
Platform-Specific Optimization and Mapping of Stencil
Codes through Refinement

Marcel Köster, Roland Leißa, and Sebastian Hack
Compiler Design Lab, Saarland University

Intel Visual Computing Institute
{koester,leissa,hack}@cdl.uni-saarland.de

Richard Membarth and Philipp Slusallek
Computer Graphics Lab, Saarland University

Intel Visual Computing Institute
German Research Center for Artificial Intelligence
{membarth,slusallek}@cg.uni-saarland.de

ABSTRACT
A straightforward implementation of an algorithm in a gen-
eral-purpose programming language does usually not deliver
peak performance: compilers often fail to automatically tune
the code for certain hardware peculiarities like memory hi-
erarchy or vector execution units. Manually tuning the code
is firstly error-prone as well as time-consuming and secondly
taints the code by exposing those peculiarities to the imple-
mentation. A popular method to circumvent these problems
is to implement the algorithm in a Domain-Specific Lan-
guage (DSL). A DSL compiler can then automatically tune
the code for the target platform.
In this paper we show how to embed a DSL for stencil

codes in another language. In contrast to prior approaches
we only use a single language for this task. Furthermore, we
offer explicit control over code refinement in the language
itself which is used to specialize stencils for particular sce-
narios. Our first results show that our specialized programs
achieve competitive performance compared to hand-tuned
CUDA programs.

1. INTRODUCTION
Many scientific codes, including stencil codes, require care-

ful tuning to run efficiently on modern computing systems.
Specific hardware features like vector execution units require
architecture-aware transformations. Moreover, special-case
variants of codes often boost the performance. Usually,
compilers for general-purpose languages fail to perform the
desired transformations automatically for various reasons:
First, many transformations are not compatible with the
semantics of languages like C++ or Fortran. Second, the

HiStencils 2014
First International Workshop on High-Performance Stencil Computations
January 21, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://www.exastencils.org/histencils/2014/

hardware models the compiler uses to steer its optimizations,
are far too simple. Lastly, the static analysis problems that
arise when justifying such transformations are too hard in
general.
Therefore, programmers often optimize their code man-

ually, use meta programming techniques to automate the
manual tuning or create a compiler for a DSL. A promi-
nent example for meta programming is the C++ template
language that is evaluated at compile time and produces a
program in the C++ core language. A DSL compiler has the
advantage of custom code transformations and code gener-
ation. However, implementing a compiler is a cumbersome,
time-consuming endeavor. Hence, many programmers em-
bed a DSL in a host language via staging. In DSL staging,
a program in a host language A is used to construct another
program in another language B. A compiler written in A
then compiles the B program.
Both approaches have significant limitations concerning

the productivity of the programmer: Very often, languages
with meta programming capabilities and DSL staging frame-
works involve more than one language. One language is
usually evaluated at compile time while the other is eval-
uated during the actual runtime of the program. This re-
quires the programmer to decide which part of the program
runs in which stage before he starts implementing. For ex-
ample, compare the implementation of a simple function,
say the factorial, in the C++ template language and the
core language. Another significant disadvantage of the two-
languages approach is that the type systems of the two lan-
guages need to cooperate which is often only rudimentarily
supported or not the case at all (C++’s template language
is dynamically typed).
Many of the code transformations that are relevant for

high-performance codes, and also for stencil codes, can how-
ever be expressed by partial evaluation of code written in
one single language. Take for example the handling of the
boundary condition of a stencil operation, an example we
will go through in more detail later. Using a simple condi-
tional the program can test if the stencil overlaps with the
border of the field and execute specialized code that handles
this situation. However, evaluating this conditional during

http://www.exastencils.org/histencils/2014/

runtime imposes a significant performance overhead. Par-
tially evaluating the program at compile time can specialize
the program in way that a particular case of boundary han-
dling is applied to the corresponding region of the field which
eliminates unnecessary checks at runtime.
In this paper we investigate the implementation of several

stencil codes via DSL embedding in our research-prototype
language called Impala (Section 2). Impala is an imperative
and functional language that borrows heavily from Rust1.
It extends Rust by a partial evaluator that the program-
mer can access through Impala’s syntax (Section 3). Par-
tial evaluation in Impala is realized in a way that erasing
the partial evaluation operators from the program does not
change the semantics of the program. This is often not pos-
sible in existing languages supporting meta programming.
Finally, Impala provides Graphics Processing Unit (GPU)
code generation for a subset of programs. In this paper we
show that the partially evaluated stencils written in Impala
reach a comparable performance to hand-tuned CUDA code
(Section 5).

