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Abstract
SIMD instructions are common in CPUs for years now. Using these
instructions effectively requires not only vectorization of code, but
also modifications to the data layout. However, automatic vector-
ization techniques are often not powerful enough and suffer from
restricted scope of applicability; hence, programmers often vector-
ize their programs manually by using intrinsics: compiler-known
functions that directly expand to machine instructions. They signifi-
cantly decrease programmer productivity by enforcing a very error-
prone and hard-to-read assembly-like programming style. Further-
more, intrinsics are not portable because they are tied to a specific
instruction set.

In this paper, we show how a C-like language can be extended to
allow for portable and efficient SIMD programming. Our extension
puts the programmer in total control over where and how control-
flow vectorization is triggered. We present a type system and a
formal semantics of our extension and prove the soundness of the
type system. Using our prototype implementation IVL that targets
Intel’s MIC architecture and SSE instruction set, we show that the
generated code is roughly on par with handwritten intrinsic code.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.1 [Formal Definitions and
Theory]: Semantics, Syntax

General Terms Languages, Performance, Theory

Keywords language theory, parallel programming, polymorphism,
semantics, SIMD, SIMT, type system, vectorization

1. Introduction
SIMD instructions are available on commodity processors for more
than a decade now. Many developers from various domains (for ex-
ample, high-performance graphics [7], databases [37], or bioinfor-
matics [6]) use SIMD instructions to speed up their applications.
Many of those algorithms are not massively data-parallel but con-
tain data-parallel and scalar parts intermixed at a fine granularity.
To illustrate this, let us run through the fundamental techniques
which are necessary in order to port traditional code to SIMD ar-
chitectures by considering the small example in Figure 1. It is taken
(and slightly modified) from a paper by Zhou and Ross about the
use of SIMD instructions to speed up data base operations [37].
The program scans data records for a certain criterion and returns
the value of the first record for which the criterion holds. In this par-
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1 struct data_t {
2 int key;
3 int other;
4 };
5
6 int search(data_t* data, int N) {
7 for (int i = 0; i < N; i++) {
8 int x = data[i].key;
9 if (4 < x & x <= 8) return x;

10 }
11 return -1;
12 }

Figure 1. Example program (by Zhou and Ross [37])

1 struct simd_data_t {
2 simd_int key;
3 simd_int other;
4 };
5
6 int search(simd_data_t* data, int N) {
7 for (int i = 0; i < N/L; ++i) {
8 simd_int x = load(data[i].key);
9 simd_int cmp = simd_and(simd_lt(4, x),

10 simd_le(x, 8));
11 int mask = simd_to_mask(cmp);
12 if (mask != 0) {
13 simd_int result = simd_and(mask, x);
14 for (int j = 0; j < log2(L); j++)
15 result = simd_or(result,
16 whole_reg_shr(result, 1 << j));
17 return simd_extract(result, 0);
18 }
19 }
20 return -1;
21 }

Figure 2. Manually vectorized example program

ticular example, we assume that at most one element in the array
fulfills the criterion.1

The hand-vectorized version of the program is shown in Fig-
ure 2. We assume that L is the native vector length of the target
machine, i.e., there are L slots in one SIMD register and each slot
can hold exactly one int. When performing vector computations we
refer to the computations applied to a certain slot index as SIMD or
vector lane. The program takes L data items from the array at once
and processes them in parallel. It features the three most common
techniques used to adapt a program for SIMD instructions:

Adapting the data layout. Fetching L values in parallel from
memory is tremendously faster, if they lie consecutively in
memory. Thus, the traditional array of structures layout (AoS,
see Figure 3a) is not suitable for SIMD programming, as it
requires non-contiguous memory access—called scatter and
gather (S/G)—that severely degrades performance. A structure
of arrays (SoA, see Figure 3b) provides a better solution. How-
ever, a loop over an SoA must maintain one pointer for each

1 Zhou and Ross mention searching in B+ trees with unique keys as an
application.

65



x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7

(a) Array of Structures (AoS)

x0 x1 x2 x3 x4 x5 x6 x7 y0 y1 y2 y3 y4 y5 y6 y7 z0 z1 z2 z3 z4 z5 z6 z7

(b) Structure of Arrays (SoA)

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 x4 x5 x6 x7 y4 y5 y6 y7 z4 z5 z6 z7

(c) Hybrid Structure of Arrays (Hybrid SoA)

Figure 3. Different array layouts with vector length 4 for a struct
with three members: x, y and z

member. For this reason and due to data locality problems, the
hybrid SoA (see Figure 3c) is superior, as this layout does not
suffer from these problems. It emerges by first inflating the
original struct to the vector length (we call this unit a block and
the process of doing so type vectorization) and then grouping
this block in an array. This data layout is regarded best practice
in SIMD programming and is recommended by various appli-
cation notes of all major CPU manufacturers, e.g. [13]. These
blocks can be used to build other vectorized data structures like
linked lists or trees just as well.

Control-flow to data-flow conversion. In line 9, the comparison
is evaluated on all L loaded items in parallel. The result is a
vector of booleans being true for those vector lanes for which
the comparison was true. That mask has then to be converted
into an ordinary int in order to use it in the conditional branch
in line 12. In line 13, the mask is used to discard all values for
which the comparison was false.

Seamless integration of scalar and vectorized code. While sev-
eral statements of our example program perform data-parallel
computations, the inner loop (lines 14–16) is not vectorized.
It performs a scan-like operation: by successively shifting and
OR-ing the whole SIMD variable, the first non-zero element of
the vector is propagated to element 0 of the vector. It is typi-
cal for manually vectorized code to have a strong interaction
between scalar and vector code.

This example illustrates the current state of the art in hand-tuning
programs for SIMD instruction sets and clearly shows its limita-
tions. First, vector code has to be written using assembly-like in-
trinsics: compiler-known functions that directly correspond to an
assembly instruction. While operator overloading can improve the
readability of expressions, control structures can usually not be
overloaded. Hence, the control to data-flow conversion has to be
performed manually by explicit handling of masks. This severely
degrades the readability of the code because control statements are
replaced by clumsy mask handling code. Furthermore, intrinsics
directly expose a concrete instruction set architecture (ISA) to the
programmer. Accordingly, intrinsics code is not only inherently un-
portable between different processor architectures but also within
different revisions of the ISA within the same processor family.

Second, the definition of data structures is no longer composi-
tional: To vectorize a struct, the programmer has to create a new
type where the members of the struct are vectorized (see Figure 2).
Often she is interested in the scalar and the vectorized type because
she often refers to a single component of a vector. Hence, all types
would have to be written twice. However, it is reasonable for the
programmer to assume that she can obtain the vectorized version of
a data type T by applying a type constructor, say T block[N], which
yields the desired block type. Furthermore, the compiler knows that
T block[N] is the N times vectorized version of T. This is important
for parametric polymorphism (see below) and correct handling of
S/G in the type system.

