penalties for splitting vectors and sequential
loads and stores. Consequently, benchmarks like FastWalsh-
Transform and Histogram, where memory access dominates
computation, even slow down with vectorization enabled.
On the other hand, vectorization can significantly improve
the performance of suitable applications like NBody or Man-
delbrot: These benchmarks are very compute-intensive and
have no complicated control-flow and no scattering memory
accesses patterns. The BlackScholes benchmark additionally
is almost branch-free, its memory footprint is minimal, and
almost no spilling occurs. This accumulates into a speedup
factor of 5.2.

The wide range of observed speedups motivates the de-
velopment of a heuristic that applies vectorization only to
code regions where it seems beneficial. We leave this for fu-
ture work.

To be able to compare to AMD’s reference driver we im-
plemented a naive, unoptimized multi-threading scheme via
OpenMP. We do not have any information about AMD’s
implementation except that it is multi-threaded and also
uses LLVM. Nevertheless, note that our custom driver sig-
nificantly outperforms their driver in all test-cases except
Histogram and AOBench. The Mandelbrot benchmark was
rewritten in SDK version 2.2 using OpenCL’s float4 SIMD
datatypes in manually unrolled loops. Although performance
improved by over twelve times (6 seconds), the code is
hardly readable anymore and much more cumbersome to
write (223 compared to 28 lines of code). More importantly,
our driver still outperforms it by a factor of 7.5 without
putting that strain on the programmer.

7. Conclusion
In this paper, we discussed the implementation of data-
parallel programs on machines with SIMD instruction sets.
We presented an algorithm that vectorizes a function given
by an arbitrary control flow graph in SSA form. The al-
gorithm is based on control to data flow conversion and
generates efficient blending code for architectures without
hardware support for predicated execution.

We furthermore presented a data-flow analysis that de-
termines which code regions have constraints for vectoriza-
tion concerning alignment and consecutiveness. The anal-
ysis yields two main optimizations: First, we can prevent
costly vector splits that are due to the limitations of memory
access instructions of current SIMD instruction set architec-
tures. Second, our vectorization algorithm can ignore code
regions that are proven invariant for all instances of the pro-
gram, which makes any reconstruction steps unnecessary.

Case studies showcased the applicability of the system:
Integrating our technique into a real-time ray tracer provides
a linear average speedup of 3.9 over the scalar version. The
speedup of an enhanced OpenCL framework depends largely
on the target kernels and varies between 0.6 and 5.2.

Acknowledgments
Ralf Karrenberg is supported by the Cluster of Excellence on
Multimodal Computing and Interaction at Saarland Univer-
sity. This project is supported by the Intel Visual Comput-
ing Institute Saarbrücken. The authors would like to thank
Roland Leißa, Dmitri Rubinstein, and Philipp Slusallek for
many interesting and insightful discussions. Furthermore,
we thank Daniel Grund, Mark Lacey, Ingo Wald, Sven Woop
and the anonymous reviewers for their helpful comments
and remarks.

References
[1] AOBench. http://lucille.atso-net.jp/blog.

[2] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren.
Conversion of control dependence to data dependence. In
POPL, pages 177–189. ACM, 1983.

[3] Randy Allen and Ken Kennedy. Automatic translation of
FORTRAN programs to vector form. ACM Trans. Program.
Lang. Syst., 9(4):491–542, 1987.

[4] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting
equality of variables in programs. In POPL, pages 1–11.
ACM, 1988.

[5] AMD-ATI. ATI Stream Software Development Kit v2.1.
http://developer.amd.com/gpu/atistreamsdk, March 2010.

[6] A. Apodaca and M. Mantle. RenderMan: Pursuing the Fu-
ture of Graphics. IEEE Computer Graphics & Applications,
10(4):44–49, July 1990.

[7] Guy E. Blelloch et al. Implementation of a portable nested
data-parallel language. In PPOPP, pages 102–111. ACM,
1993.

[8] Larry Carter, Jeanne Ferrante, and Clark Thomborson. Folk-
lore confirmed: reducible flow graphs are exponentially larger.
In POPL, pages 106–114. ACM, 2003.

[9] Gerald Cheong and Monica Lam. An Optimizer for Multi-
media Instruction Sets. In Second SUIF Compiler Workshop,
1997.

[10] Alain Darte, Yves Robert, and Frederic Vivien. Scheduling
and Automatic Parallelization. Birkhauser Boston, 2000.

[11] Nicolas Fritz, Philipp Lucas, and Philipp Slusallek. CGiS, a
New Language for Data-Parallel GPU Programming. In VMV,
pages 241–248, 2004.

[12] Iliyan Georgiev and Philipp Slusallek. RTfact: Generic Con-
cepts for Flexible and High Performance Ray Tracing. In Pro-
ceedings of the IEEE/Eurographics Symposium on Interactive
Ray Tracing 2008, pages 115–122, August 2008.

[13] Anwar Ghuloum et al. Future-Proof Data Parallel Algorithms
and Software on Intel Multi-Core Architecture. Intel Technol-
ogy Journal, 11(04), November 2007.

[14] Johan Janssen and Henk Corporaal. Making graphs reducible
with controlled node splitting. ACM Trans. Program. Lang.
Syst., 19(6):1031–1052, 1997.

[15] Khronos Group. OpenCL 1.0 Specification, 2009.

[16] Andreas Krall and Sylvain Lelait. Compilation techniques for
multimedia processors. Int. J. Parallel Program., 28(4):347–
361, 2000.

[17] Samuel Larsen and Saman Amarasinghe. Exploiting super-
word level parallelism with multimedia instruction sets. SIG-
PLAN Not., 35(5):145–156, 2000.

[18] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation.
In CGO, Mar 2004.

[19] Viet Ngo. Parallel loop transformation techniques for vector-
based multiprocessor systems. PhD thesis, May 1994.

[20] Dorit Nuzman and Richard Henderson. Multi-platform auto-
vectorization. In CGO, pages 281–294, Washington, DC,
USA, 2006. IEEE Computer Society.

[21] Dorit Nuzman and Ayal Zaks. Outer-loop vectorization: revis-
ited for short simd architectures. In PACT, pages 2–11. ACM,
2008.

[22] NVIDIA. CUDA Programming Guide, 2009.

[23] Joseph C. H. Park and Mike Schlansker. On Predicated Exe-
cution, 1991.

[24] Steven Parker, Solomon Boulos, James Bigler, and Austin
Robison. RTSL: A Ray Tracing Shading Language. IEEE
Symposium on Interactive Ray Tracing, 2007.

[25] Randolf G Scarborough and Harwood G Kolsky. A vectoriz-
ing fortran compiler. IBM J. Res. Dev., 30(2):163–171, 1986.

[26] Larry Seiler et al. Larrabee: a many-core x86 architecture for
visual computing. In SIGGRAPH, pages 1–15. ACM, 2008.

[27] Jaewook Shin. Introducing Control Flow into Vectorized
Code. In PACT, pages 280–291. IEEE Computer Society,
2007.

[28] Jaewook Shin, Mary Hall, and Jacqueline Chame. Superword-
Level Parallelism in the Presence of Control Flow. In CGO,
pages 165–175. IEEE Computer Society, 2005.

[29] N. Sreraman and R. Govindarajan. A vectorizing compiler for
multimedia extensions. Int. J. Parallel Program., 28(4):363–
400, 2000.

[30] Michael Joseph Wolfe. High Performance Compilers for
Parallel Computing. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