2. STENCIL CODES IN IMPALA
In this section we present our DSL approach for the re-

alization of stencil codes in Impala. Consider an implemen-
tation which applies a 1D stencil to a data array in Impala
written in C-like imperative style:

for (let mut i = 0; i<size; ++i) {
out[i] = 0.25f * arr[i -1] +

0.50f * arr[i] +
0.25f * arr[i+1];

}

The loop iterates over the data array and applies a fixed
stencil to each element in the array. The stencil computation
is hard-coded in the example for a given kernel. However,
this coding style has two problems: First, the stencil is hard-
coded and is not generic which means that the code has to be
rewritten for a different stencil. Furthermore, an extension
to 2D or 3D makes the code even harder to maintain and
to understand. Second, the logic iterating over the data
array and the computation are tightly coupled which makes
it harder to adapt it to different hardware architectures.
To tackle this dilemma, Impala supports code specializa-

tion and decoupling of algorithms from schedules. Special-
ization allows to generate the same optimized code as shown
above from a generic stencil function, like apply_stencil:

fn apply_stencil (arr: [float], stencil : [float],
i: int) -> float {

let mut sum = 0.0f;
let offset = stencil .size / 2;

for j in indices (stencil) {
sum += arr[i + j - offset] * stencil [j];

}

return sum;
}

The specialization of this function is triggered at a call site
which is shown in Section 3.
The desired decoupling of the algorithm and the concrete

schedule can be realized by making use of higher-order func-
tions. A custom iteration function field_indices, which
takes another function (the kernel body) as an argument,
can be used for this task in our scenario. The field_indices
1http://www.rust-lang.org

function applies the given body (in form of a lambda func-
tion) to all indices of the elements in a passed array. Similar
to Rust, Impala offers the possibility to call this function
with the syntax of a for construct which passes the body of
the for loop as function to the field_indices functionality:

let stencil = [...];

for i in field_indices (arr) {
out[i] = apply_stencil (arr , stencil , i);

}

In our approach the iteration function can be provided in
form of a library. That is, the stencil code remains un-
changed while the iteration logic can be exchanged by just
linking a different target library or just calling a specific
library function. The required hardware-specific and cache-
aware implementations can then be written separately.

3. CODE REFINEMENT
In this section we describe our refinement approach of al-

gorithms. One of the main reasons for refinement in our
setting is to improve performance at run time. An improve-
ment can be achieved by partially evaluating the program
at compile time. Especially, a platform-specific mapping of
the stencils can be realized with this approach.

3.1 Partial Evaluation
Partial evaluation is a concept for the simplification of

program parts which is typically performed at compile time
by specialization of compile-time known values. Compil-
ers perform partial evaluation during transformation phases
by applying techniques such as constant propagation, loop
unrolling, loop peeling, or inlining. However, this is com-
pletely transparent to the programmer. That is, program-
mers cannot control which parts of a program should be
partially evaluated with which values. Furthermore, a com-
piler will usually only apply a transformation, if the com-
piler can guarantee the termination of the transformation.
For this reason, Impala delegates the termination problem to
the programmer. He can explicitly trigger partial evaluation
by annotating code with @. If the annotated code diverges,
the compiler will also diverge. On the other hand, par-
tial evaluation goes beyond classic compiler optimizations
or unroll-pragmas because the compiler really executes the
annotated part of the program. Moreover, the programmer
can explicitly forbid partial evaluation via #.
In the following example, we trigger partial evaluation of

the apply_stencil function introduced in the previous sec-
tion by annotating the call-site of the function:

for i in field_indices (arr) {
out[i] = @apply_stencil (arr , stencil , i);

}

During specialization of apply_stencil, the compiler tries
to evaluate expressions and constructs that are known to be
constant and replaces them by the corresponding results of
the evaluation.
In our example, the for loop which iterates over the stencil

is unrolled and the constants from the stencil are loaded and
inserted into the code for each iteration. In order to apply
this specialization, the size of the stencil has to be constant.
Such an array is called definite in Impala and is immutable:

let stencil = [0.25f, 0.50f, 0.25f];

http://www.rust-lang.org

The arr field, however, is indefinite which means that the
values of the array are not known at compile time. Hence,
accesses to arr remain in the code, but the indices for the ac-
cesses are updated: j and offset are replaced by constants
in the index computation. The result of partially evaluat-
ing apply_stencil is the same like hard-coding the stencil
computation, as shown before.