Third, the hand-vectorized function of Figure 2 works only in
a vector context. Many functions however should work in a scalar

and in a vector context. Hence, functions should be polymorphic
with respect to vectorization where possible.

We believe it to be clear that the code transformations presented
above cannot be carried out automatically. Current optimizing com-
pilers vectorize loop nests which have to satisfy strong prerequi-
sites. Automatic interprocedural data-structure rewriting or auto-
matic scalar/vectorial code switching are out of the scope of what
an optimizing compiler for a traditional C-like language can do.
Furthermore, porting an algorithm to SIMD instructions does not
only change the mapping of a given implementation to another
hardware but often requires adapting the implementation of the al-
gorithm itself. For example, note lines 13–17 in Figure 2 differ from
the corresponding code in Figure 1.

On GPUs, which internally also make extensive use of SIMD,
this issue is addressed by not using a traditional scalar program-
ming paradigm like in C, but rather using the SIMT paradigm (sin-
gle instruction, multiple threads) as employed in CUDA [30] or
OpenCL [17]: In the SIMT paradigm each program—called ker-
nel—is always instantiated n times to n logical threads. These
threads all execute this same program at the same time but on dif-
ferent data; SIMD is then employed by always processing k such
threads together where k is the SIMD width. A group of k threads is
also called warp. Each of a warp’s k threads run one SIMD lane. In
this programming paradigm, the user writes scalar-looking, C-like
code, and the control-flow to data-flow conversion along with the
necessary predication is mostly handled by the hardware.

While SIMT is a very powerful paradigm that allows to express
parallelism in a scalar-looking way, it also has its disadvantages.
In particular, in a SIMT language everything is always vectorized,
which closely matches the execution model of such GPUs, but does
not easily allow to express scalar parts of a program. Executing
truly scalar code then requires explicitly masking off all but one
thread of a block and costly explicit synchronization between the
warps in a block, since the hardware usually needs to run multiple
such warps in parallel. Furthermore, by explicitly hiding the effects
of vectorization, these languages have no means of allowing the
programmer to define vectorized data layouts, thus leaving her with
the choice between inefficient AoS data layouts (and costly AoS
to (hybrid) SoA conversions on access), or manual vectorization
of data structures. Above all, writing all the glue code in order to
merge the host code with the kernels is very inconvenient.

1.1 Contributions
In this paper, we propose a different programming model for data-
parallel programming that combines the advantages of both scalar
and SIMT programming, and is especially suited for machines with
explicit SIMD instructions. We do this by defining a small core
language called VecImp (see Sections 2 and 4), which extends the
type system and formal semantics of an existing formalization of a
substantial subset of C, called Imp (see Section 3).

• In contrast to the SIMT model, we do not require the strict sepa-
ration in host code and kernels but integrate vectorization seam-
lessly into the language. Moreover, we allow to mix scalar and
SIMT programming (and scalar and vectorized data structures)
in the same basic blocks.
• We provide a type qualifier block[N] to obtain a block of vector

length N. The example code
struct vec3 { float x, y, z; };
vec3 block[4] v;

produces the following memory layout for v:
x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3

• In contrast to the vectorize-everything paradigm of SIMT, a
VecImp program starts in a scalar context. We use the type
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system of VecImp to trigger vectorization: An if-statement with
a vector-type condition is vectorized.
int block[4] v, w;
if (v < w) /* vectorized */ else /* vectorized */

• We implemented several features of VecImp in our research lan-
guage IVL and evaluated the performance of the vectorized
code experimentally on several benchmarks. Our target ma-
chine was a 16-wide Intel® Many Integrated Core (MIC) pro-
cessor [14, 32]. We are within 4% to 15% of the performance of
hand-written intrinsic code. Writing the IVL code was almost as
easy as writing traditional scalar code. Besides that, IVL code
is fully portable because it does not contain any architecture-
dependent details (see Section 5). The programs can just be re-
compiled for the SSE back-end.

2. VecImp at a Glance
As outlined in the introduction, a programmer often wants to per-
form SIMD operations only on certain lanes and not on the whole
vector. We call these lanes active lanes. In hardware, this is ei-
ther accomplished by predicated execution [32] or blending (SSE,
AVX). In the first case, each vector instruction is equipped with
a mask, which indicates active lanes, and a vector instruction per-
forms the operation only for active lanes. In the latter case, vector
instructions always perform operations for all lanes. Unwanted ef-
fects must be later on masked out by so-called blend operations.
The programming model of VecImp exposes predicated execution
to the programmer, although blending can be used by the com-
piler in order to emulate this execution model. For this reason, ev-
ery statement in VecImp is executed in a scalar or vector context.
For typing, the context corresponds the vector length of the current
predication mask—also called current mask. The programmer has
read access to this variable by the current_mask keyword. A context
of length one is called scalar context. In VecImp, evaluation be-
gins in a scalar context and control-flow statements like if or while
spawn different vector contexts:
// vector length of context = 1; current_mask = T
int block[4] v = <0,3,4,1>;
int block[4] w = 3; // <3,3,3,3> via broadcast
bool block[4] m = v < w; // <T,F,F,T>
++v; // <1,4,5,2>
if (m) {
// vector length of context = 4; current_mask = m
v += 2; // <3,4,5,4>

} else {
// vector length of context = 4; current_mask = ˜m
v += 3; // <3,7,8,4>

}
// vector length of context = 1; current_mask = T

As can be seen in this example, a type modifier block[N] is available.
This qualifier recursively inflates the data type to be of vector
length N. If a qualifier is elided, the variable is unbound. This means
that the vector length is inferred by the vector length of the right-
hand side. If a right-hand side does not exist, the vector length of
the current context is used:
struct vec3 { float x, y, z; };
// scalar context
vec3 block[4] v;
vec3 w = v; // vec3 block[4];
vec3 x; // vec3 block[1];

Let us now implement a dot product:
float dot(vec3 a, vec3 b) {

return a.x*b.x + a.y*b.y + a.z*b.z;
}

All unbound parameters of functions in VecImp are polymorphic
in their vector length and so are a and b. The vector length of an
unbound return type is automatically inferred. Thus, a call-site in a
scalar context

1 struct data_t {
2 int key;
3 int other;
4 };
5
6 int search(data_t *scalar data, int scalar N) {
7 int L = lengthof(*data);
8 for (int i = 0; i < N/L; ++i) {
9 int x = data[i].key;

10 if (4 < x & x <= 8)
11 int block[L] result = [x, 0];
12 scalar {
13 for (int j = 0; j < log2(L); ++j)
14 result |= whole_reg_shr(result, 1 << j);
15 return get(x, 0);
16 }
17 }
18 return -1;
19 }

Figure 4. Example program in VecImp

vec3 block[4] a = /*...*/;
vec3 scalar b = /*...*/;
float block[4] r = dot(a, b);

instantiates a version of dot with this signature:
float block[4] dot(vec3 block[4] a, vec3 scalar b);