3.2 Platform-specific Mapping
In the previous example, we ignored the fact that the arr

field is accessed out of bounds at the left and right bor-
der when the stencil is applied. One possibility to handle
out of bounds memory accesses is to apply boundary han-
dling whenever the field is accessed: For instance, the in-
dex can be clamped to the last valid entry at the extremes
of the field. Therefore, we use two functions: one for the
left border (bh_clamp_lower) and one for the right border
(bh_clamp_upper):

fn bh_clamp_lower (idx: int , lower: int) -> int {
if (idx < lower) idx = lower;
return idx;

}

fn bh_clamp_upper (idx: int , upper: int) -> int {
if (idx >= upper) idx = upper -1;
return idx;

}

...
for j in indices (stencil) {

// clamp the index for arr
let mut idx = i + j - offset ;
idx = bh_clamp_lower (idx , 0);
idx = bh_clamp_upper (idx , arr.size);
sum += arr[idx] * stencil [j];

}

These checks ensure that the field is not accessed out of
range, but at the same time they are applied for each element
of the field whether required or not. Applying the check for
each memory access comes at the cost of performance when
executed on platforms such as GPU accelerators. If we can
specialize the code in a way that checks are only executed at
the left and right border, there will be no noticeable perfor-
mance loss. This could be achieved by manually peeling off
stencil.size / 2 iterations of the loop iterating over the
field and applying boundary handling only for those itera-
tions. However, doing this results in an implementation that
cannot be used for different stencils and different scenarios.
Specializing the apply_stencil implementation to con-

sider boundary handling of different field regions, allows
us to write reusable code. Hence, we create a function
apply_stencil_bh that applies a stencil to a field. It takes
two additional functions for boundary handling as argu-
ments. To specialize on the different field regions, we create
a loop that iterates over these regions. Applying boundary
handling is delegated to the access function that applies
boundary handling for the left border only in case of the
left field region and for the right border only in case of the
right field region:

fn access (arr: [float], region : int , i: int , j: int ,
bh_lower : fn(int , int) -> int ,
bh_upper : fn(int , int) -> int

) -> float {
let mut idx = i + j;
if (region ==0) idx = bh_lower (idx , 0);
if (region ==2) idx = bh_upper (idx , arr.size);
return arr[idx];

}

In order to specialize the apply_stencil_bh function, the
range for the region and the access function need to be an-
notated. In addition, we want the stencil computation to be
specialized, and thus, also annotate the stencil iteration:

fn apply_stencil_bh (arr: [float], stencil : [float],
bh_lower : fn(int , int) -> int ,
bh_upper : fn(int , int) -> int
) -> float {

let offset = stencil .size / 2;
// lower bound of regions
let L = [0, offset , arr.size - offset];
// upper bound of regions
let U = [offset , arr.size - offset , arr.size];

// iterate over f i e l d regions
for region in @range (0 ,3)

// iterate over a single f i e l d region
for i in range(L(region), U(region)) {

let mut sum = 0;
for j in @indices (stencil)

// access function applies boundary handling
depending on the region

sum += @access (arr , region , i, j+offset ,
bh_lower , bh_upper) * stencil [j];

arr[i] = sum;
}

}

The apply_stencil_bh function for a single kernel defines
an interpreter for stencils which can be specialized through
partial evaluation. The synthesized code then performs the
actual computation of a specific stencil while the imposed
overhead by the interpreter is completely removed according
to the first Futamura projection [6, 7].
Consider now the case of partially evaluating the pre-

sented interpreter. This yields three distinct loops that iter-
ate over the corresponding regions of the input field. Each
loop now only contains region-specific boundary handling
checks. Mapping the stencil computation to the GPU re-
sults in three distinct compute kernels that operate on the
different field regions.
The following code listing shows an application of the pre-

viously introduced apply_stencil_bh function and applies
it to a specific stencil and boundary handling methods:

let stencil = [0.25f, 0.50f, 0.25f];
@apply_stencil_bh (arr , stencil ,

bh_clamp_lower ,
bh_clamp_upper)