If a scalar and a vectorial value are mixed in an operation, the scalar
value is broadcast. Thus, the uses of b.x, b.y and b.z get implicitly
broadcast in this version. But what happens, if we call the same
function from a vectorial context?
if (a.x < b.x) { // enter context of length 4

float block[4] r = dot(a, b); /*...*/
}

This time dot must know of the current mask. For this reason,
we pass the current mask as hidden parameter to dot. In VecImp,
functions are also polymorphic in the context they are called in.
Thus, the signature of this dot instance is:
float block[4] dot(bool block[4] current_mask ,

vec3 block[4] a, vec3 scalar b);

As a more sophisticated example, let us reconsider the intro-
ductory example in VecImp (Figure 4). The function search can be
invoked with a pointer to an ordinary array of data_t or a hybrid
SoA of data_t. However, the pointer itself is scalar, denoted by the
scalar modifier which is just shorthand for block[1]. Hence, one
cannot pass a vector of pointers to search. Similarly, N stays scalar
in all possible instances of search. Consider the call-site in a scalar
context:
data_t block[4] *data; /*...*/
int x = search(data, N);

The type of data is an unbound pointer to a hybrid SoA of length 4
of data_t. Since data is declared in a scalar context, data itself is
instantiated as scalar while the referenced type remains vectorial.
Since search is invoked from a scalar context, the context of this
particular search instance created for this call-site is scalar, too.
As L and i in line 7 and 8, respectively, inherit the vector length
from the right-hand side, these variables are scalar. Now consider
line 9: Since the type of the right-hand side is int block[4] and x is
unbound, x is also of vector type int block[4]. As x is now of vector
type, the if statement in line 10 is vectorized. Thus, reading from x

just obtains the (by precondition unique) found key which is—via
the assignment in line 11—written into the vector result. However,
the inactive lanes of result would stay undefined and we therefore
set them explicitly to 0. This is important because subsequently,
the vector result is processed as a whole and not in a vectorized
mode: The algorithm propagates the found key to position 0. For
this reason, we want to enter a scalar context again. The scalar
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keyword in front of a statement stores the current mask on a stack
and resets it to the scalar mask. Hence, the for loop beginning in
line 13 is executed in a scalar context. After the for loop finishes
execution, the scalar element at position 0 of the vector is returned.

In the case that search is invoked on scalar data, the whole
procedure degenerates to a scalar program whose semantics is
equivalent to the program in Figure 1. Although we cannot gain an
optimized vectorial program from a scalar one, we can still extract
the scalar version from a program written in a polymorphic way.

3. Formalization
In this section, we first introduce the notation used throughout this
paper and then the imperative language Imp.

The set which holds all powers of two is referred to as P B {2i |

i ∈ N}. We use a as shorthand for a sequence a0, . . . , a|a|−1 with
zero or more elements, while |a| denotes the number of items in a
sequence. The term a+ represents a sequence with one or more el-
ements. Sequences are propagated into more complex expressions
while global values and constants remain untouched. Thus, (a, 3)
expands to (a0, 3, . . . , a|a|−1, 3).

3.1 Types
We use calligraphic letters to indicate sets of types and use small
Greek letters for types. The size of a type τ given in bytes is referred
to as |τ|. Furthermore, we make use of the following conventions:

We use standard C-like primitive integer and floating point types
whose sizes (in bytes) must be a power of two. Booleans are
denoted by bool B {T,F}. The size of a bool is implementation-
dependent and not transparent to the programmer. We pool these
types into a set of atomic typesA.

A pointer τ* points to a location which is interpreted to be of
type τ; the size of a pointer is also implementation-dependent.

A record ρ B  τ+¡ is compounded of other element types τ+.
A record may not (in)directly contain an element of its own type,
but cycles induced by pointers are allowed (as in C). A projection
ρ.i, where i ∈ N ∧ 0 ≤ i < |τ+

|, grabs τi. An implementation is free
to add additional padding space between the elements of a record.
This implies that the size of a record is machine dependent, too.
The set of all types which can be built with atomic types, records
and pointers is denoted by T .

A vector type ν with element type τ ∈ A ∪ {π* | π ∈ V} and
l ∈ P elements is written as 〈τ | l〉. An instance of such a type ν is
written as 〈e〉. The set of all types which can be built with scalar
types and vector types is denoted byV.

3.2 Imp
Before describing the vector extensions, we briefly review the im-
perative language Imp we extend. Imp is a substantial subset of C.
Its formalization is closely related to Norrish [27].

The syntax is given in Figure 5. To simplify matters, we assume
that each function has exactly one return statement and function
calls are used instead of typical in- and prefix operators (although
we silently make use of operators in later VecImp examples, for the
sake of readability; moreover, we use named structs instead of tu-
ples and other syntactic sugar for the same reason). A representative
set of type inference and evaluation rules is given in Figure 7. The
complete set of rules is contained in the full version of the paper
[20, appx. A].

Typing rules. Static semantics maintains a type map Γ, which
maps identifiers to types, and has read-access to a function map
Φ, which maps identifiers to a function’s signature and body. The
type map is altered in a declaration (see T-Decl). On the other hand
the occurrence of a variable is resolved by a lookup of the given
identifier in this map (see T-Var). Type inference rules must differ-

e F Expressions:
cα constant of type α ∈ A

| id variable
| e.i projection
| &e address
| *e dereferencing
| e1[e2] indexing
| id(e) invoke

s F Statements:
; skip

| { ŝ } scope
| e; expression-statement
| t id; declaration
| e2 = e1; assignment
| t id = e; initialization
| if (e) s1 else s2 if-else
| while (e) s while

ŝ F Scoped statements:
s statement

| ŝ s sequence
t F Type:

α ∈ A base
| t* pointer
|  t+¡ record

f F Function:
ε empty

| f1 f2 sequence
| t id(t id) { s return e; } function

Figure 5. Syntax of Imp

entiate between statements and expressions. Statements yield the
dummy type ε. Since expressions can return lvalues, type inference
rules acknowledge this fact by an internal lvalue type lτ (read lvalue
of type τ). If we want to state that a type must not be an lvalue,
we write rτ. In many typing rules both lvalue and value types are
allowed in a given premise. We annotate such a type as l

rτ as short-
hand (see T-Assign).

Evaluation rules. Dynamic semantics uses small step semantics
evaluating a program a in scope σ and state M in one step to a
program a′ in scope σ′ in a new state M′ with the help of the
function map Φ. The state M is a memory map, mapping an address
to an i8. We assume M to be infinite and initialized with random
values. A scope σ consists of an address map A which maps an
identifier of a variable to the starting address in memory and a type
map T which maps an identifier to a type. In order to extract a
subsequence of n bytes starting at address/offset a of a memory map
M or a byte sequence m, we use M〈a, n〉 or m〈a, n〉 as shorthand,
respectively.