As previously described, this will result in a specialized ver-
sion of apply_stencil_bh for this scenario:

// iterate over the l e f t f i e l d region
for i in range (0, 1) {

let mut sum = 0;
sum += arr[bh_clamp_lower (i - 1, 0)] * 0.25f;
sum += arr[bh_clamp_lower (i, 0)] * 0.50f;
sum += arr[bh_clamp_lower (i + 1, 0)] * 0.25f;
arr[i] = sum;

}
... // iterate over the center f i e l d region

Further specialization of the left field region can be used to
eliminate the loop iteration and to specialize the boundary-
handling calls to bh_clamp_lower. This would evaluate the
if-condition of the boundary checks and the following code
would emerge:

// iterate over the l e f t f i e l d region
let mut sum = 0.0f;
sum += arr [0] * 0.25f;
sum += arr [0] * 0.50f;
sum += arr [1] * 0.25f;
arr [0] = sum;
... // iterate over the center f i e l d region

While we have shown the refinement approach for 1D
examples only, the concept can be applied to the multi-
dimensional case by introducing a generic index type. This
type encapsulates the index handling for an arbitrary num-
ber of dimensions. Consequently, further changes in the code
can be minimized which may typically be required during an
adaption to another number of dimensions.

4. APPLICATIONS
In this section we present two example applications, one

from the field of image processing and one from the field of
scientific computing. We discuss how specialization triggers
important optimizations opportunities for the compiler.
Consider a bilateral filter [14] from the field of image pro-

cessing. This filter smoothes images while preserving the
sharp edges of an image. Algorithm 1 shows the pseudo
code for the parallel computation of the bilateral filter.
The computation of the filter mainly consists of two com-

ponents: closeness and similarity. Closeness depends on the
distance between pixels and can be precomputed. Similarity
depends on the difference of the pixel values and is evaluated
on the fly.
Listing 1 shows an implementation in Impala. The pre-

computed closeness function is stored in a mask array. The
two inner loops which iterate over the range of the kernel are
annotated, to enforce partial evaluation for a given sigma_d.
This will propagate the constant mask into the computation
and will specialize the index calculation. Another possibility
in this context would be a mapping of the mask to constant
memory, in the case of a GPU.
The use of a Jacobi iteration to solve the heat equation

can be specialized similarly (Listing 2). We can use the
presented apply_stencil function to apply the stencil for
Jacobi in each step of the iteration. Partial evaluation of
this call site propagates the Jacobi stencil into the function.
This causes the calculations that would normally be multi-
plied with zero at run time, to be evaluated to zero at com-
pile time. Hence, these computations will not be performed
during execution of the stencil later on.

5. EVALUATION
In this section we outline our compiler framework and

show first results on the CPU and GPU.

5.1 Compiler Framework
Our compiler provides back ends for CPUs and CUDA-

capable graphics cards from NVIDIA. Programs written in
Impala are parsed into an higher-order intermediate rep-
resentation (IR) that captures functional properties. All
transformations and code refinements described in Section 3
are applied on this level of the intermediate representation.
Stencils are not limited to a particular output field but

can perform write accesses to different output targets which
simplifies the development of stencil codes. Moreover, we
allow random read and write accesses to fields as well as
different resolutions of the input data.
When generating code for the GPU, for instance, mem-

ory allocations on the target device are fully managed by
the generated code of our compiler. Required data transfer
from the host device to the GPU (and vice versa) is also
performed automatically.
For target code generation, we use LLVM [9]. When our