As already outlined, expressions can evaluate to values and
lvalues. A value consists of a sequence of bytes m and a type τ and
is written as V (m, τ). An lvalue L (a, τ) consists of an address a
and a type τ and represents a reference to a memory location. Both
constructs are added to the syntax (but are not directly usable by the
programmer and hence do not appear in Figure 5). For instance, E-
Var looks up the identifier of a variable in the address and type map
to build an lvalue. Statements can evaluate to the final configuration
“;” (read skip).

A declaration (see E-Decl) allocates memory and updates the
type and address maps accordingly. The function alloc(σ, τ) is used
for this task. It returns an address pointing to |τ| bytes of usable
memory. An assignment (see E-Assign) updates the memory map
at the position pointed to by the given left-hand side lvalue with the
given right-hand side value.

In order to memorize an old scope σ when entering a new one
we use the special construct “{ s }σ” which is also added to the
“internal” syntax (see E-InScope and E-OutScope).
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e F . . . Expressions:
| current mask current mask

s F . . . Statements:
| scalar s scalar

t F Type:
α ∈ A q base

| t* q pointer
|  t+¡ q record

q F Qualifiers:
ε unbound

| block auto block
| block[i] block

Figure 6. Syntax changes of Imp in order to obtain VecImp: The
current-mask expression and the scalar statement are added. Types
follow a different grammar along with the new qualifier rule.

Theorem 1 (Soundness of Imp). Each well-typed Imp program is
either in its final configuration or

1. there exists an evaluation rule which progresses evaluation and
2. the resulting program after application of an evaluation rule

preserves well-typedness.

See the full version of the paper for details and the complete
proof of this theorem [20, appx. A].

4. Extending Imp
In the following sections, we show how to extend Imp to its vector
counterpart VecImp. The needed modifications of Imp’s syntax in
order to obtain VecImp are given in Figure 6. During discussion it is
important to understand that VecImp is just a substantial intention-
ally small calculus. Practical languages may add as much syntactic
sugar as needed. Furthermore, languages with powerful abstraction
mechanisms can build higher-level vector programming constructs
(see Section 7).

An excerpt of the typing and evaluation rules, which are referred
to in this section, is shown in Figure 8. We have already seen in
the introductory example that we must keep track of the current
mask while doing SIMD computations. This has several implica-
tions. First, all typing rules need a new variable Λ ∈ P called cur-
rent vector length or context. Likewise, all evaluation rules need a
new scope variable Pσ ∈ 〈bool | l〉 (l ∈ P), which reflects predi-
cation. We extend our notation of extracting a byte sequence to a
predicated extraction M〈P, a, n〉 or m〈P, a, n〉, respectively, where P
is a mask. This current mask or predication variable can be queried
via the current_mask keyword, which is added as expression to the
syntax. Generally, a statement is only executed if the current mask
is not entirely false. In the special case that Λ = 1 and accordingly
Pσ = 〈T〉, we are in a scalar context.

4.1 Types
The context influences the generation of types while the program-
mer retains tight control over this process with the help of few qual-
ifiers (see T-, E-DeclL). Type vectorization is a recursive process:

• A block type adopts the vector length of the current context, i.e.,
in a scalar context the type stays scalar.
• A block[i] type always receives vector length i where i is a

compile time constant. The special case i = 1 means a scalar
type and we write scalar as syntactic sugar for block[1]. In the
case that i > 1 does not match the current vector length, a type
error occurs.
• Types without explicit qualifier are qualified as unbound. These

types adopt the vector length of the current recursion. Top level
unbound types either infer the vector length from the right-hand

side (in an initialization, see T- and E-Init) or adopt the current
vector length (in a declaration statement, see T- and E-Decl).
• Records are never vectorized. Instead the qualifier of a record

controls recursively vectorization for unbound element types.

The type constructor of a qualified type t in context Λ is defined as
follows:2

vecΛ : t × P→V∪ {⊥}

(υ, n) 7→



⊥ if υ = τ ∈ T block[i] ∧ Λ , i > 1,
〈α | n〉 if υ = α ∈ A,
〈α | Λ〉 if υ = α ∈ A block,
〈α | i〉 if υ = α ∈ A block[i],
〈vecΛ(τ, n)* | n〉 if υ = τ*,
〈vecΛ(τ, n)* | Λ〉 if υ = τ* block,
〈vecΛ(τ, n)* | i〉 if υ = τ* block[i],
 vecΛ(τ, n)

+
¡ if υ =  τ+¡,

 vecΛ(τ,Λ)
+
¡ if υ =  τ+¡ block,

 vecΛ(τ, i)
+
¡ if υ =  τ+¡ block[i].

Consider the following example:

struct Bar { int c; int block d; };
struct Foo { int a; int block b; Bar scalar bar; };
// current vector length = 4
Foo foo;
int i = 0;

Upon the declaration of foo vec4(Foo, 4) is applied in order to vec-
torize the type. Member a gets vectorized as it sees 4 as parameter;
b gets vectorized, because it sees 4 as current vector length; how-
ever, c stays scalar, because it sees length 1 passed to vec4 via Bar
scalar bar; finally, d gets vectorized for the same reason as b. The
variable i stays scalar as the right-hand side is also scalar.

f0 f1 f2 f3︸     ︷︷     ︸
r1

(a) 4 × float

f0 f1 f2 f3︸     ︷︷     ︸
r1

f4 f5 f6 f7︸     ︷︷     ︸
r2

(b) 8 × float

− f0 − f1︸     ︷︷     ︸
r1

(c) 2 × float

Figure 9. Different packagings of floats into hardware SIMD
registers of 16 byte width

In order to exploit SIMD hardware efficiently, it is very impor-
tant to organize data in a way that maximum coherence is achieved,
i.e., optimally all SIMD lanes are occupied and none lie idle. If
the desired vector length is equal to the one which is available in
hardware, all elements can be put seamlessly into one register (Fig-
ure 9a). If the desired vector length exceeds the native one, sev-
eral registers must be allocated (Figure 9b). In the case that the
requested length is smaller than the native one, padding space must
be inserted. One possible solution is depicted in Figure 9c, albeit
other possibilities may be more advantageous for the underlying
hardware. As case b) usually increases register pressure and case
c) decreases throughput, it is important to choose the vector length
wisely. A compiler can provide a built-in mechanism for querying
the preferred vector length of a type for the given target machine:

struct T { double d; float f; }
T block[preferred_lengthof(T)] t;

See Section 7 for additional suggestions in order to abstract away
other low-level details.

The current vector length also restricts types that may occur.
Access of type τ in context Λ is only granted in a scalar context, or
if the type is scalar, or if the current vector length and the one of

2 Note that cyclic dependencies in types induced by pointers can be re-
solved by first defining an opaque type and not to follow that pointer and
later on refining that field.
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Φ,Γ ` e : τ,Γ Φ, a, σ,M → a′, σ′,M′

id ∈ dom(Γ)
Φ,Γ ` id : lΓ(id),Γ

T-Var
id ∈ dom(Tσ)

Φ, id, σ,M →L (Aσ(id),Tσ(id)), σ,M
E-Var

Φ,Γ ` s : ε,Γ′

Φ,Γ ` { s } : ε,Γ
T-Scope

Φ, { s }, σ,M → { s }σ, σ,M
E-InScope

Φ, { ; }σ
′
, σ,M → ;, σ′,M

E-OutScope

τ = t id < dom(Γ)
Φ,Γ ` t id; : ε,Γ[id B τ]

T-Decl
τ = t alloc(σ, τ) = a

Φ, t id;, σ,M → ;, σ
[

T B T [id B τ],
A B A[id B a]

]
,M

E-Decl

Φ,Γ ` e1 : l
rτ,Γ Φ,Γ ` e2 : lτ,Γ

Φ,Γ ` e2 = e1; : ε,Γ
T-Assign

Φ,L (a, τ) = V (m, τ);, σ,M → ;, σ,M B M[〈a, |τ|〉 B m]
E-Assign

Φ,Γ ` e : l
rbool,Γ Φ,Γ ` s1 : ε,Γ1 Φ,Γ ` s2 : ε,Γ2

Φ,Γ ` if (e) s1 else s2 : ε,Γ
T-If

Φ, if (V (T, bool)) s1 else s2, σ,M → { s1 }
σ, σ,M

E-IfT

Φ, if (V (F, bool)) s1 else s2, σ,M → { s2 }
σ, σ,M

E-IfF

Φ,Γ ` e : l
rbool,Γ Φ,Γ ` s : ε,Γ′

Φ,Γ ` while (e) s : ε,Γ
T-While

Φ, while (e) s, σ,M → if (e) { s while (e) s } , σ,M
E-While

Figure 7. Static (left) and dynamic (right) semantics of Imp (excerpt)

Φ,Γ,Λ ` e : τ,Γ Φ, a, σ,M → a′, σ′,M′

id ∈ dom(Γ) ~?(Λ, τ)
Φ,Γ,Λ ` id : lTΓ(id),Γ

T-Var
id ∈ dom(Tσ) ~?(‖Pσ‖, τ)

Φ, id, σ,M →L (Aσ(id),Tσ(id)), σ,M
E-Var

Φ,Γ,Λ ` tΛ id; : ε,Γ′

Φ,Γ,Λ ` t id; : ε,Γ′
T-Decl

Φ, t id;, σ,M → t‖Pσ‖ id;, σ,M
E-Decl

τ = vecΛ(t, l) τ , ⊥ id < dom(TΓ) ~?(Λ, τ)
Φ,Γ,Λ ` tl id; : ε,Γ[T B T [id B τ]]

T-DeclL
τ = vecΛ(t, l) alloc(σ, τ) = a ~?(‖Pσ‖, τ)

Φ, tl id;, σ,M → ;, σ
[

T B T [id B τ],
A B A[id B a]

]
,M

E-DeclL

Φ,Γ,Λ ` e1 : l
rτ,Γ Φ,Γ,Λ ` e2 : lτ,Γ ~?(Λ, τ)

Φ,Γ,Λ ` e2 = e1; : ε,Γ
T-Assign

~?(‖Pσ‖, τ)
Φ,L (a, τ) = V (m, τ);, σ,M → ;, σ,M B M[〈Pσ, a, |τ|〉 B m]

E-Assign

Φ,Γ,Λ ` e1 : l
rτ,Γ Φ,Γ,Λ ` e2 : lν,Γ

Λ = 1 ∨ Λ = ‖ν‖ vec‖Pσ‖(τ, ‖ν‖) = ν

Φ,Γ,Λ ` e2 = e1; : ε,Γ
T-Broadcast

‖Pσ‖ = 1 ∨ ‖Pσ‖ = ‖ν‖ vec‖Pσ‖(τ, ‖ν‖) = ν

Φ,L (a, ν) = V (m, τ);, σ,M → ;, σ,M B M[〈Pσ, a, |ν|〉 B 〈m+
〉]

E-Broadcast

Φ,Γ,Λ ` e : τ,Γ
Φ,Γ,Λ ` t‖τ‖ id; id = e; : ε,Γ′

Φ,Γ,Λ ` t id = e; : ε,Γ′
T-Init

Φ, t id = V (m, τ);, σ,M → t‖τ‖ id; id = V (m, τ);, σ,M
E-Init

Φ,Γ,Λ ` e : l
r〈bool | l〉,Γ Λ = 1 ∨ Λ = l

Φ,Γ,Λ B l ` s1 : ε,Γ1 Φ,Γ,Λ B l, ` s2 : ε,Γ2

Φ,Γ,Λ ` if (e) s1 else s2 : ε,Γ
T-If

Λ = 1 ∨ Λ = l
Φ, if (V (m, 〈bool | l〉)) s1 else s2, σ,M →

{ s1 }
σ if (V (not m, 〈bool | l〉)) s2 else ;, σ[P B P and m],M

E-If

Φ,Γ,Λ ` e : l
r〈bool | l〉,Γ Λ = 1 ∨ Λ = l

Φ,Γ,Λ B l ` s : ε,Γ′

Φ,Γ,Λ ` while (e) s : ε,Γ
T-While

Φ, while (e) s, σ,M → if (e) { s while (e) s }, σ,M
E-While

Figure 8. Static (left) and dynamic (right) semantics of VecImp (excerpt)

the type match:
~? : P ×V → bool

(Λ, τ) 7→ Λ = 1 ∨ ‖τ‖ = 1 ∨ Λ = ‖τ‖

where ‖τ‖ denotes the vector length of type τ. Moreover, a scalar
variable on the right-hand side of an assignment can be broadcast
to a vector variable on the left-hand side. This is accomplished by
replicating the given value to all lanes (see T- and E-Broadcast).

4.2 Triggering Control-Flow Vectorization
Conditionally executing code is usually achieved by testing a
boolean and either running one or another code path. Imp supports
typical if- and while-statements. In VecImp we enhance these con-
structs by allowing boolean vectors as conditional expressions as
well. Generally, the vector length of the header must either match

the one of the current mask, or a scalar conditional occurs in a
vectorial context, or the conditional is in a scalar context. The
latter case triggers vectorization. This means that control-flow is
converted to data-flow which gives the programmer the illusion
that different SIMD lanes are executed on different control-flow
branches. Care must be taken when different branches have side-
effects like I/O-accesses. These side-effects may happen in an un-
expected order. For this reason, it is important that the programmer
at least roughly understands, how the control-flow vectorization is
accomplished. For the sake of simplicity, we concentrate on simple
structural control-flow in this paper. For vectorization of arbitrary
control-flow we refer to Karrenberg and Hack [16].