Algorithm 1: Parallel bilateral filter algorithm.
1 foreach pixel pix in image arr do in parallel
2 x ← get_index_x(arr, pix)
3 y← get_index_y(arr, pix)
4 p, k← 0
5 for yf = −2 · sigma_d to 2 · sigma_d do
6 for xf = −2 · sigma_d to 2 · sigma_d do
7 c← closeness((x, y), (x + xf, y + yf))
8 s← similarity(arr[x, y], arr[x + xf, y + yf])
9 k← k + c · s

10 p← p + c · s · arr[x + xf, y + yf]
11 end
12 end
13 out[x, y]← p/k
14 end

fn main () {
let width = 1024;
let height = 1024;
let sigma_d = 3;
let sigma_r = 5.0f;
let mut arr = ~array :: new(width , height);
let mut out = ~array :: new(width , height);

let mask = @precompute (...);

for i: index in field_indices (out) {
let c_r = 1.0f/(2.0f* sigma_r * sigma_r);
let mut k = 0.0f;
let mut p = 0.0f;

for yf in @range (-2* sigma_d , 2* sigma_d +1) {
for xf in @range (-2* sigma_d , 2* sigma_d +1) {

let diff = arr[i + index (xf , yf)] - arr[i];
let s = exp(-c_r * diff*diff) *

mask[xf + sigma_d][yf + sigma_d];
k += s;
p += s * arr[i + index (xf , yf)];

}
}

out[i] = p/k;
}

}

Listing 1: Bilateral filter description in Impala.

fn apply_stencil (arr: [float], stencil : [float],
i: index) -> float {

let mut sum = 0.0f;
let offset = stencil .size / 2;
for j in indices (stencil) {

sum += arr[i + j - offset] * stencil [j];
}
return sum;

}

fn main () {
let mut arr = ~array :: new(width , height);
let mut out = ~array :: new(width , height);
let a = 0.2f;
let b = 1.0f - 4.0f * a;
// stenci l for Jacobi
let stencil = [[0.0f, b, 0.0f],

[b, a, b],
[0.0f, b, 0.0f]];

while (/∗ not converged ∗/) {
for i in field_indices (out) {

out[i] = @apply_stencil (arr , stencil , i);
}

swap(arr , out);
}

}

Listing 2: Jacobi iteration in Impala.

Table 1: Execution times in ms for the Jacobi kernel in
Impala on an Intel Core i7 3770 for a field of size 2048×2048.

Scalar Vectorized (SSE)
Impala (generic) 13.23 4.39
Impala (specialized) 5.41 2.51

IR is converted to LLVM IR, target-specific mapping is also
performed: In particular for GPU execution, index variables
are mapped to special hardware registers and the compute
kernels are annotated as kernel. The resulting IR conforms
to the NVVM IR specification2 and can be compiled to PTX
assembly using the CUDA compiler SDK3. Code for the
CPU can be automatically vectorized with the help of our
data-parallel vectorizer [8].
Using the same mapping with similar annotations, LLVM

IR can be generated that conforms to Standard Portable
Intermediate Representation (SPIR)4. SPIR is supported
in OpenCL 1.2 via extensions and will allow us to support
GPU accelerators from other vendors in the future.

5.2 Performance Estimation
We evaluate the performance of the generated code on two

GPU architectures from NVIDIA, using the GTX 580 and
GTX 680 GPUs and on an Intel Core i7 3770 CPU. In order
to estimate the quality of the generated code we consider
one iteration of the Jacobi iteration from Listing 2.

CPU Evaluation
Table 1 shows the evaluation of the Jacobi kernel on the
CPU on a single core. The generic version contains an inner
loop which iterates over the elements of a given stencil ar-
ray. Each value of the stencil is loaded from memory for each
access (even for elements which are zero). The specialized
version is the generated one from Impala after partially eval-
uating the program. It does not contain an inner loop and
no further memory accesses for loading of stencil elements
are required. With the help of our data-parallel vectorizer
we are able to vectorize the main loops of both programs.
The scalar generic version takes about 2.5× longer than

the scalar specialized version. However, making use of vec-
torization reduces the execution times of both versions sig-
nificantly. For the specialized version, vectorization im-
proves performance by a factor of 2.1.