If/Else. In VecImp, both the then-block and the else-block are
evaluated (see T-If and E-If). In the then-block the current mask
and the test mask are combined with an AND operation whereas
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0 1 2 3 4 5 6 7

3 7 1 5

(a) int scalar* block[4] p;

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73

3 7 1 5

(b) int block[4]* block[4] p;

Figure 10. Involved address calculation when indexing a vectorial pointer p with an index vector int block[4] x = <3,7,1,5>. A read p[x]
obtains in case a) <3,7,1,5> and in case b) <30,71,12,53>. Note that both variants yield an int block[4].

the else-block uses the complementary test mask. Note that an
if statement degenerates to standard Imp semantics if an ordinary
boolean is used in the header, since statements are not executed if
the predication variable is completely false.

While. We define the semantics of the while-construct as a recur-
sive program transformation to an if-statement containing a while-
statement (see T-While and E-While). If every element of this mask
evaluates to false, the body is not executed at all. Otherwise, the
body must be entered while adjusting the current mask. Analo-
gously to the if-statement, a while-statement degenerates to an or-
dinary while-statement when testing a scalar boolean.

4.2.1 The Scalar Statement
Sometimes it is desirable to deactivate vectorization within a kernel
and proceed with scalar computations (see the introductory exam-
ple in Section 1). This can be realized by adding a scalar state-
ment to the syntax. This statement saves the current mask, sets the
current mask to the scalar true value, executes the inner statement
in a scalar context, and restores the saved mask afterwards. Using
the scalar statement, several sequential patterns of algorithms using
SIMD instructions can be implemented.

Reactivating the old mask. Although the old mask is reset after
termination of the scalar statement, it may be nevertheless useful
to temporarily reactivate the mask within this statement. This can
be achieved by manually saving the current mask before executing
the scalar statement and using the saved mask in an if-statement.
Since a store just sets the active lanes, it is also important to set the
inactive lanes manually to false. The example in Figure 4 makes
use of some syntactic sugar in order to initialize elements in both
active and inactive lanes. This syntactic sugar
T var = [true_values , false_values};

translates to:
bool mask; // a mask; we are in a vector context
scalar { mask = false; } // set all lanes to false
mask = current_mask; // set all active lanes to true
T var;
scalar {
if (mask) var = true_values; // set active lanes
else var = false_values; // set inactive lanes

}

Scalarize each active lane. Using a consecutive bit scan over
the old mask can yield the index of each prior active lane. In the
following example each active component of v of type T block[N] is
extracted:
bool mask = [current_mask , current_mask];
scalar
for(int i=bitscan(mask,0); i>=0; i=bitscan(mask,i+1)) {
T s = get(v, i);
//...

}

A bitscan scans a given mask, beginning at the given index, from
left to right for the next entry set to true. In order to indicate the
case that no further true follows, a negative value is returned.

The loop body can now do scalar computations with v, broadcast
this value in order to vectorize another computation, or collect such
values in another data structure which can be later on used for
further vectorizations, for instance.

Uniquely scalarize each active lane. A more sophisticated tech-
nique only extracts unique values from active lanes. In the example
above the following adjustment of the mask in each iteration before
the next bitscan blends out duplicates:

mask &= s != v;

4.3 Address Calculation
Since both a pointer itself and its referenced type may be scalar
or vectorial, four possibilities emerge: Scalar pointers to scalar
data are ordinary pointers as known from C. Scalar pointers to
vectorial data integrate seamlessly into Imp as the layout of the
referenced type is irrelevant for typing and semantics. However,
when dealing with vectorial pointers, the programmer must use an
index vector. Vectorial indexing to scalar data effectively performs
a S/G (see Figure 10a) and obtains a vector. Vectorial indexing to
vectorial data is more involved as depicted in Figure 10b: Each
lane i “sees” the ith component of a vector located at address
get(p, i) + get(x, i) and hence read/write access with this vectorial
indexing gathers/scatters an int block[4].

4.4 Parametric Polymorphism
An important feature of VecImp is that all functions are parametric
towards vectorization. This means that all unbound types which
appear in the signature and the vector context itself are parametric.
Upon invocation a new version of the function is instantiated (like
templates in C++). This has several consequences:

• Type checking and evaluation is done with the current con-
text/mask. This changes the vector length of all block variables
and unbound variables in declaration statements.
• All unbound function arguments try to adopt the vector length

of the parameter (like an initialization).
• If the return type is unbound the type checker infers its vector

length from the return expression.
• As the semantics of all syntactical constructs depends on the in-

stantiated types, the behaviour of the function is also dependent
on these parameters.

4.5 Soundness
All these additions and changes to Imp do not harm the type system
and using the same definition of soundness as in Theorem 1 (see
the full version of the paper for details [20, appx. B]) we can state:

Theorem 2 (Soundness of VecImp). VecImp’s type system is sound.

5. The IVL Vectorizing Language
IVL is a prototypical R&D compiler that applies many of the
proposed concepts to generate vectorized code for the Intel® MIC
architecture and SSE instruction set.

5.1 IVL’s Back-Ends
MIC is a many-core x86 architecture in which each x86 core is
augmented with a 16-wide vector unit accessed through a rich
vector instruction set. MIC supports both S/G as well as efficient
masking/predication via a separate set of 16-bit mask registers.
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In a vectorized context IVL emits MIC code that runs on L lanes
in parallel, while all scalar constructs are executed in the core’s
scalar pipe, and scalar data is held in scalar registers. Rather than
allowing arbitrary vector lengths, IVL currently only supports a
small set of vectorization lengths per compilation unit. In particular,
on MIC we currently support 16-wide and (“double-pumped”) 32-
wide vectorization for MIC (with 16 being the default). The SSE
back-end supports 4 wide, and a future Intel® AVX back-end will
also support 8 wide vectorization.

Note that MIC and SSE instruction sets fundamentally differ in
many aspects: SSE and MIC have different native vector lengths,
SSE does not support hardware accelerated S/G and uses blending
in order to emulate predicated execution. Given our experience in
implementing the SSE and MIC back-ends, we think implementing
additional back-ends supporting other SIMD CPU types and ISAs
is straightforward.

IVL acts as source-to-source compiler in the sense that it trans-
lates IVL code to a special “C++ with intrinsics” code that is then
passed to the official Intel® C/C++ compiler [11] (icc) for MIC.
This allows the programmer to visually inspect (and possibly mod-
ify) the emitted code, and to use this code with tools like debuggers,
performance analyzers, etc.

5.2 Supported Types and Language Constructs
IVL currently supports a significant subset of C and a small set of
additional keywords to guide vectorization. In terms of types, IVL
fully supports bools as well as (32-bit) ints, uints, and floats, but
currently only partially supports 8-bit, 16-bit, and 64-bit data types.
IVL also fully supports structs, arrays, and references (including
vector references to vectorized types), but only partially supports
pointers.