GPU Evaluation
Since it is known that stencil codes are usually bandwidth
limited, we list the theoretical peak and the achievable mem-
ory bandwidth of the GPUs in Table 2. For the Jacobi ker-
nel, we have to load one value from main memory (from
arr) and to store one value (out), if we assume that all
neighboring memory accesses for the stencil are in cache.
This means for single precision accuracy we have to transfer
4 ·2 = 8bytes per element. On the GTX 680 with achievable
memory bandwidth of b = 147.6 GB/s and for a problem size
N = 2048 × 2048 we thus estimate N·8

b
· 1000 ≈ 0.23ms for

2docs.nvidia.com/cuda/nvvm-ir-spec/index.html
3developer.nvidia.com/cuda-llvm-compiler
4www.khronos.org/registry/cl/specs/spir_spec-1.
2-provisional.pdf

Table 2: Theoretical peak and the achievable (memcpy)
memory bandwidth in GB/s for the GTX 580 and GTX 680
GPUs.

GTX 580 GTX 680
Peak 192.4GB/s 192.2GB/s
Memcpy 161.5GB/s 147.6GB/s
Percentage 83.9% 76.8%

Table 3: Execution times in ms for the Jacobi kernel on the
GTX 580 and GTX 680 for a field of size 2048 × 2048.

GTX 580 GTX 680
CUDA (hand-specialized) 0.33 0.35
CUDA (hand-tuned) 0.26 0.23
Impala (specialized) 0.32 0.35

the kernel. This matches quite well to the measured runtime
of our hand-tuned CUDA implementation (0.23ms) for the
Jacobi kernel as seen in Table 3.
The table shows results for three different variants of the

Jacobi kernel:

• a hand-specialized implementation in CUDA where
the stencil is hard-coded,

• a hand-tuned refinement of the first implementation
with device-specific optimization (custom kernel tiling,
unrolling of the iteration space, and usage of texturing
hardware), and

• our generated implementation from Impala after spe-
cialization.

It can be seen that our generated version from a generic
description is as fast as the corresponding hand-specialized
implementation in CUDA. The additional performance gains
of the hand-tuned implementations stem from unrolling of
the global iteration space and usage of texturing memory.
In particular, the use of texturing memory is device-specific
and only the GTX 680 benefits from this. While we do
not support texturing hardware and unrolling of the global
iteration space yet, we believe that we will see the same
performance improvement once supporting these features.

6. RELATED WORK
Stencil codes are an important algorithm class and conse-

quently a considerably high effort has been spent in the past
on tuning stencil codes to target architectures. To simplify
this process, specialized libraries [1, 2], auto tuners [3], and
DSLs [5, 13, 11] were developed.
We follow the direction of DSLs in our work, but we give

the programmer additional opportunities to control the opti-
mization process. Previous DSL approaches such as Liszt [5]
and Pochoir [13] focus on providing a simple and concise
syntax to express algorithms. However, they offer no control
over the applied optimization strategies. An advancement to
this is the explicit specification of schedules in Halide [11]:
target-specific scheduling strategies can be defined by the
programmer. Still it is not possible to trigger code refine-
ment explicitly. Explicit code refinement can be achieved
through staging like in Terra [4] and in Spiral in Scala [10].
Terra is an extension to Lua. Program parts in Lua can be

docs.nvidia.com/cuda/nvvm-ir-spec/index.html
developer.nvidia.com/cuda-llvm-compiler
www.khronos.org/registry/cl/specs/spir_spec-1.2-provisional.pdf
www.khronos.org/registry/cl/specs/spir_spec-1.2-provisional.pdf

evaluated and used to build Terra code during the run of
the Lua program. However, this technique makes use of two
different languages and type safety of the constructed frag-
ments can only be checked before executing the constructed
Terra code. Spiral in Scala uses the concept of lightweight
modular staging [12] to annotate types in Scala. Compu-
tations which make use of these types, are automatically
subject to code refinement. Transformations on these com-
putations, however, are performed implicitly, and thus, the
programmer has no further control over the applied trans-
formations.