As IVL currently only supports one global vector length N
per compilation unit, VecImp’s block[N] is called varying, and
block[1] is called uniform. Like VecImp, IVL supports unbound vari-
ables, and full polymorphism in parameter type length. In terms
of control-flow IVL supports all of if/else, do, while, for, break,
continue, and return, with the sole exception of goto. In addition,
IVL also supports some simple reduction operations like “varying
bool any(varying bool)” or “varying bool none(varying bool)” in

order to determine whether at least one or no element in a boolean
vector is true.

5.3 On-demand Vectorization
Vectorization in IVL is done on demand: Similar to the behavior
of templates in C++, IVL parses struct and function definitions but
does not emit anything until instances of those types and functions
are required. For example, when IVL encounters a global variable
of a vectorized type, it emits a vectorized form of this type (in C++
code). Vectorization of code is triggered when IVL encounters a
function with the kernel keyword; it will then emit a C function for
this kernel (plus some additional helper functions to allow calling
this function from the host machine if required), and will vectorize
this kernel’s body, which in turn will on-demand emit all functions
called by this body, etc.

Statements and expressions operating on varying types will
emit vector intrinsics, while purely uniform expressions/statements
will emit only scalar code even when inside a vectorized function
(like proposed by VecImp). This is highly desirable in that it uses
precious vector registers and costly vector instructions only where
required, and enables a mix of scalar and vector expressions that
MICs superscalar architecture (with parallel scalar U and vector
V pipes) is particularly good at. For example, if a for-loop in a
(vectorized) function uses a loop condition that only depends on a
uniform function parameter that respective loop control code will
use only scalar x86 instructions.

Polymorphism in vector length. Polymorphism also works like
proposed in VecImp: Unbound function arguments are bound when
IVL encounters its call site, and are then bound to the vector length

of the respective argument. This means that the same logical func-
tion can end up being emitted in multiple incarnations (depending
on which of its parameters are uniform or varying). This, too, is
highly desirable in that information about which data are uniform
is preserved across function calls—usually leading to significantly
more efficient code and storage than if all scalar data had been
broadcast to vector form upon the first function call (as would hap-
pen in a pure SIMT paradigm). In particular, a given control-flow
statement in an input function can get emitted in scalar form in one
function instance, and vectorized in another.

Like polymorphism in C++, this mechanism requires the func-
tion to be known at compile-time; to use a function across different
compilation units one either has to explicitly specify all parame-
ters’ vector lengths, or explicitly instantiate this function in one
compilation unit.

5.4 IVL Examples
Though a full performance analysis is beyond the scope of this pa-
per, we give a brief overview over some examples realized with our
current IVL compiler, all running on a 32-core 900MHz Knights
Ferry prototype board. Since IVL also has an SSE back-end, the
exactly same examples will also run on any SSE-enabled architec-
ture, but for the sake of brevity we restrict ourselves to only the
Knights-Ferry results.

Proof-of-concept examples. We ported Mandelbrot, nbody,
and VolumeRender from the CUDA SDK. These examples ran
more or less “out of the box”. Since IVL does not currently support
any native hardware-texturing, the VolumeRender example has to
resort to “manual” tri-linear interpolation to sample the volume,
but nevertheless already reaches roughly 30 frames per second.
For all other examples, both ease of porting and resulting perfor-
mance matched or exceeded expectations. As just one example,
the publicly available aobench benchmark [3] required only trivial
modification to port to IVL,3 while rendering a 10242 frame (with
16 samples per pixel and 16 rays per sample) in an impressive
402ms.

Ray tracer examples. As a somewhat more challenging example,
we also implemented an IVL ray tracer with various shaders into
an existing Knight’s Ferry ray tracing system [36]. The IVL-based
traversal, intersection, and shading code was linked together with
manual intrinsics code for data structure construction and other ren-
derers. In this setting, IVL and manual C code were actually shar-
ing the same data structures! First, we integrated an intentionally
simple eyelight shader into the framework. As a next step, we in-
cluded an ambient occlusion (AO) renderer requiring random num-
ber generation, quasi-Monte Carlo sampling, CDF inversions and
recursion, involving both incoherent data access patterns and sig-
nificant SIMD divergence.

Comparison to hand-written code. To better quantify the perfor-
mance of IVL’s code we also ran some experiments where we com-
pared IVL-generated code to manually-written reference intrinsics
code (in all cases, the reference code was written before the IVL
code). For the eyelight ray tracer, IVL renders a 1600 × 1024
frame in 13.8 million cycles, vs 13.28m cycles in reference intrin-
sics code, a difference of only 4% (an exact reference version for
the AO renderer is not available, due to that code’s complexity).

Finally, we also ran an artificial k-nearest neighbor benchmark
for which we had reference code for a variety of architectures.
This benchmark is highly non-trivial in both control-flow and data
access patterns. In this workload, IVL requires 755 million cycles
(for 1 million 50-neighbor queries in a 1 million point dataset), as
compared to 656m cycles for the hand-coded version—a difference
of 15%.

3 For example, IVL does not support doubles, yet, so both the IVL and the
reference implementation have been modified to use floats.
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The performance gap is mostly encumbered by that fact that
IVL is a source-to-source compiler emitting vectorized code and
relies on icc for optimizations. This compiler does not yet recog-
nize some patterns which are suitable for optimizations but would
have been applied by a human intrinsics programmer. ispc (see
Section 6) on the other hand generates LLVM assembly code and
ships its own set of specific optimizations for such patterns.

6. Related Work
While some efforts exist to integrate short vector types into lan-
guages, over the past years several data parallel languages have
been developed in order to tackle programming for SIMD hard-
ware. These languages can be basically subdivided into data-
parallel languages and vector (or array) programming languages.
Independent from that, several automatic vectorization techniques
exist.

Short vector data types. With the help of C++ operator overload-
ing or built-in support for short vector types in C [9, sec. 6.49],
standard operator syntax can be used instead of writing intrinsics.
This does not only increase readability but also portability of the
source code as each back-end can resort to its specific SIMD ISA.
However, type and control-flow vectorization must still be han-
dled manually by the programmer. Especially, manual conversion
of control-flow to data dependence is problematic as this—besides
being very error-prone—again introduces architectural dependent
low-level details to the source code: This approach has no means
of abstracting blending/predicated execution.

Data-parallel languages. OpenCL and CUDA have already been
discussed in Section 1. These languages are strongly influenced
from shading languages whose programming model is similar but
more limited than the former ones. One of the first shading lan-
guages implemented is RenderMan [10] which originally targeted
a virtual SIMD array machine. Programs for this language are also
written for a single scalar thread, while the compiler and the run-
time system assured to instantiate this thread for all available SIMD
lanes. RenderMan pioneered the concept of uniform and varying
variables. Uniform variables are only set once for each set of prop-
erties. Varying variables on the other hand are allowed to change
as a function of position. For instance, vertex normals in a Phong
shader must be interpolated and must therefore be declared as vary-
ing.