7. CONCLUSION
In this paper, we have presented a domain-specific lan-

guage for stencil codes through language embedding in Im-
pala. Unique to our approach is our code refinement con-
cept. By partially evaluating fragments of the input pro-
gram it is possible to achieve platform-specific optimiza-
tions. Compared to traditional compilers, code refinement is
triggered explicitly by the programmer through annotations.
This allows to achieve traditional optimizations such as con-
stant propagation and loop unrolling. Moreover, we outlined
how our concept can be used for domain-specific mapping of
stencil codes. As an application of domain-specific mapping,
we have shown that we are able to generate specialized code
variants for different field regions.
Currently, our research compiler is able to generate target

code for execution on GPU accelerators from NVIDIA as
well as CPUs. First results show that we can generate GPU
code that is as fast as manual implementations for simple
stencil codes. Our next steps include evaluation of more
complex stencils such as bilateral filtering and 3D stencils.
Furthermore, we are currently working on the integration
of device-specific optimizations (e. g., support for texturing
hardware).

8. ACKNOWLEDGMENTS
This work is partly supported by the Federal Ministry of

Education and Research (BMBF), as part of the ECOUSS
project as well as by the Intel Visual Computing Institute
Saarbrücken.

9. REFERENCES
[1] A. Baker, R. Falgout, T. Kolev, and U. M. Yang.

Scaling Hypre’s Multigrid Solvers to 100,000 Cores.
High-Performance Scientific Computing, pages
261–279, 2012.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer,
R. Klöfkorn, M. Ohlberger, and O. Sander. A Generic
Grid Interface for Parallel and Adaptive Scientific
Computing. Part I: Abstract Framework. Computing,
82(2):103–119, July 2008.

[3] M. Christen, O. Schenk, and H. Burkhart. PATUS: A
Code Generation and Autotuning Framework for
Parallel Iterative Stencil Computations on Modern
Microarchitectures. In Proceedings of the 25th IEEE
International Parallel & Distributed Processing
Symposium (IPDPS), pages 676–687. IEEE, May 2011.

[4] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and
J. Vitek. Terra: A Multi-Stage Language for
High-Performance Computing. In Proceedings of the
34th annual ACM SIGPLAN Conference on

Programming Language Design and Implementation
(PLDI), pages 105–116. ACM, June 2013.

[5] Z. DeVito, N. Joubert, F. Palacios, S. Oakley,
M. Medina, M. Barrientos, E. Elsen, F. Ham,
A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: A Domain Specific Language for
Building Portable Mesh-based PDE Solvers. In
Proceedings of the 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC), pages 9:1–9:12. ACM, Nov. 2011.

[6] Y. Futamura. Partial evaluation of computation
process, revisited. Higher Order Symbol. Comput.,
1999.

[7] N. D. Jones. Mix ten years later. In Proceedings of the
1995 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program
Manipulation. ACM, 1995.

[8] R. Karrenberg and S. Hack. Whole-Function
Vectorization. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 141–150.
IEEE, Apr. 2011.

[9] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO), pages 75–86. IEEE, Mar. 2004.

[10] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and
M. Püschel. Spiral in Scala: Towards the Systematic
Construction of Generators for Performance Libraries.
In Proceedings of the 12th International Conference on
Generative Programming and Component Engineering
(GPCE), pages 125–134. ACM, Oct. 2013.

[11] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy,
S. Amarasinghe, and F. Durand. Decoupling
Algorithms from Schedules for Easy Optimization of
Image Processing Pipelines. ACM Transactions on
Graphics (TOG), 31(4):32, July 2012.

[12] T. Rompf and M. Odersky. Lightweight Modular
Staging: A Pragmatic Approach to Runtime Code
Generation and Compiled DSLs. In Proceedings of the
9th International Conference on Generative
Programming and Component Engineering (GPCE),
pages 127–136. ACM, Oct. 2010.

[13] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K.
Luk, and C. E. Leiserson. The Pochoir Stencil
Compiler. In Proceedings of the 23rd ACM Symposium
on Parallelism in Algorithms and Architectures
(SPAA), pages 117–128. ACM, June 2011.

[14] C. Tomasi and R. Manduchi. Bilateral Filtering for
Gray and Color Images. pages 839–846. IEEE, Jan.
1998.

	Introduction
	Stencil Codes in Impala
	Code Refinement
	Partial Evaluation
	Platform-specific Mapping

	Applications
	Evaluation
	Compiler Framework
	Performance Estimation

	Related Work
	Conclusion
	Acknowledgments
	References