Our work is close to the Intel® SPMD Program Compiler
(ispc) [12]. This LLVM based compiler, where a program is
instantiated n times to run on n SIMD lanes, currently supports
several SSE revisions and AVX. Although IVL and ispc are two
independent projects, we fostered an ongoing discussion with the
ispc authors, which influenced each other’s work. Thus, ispc and
IVL/VecImp share many concepts: implicit handling of blending,
automatic control-flow vectorization and uniform and varying vari-
ables among other features. There are also some differences: ispc
does not support parametric polymorphism while ispc’s pointer
support is more mature than IVL’s one, for instance.

Another data-parallel language is Cn [22] which is in contrast
to many other languages a real extension to C. Cn targets a special
kind of SIMD machine, similar to IBM’s Cell processor. There, a
main processor controls n processing elements (PEs) that all have
their own local memory. Cn extends the type system by two mod-
ifiers mono and poly. poly values sit in the memory of the PEs.
The type system is used to trigger DMA transfers from the main
CPU to the PEs. However, due to this different hardware model, Cn

does not support poly values in compound data structures. More
precisely, mono and poly are storage-class specifiers and not type
qualifiers.

Vector programming languages. These languages are very pow-
erful when dealing with mathematical vectors and matrices, i.e.,
arrays of atomic types. But this is also the main problem: Since

arrays are a too high-level abstraction for short vector SIMD pro-
cessors, it is very difficult to write efficient code for these machines
when dealing with higher data structures. There does not exist any
built-in way in order to deal efficiently with compound data, as this
would contradict the array programming philosophy.

In some languages of this category like APL [15] or Mat-
Lab [23], the programmer has to manually vectorize control-flow.
Others like Vector C [21], Vector Pascal [25], Intel’s Array Building
Blocks (ArBB [24], formerly known as Ct [8]) or Nesl [4] provide
special constructs and/or enhance scalar constructs to work with
vectors for this task.

Nesl integrates nested vectors as first class citizens in a pure
functional language similar to ML. However, Nesl does not in-
tegrate imperative control structures and low-level constructs like
pointers as we do.

ArBB/Ct is inspired by Nesl and can be seen as a Nesl library
for C/C++. ArBB is a functional array language with an interface
to C++. At first glance, it looks like a language extension to C++
for vector processing. However, ArBB uses operator overloading
to construct an intermediate representation of the vector program
which is compiled and executed lazily by a just-in-time compiler in
the ArBB library. While this has several advantages, like adaption
of vectorization to the system the program is currently running on,
it has the disadvantage of having a second language within another
language: ArBB requires own types (i32 instead of int, etc.), own
control structures (_for ... _end_for instead of the common
for loop), and sometimes own operators ((call)(f)(a, b) in-
stead of f(a, b)). Furthermore, the user has to understand the ex-
ecution model precisely: ArBB expressions are used to construct a
program. Putting a+=b in an ordinary loop will create as many ex-
pressions in the IR as the loop iterates. VecImp however combines
both, scalar and vector computing in the same language.

Automatic vectorization. Vectorizing compilers go back to the
early 1980s [1, 2]. Basic predication techniques have been intro-
duced in this line of work [1]. Many different automatic vector-
ization techniques have been developed since then. The majority
of approaches target vectorization of straight-line code loop bod-
ies [28, 35]. There, instruction-level parallelism (ILP) is created by
loop unrolling, or more sophisticated transformations (e.g. poly-
hedral techniques [5]) are applied. Other approaches exploit ILP
in code that can contain control structures (like conditionals and
loops) [18, 19, 33] for vectorization or vectorize a whole func-
tion [16]. Often, those approaches rely on preceding transforma-
tions that create this ILP. Outer-loop vectorization [26, 29, 31] goes
beyond a loop body by integrating inner loops into vectorization.
Another idea is to use the SIMD register file as fast cache [34].

As stated in the introduction, automatic vectorization is not ap-
plicable in our setting. The modifications to the data structure lay-
out and the resulting changes in the code are not local to some code
part. They often affect the whole program. Furthermore, algorithms
substantially change, when they are programmed with SIMD in-
structions in mind. Current static analyses and code transforma-
tions are not able to perform such transformations automatically
in a satisfactory way. Our work focuses on the programmer who
explicitly wants to program for a CPU equipped with a SIMD in-
struction set without exposing her to assembly-level programming.
This clientele is not satisfied with automatic techniques that only
work on small code parts and depend on a preceding analysis that
is not transparent to the programmer.

7. Conclusions and Future Work
The first practical experiences show that code emitted by IVL
is comparable to hand-written intrinsic code. Smarter compiler
transformations and back-ends would even produce higher quality
code.

A hybrid SoA container class. As a next step, we would like to
integrate this model into a C/C++ compiler. VecImp only changes
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Imp where necessary and the added features are only minimum
requirements in order to describe low-level SIMD programming in
an abstract way. Often used programming patterns can be further
abstracted with standard higher-level language features in order
to reduce boilerplate code and increase portability. In particular,
the C++ template mechanism would allow to define a hybrid SoA
container class: Similar to std::vector which abstracts a traditional
C array, one could implement a wrapper around a T block[N]*:
// scalar context throughout this example
struct vec3 { float x, y, z; };
// vec3 block[N]* pointing to ceil(n/N) elements
hsoa<vec3> vecs(n);
// preferred vector length of vec3 automatically derived
static const int N = hsoa<vec3>::vector_length;
int i = /*...*/
hsoa<vec3>::block_index ii = /*...*/
vec3 v = vecs[i]; // gather
vecs[i] = v; // scatter
vec3 block[N] w = vecs[ii]; // fetch whole block
hsoa<vec3>::ref r = vecs[i]; // get proxy to a scalar
r = v; // pipe through proxy
// for each element
vecs.foreach([](vec3& scalar v) { /*...*/ });

The inner type hsoa<vec3>::ref consists of a pointer pointing to
the block in question and a lane index. Furthermore, this class is
equipped with some conversion operators in order to automatically
convert this proxy to the scalar base type (vec3 in this case).

The foreachmethod is particularly interesting: Most of the time,
i.e., while not processing one of the two border areas, each iteration
can fetch a whole vec3 block[N]& scalar. The border areas must be
handled specially—either by setting up an appropriate mask, or
by scalarizing the border sections. This special setup is factored
out in the foreach method which invokes different versions of the
polymorphic lambda function and the user of foreach does not have
to care about border areas anymore.

Block hierarchy. One could also imagine having a hierarchy of
blocks. This information would also be annotated at the type and
could be used in order to abstract blocks/work groups in CUD-
A/OpenCL or the layers of the cache hierarchy like cache lines
and page sizes. A long term goal would be a language which emits
SIMD CPU code and PTX/CUDA code dependent on the types
which trigger the invocation of a kernel. Additional setup code
would also be automatically generated.
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