
Synthesizing Hot Code Paths by Abductive
Reasoning

Simon Moll
Saarland University

moll@cs.uni-saarland.de

Sebastian Hack
Saarland University

hack@cs.uni-saarland.de

Abstract—Many SPMD programs suffer from divergence in
control flow and memory accesses, e.g. when handling boundary
conditions. While often only few work items diverge, a vectorizing
compiler has to generate code that handles all of them. In
general, this leads to overhead even for work groups that show
no divergence. We present a novel optimization that synthesizes
conditionals using abductive reasoning and Counter-Example
Guided Inductive Synthesis (CEGIS) to dispatch diverging and
non-diverging work items to specialized code paths. We evaluate
our technique with a vectorizing OpenCL driver. On several
benchmarks that the driver successfully vectorizes, we observe
an additional speed up of up to 54.55% for control-flow opti-
mizations and up to 146.14% for memory-access optimizations.

I. INTRODUCTION

Many SPMD programs suffer from divergence in memory
accesses and control-flow. Memory access divergence means
that the addresses to load from are neither identical for all
work items in a work group nor consecutive. Control-flow
divergence means that the work items of a work group take
different directions at a branch. Consider, for example, the one-
dimensional convolution kernel depicted in Figure 1. Convo-
lution is representative for operators in the image processing
domain, where often the same kernel function is applied to
every pixel individually.

stencilWidth

ileft right

width

x

vstep = (stencilWidth - 1) / 2
for (x = 0; x < width; ++x) {
left = max(0, x - vstep)
right = min(width - 1, x + vstep)
sum = 0

for(i = left; i <= right; ++i) {
sum = sum + input[i] * stencil[i - (x - vstep)]

}
output[x] = sum

}

Fig. 1: One dimensional convolution kernel.

Assume that a vectorizing compiler vectorizes the outer

stencilWidth

ileft right

width

0 x

(a) Instance of the convolution kernel with x = 1. The bounds of the
inner stencil loop are optimized in a way that makes its trip count
dependent to the pixel position x.

PPPPPPtrip
x 0 1 2 3 4 5 6 7 ..

0 0 0 0 1 2 3 4 5
1 1 1 1 2 3 4 5 6
2 2 2 2 3 4 5 6 7 ..
3 3 3 4 5 6 7 8
4 4 5 6 7 8 9 ..

(b) Table showing the mapping of pixel position (column) and loop
trip (row) to value of i. The stencil has width 5. The first SIMD group
(pixels 0 to 3) shows divergence in the loop trip count and values
of i. The next SIMD group (pixels 4 to 7) is non-divergent with
an uniform loop trip count and a consecutive pattern in the values
of i. The highlighted column corresponds to the instance shown in
Figure 2a.

Fig. 2: Divergent behavior in the convolution kernel.

loop, which iterates over all pixels. The inner loop, which
iterates over the stencil elements, executes sequentially for
each work item. Let us assume that pixels beyond the image
boundary do not contribute to the result (in practice, other
techniques are also relevant). The stencil loop is optimized
to only iterate over stencil elements that are multiplied with
pixels in the image. This makes the trip count of stencil loop
dependent on the pixel position.

As shown in Figure 2, this leads to control flow divergence
at the image boundary because the trip count of the inner loop
differs among work items of the same group. Vectorizing com-
pilers [1] usually handle divergence by predication. Figure 3
shows the code such a compiler would have produced. Notice
the predicated loads at the end of the inner loop that handle
control flow divergence.

Work groups that only process pixels in the image center
however, have non-divergent control flow and the value of i

vstep = (stencilWidth - 1) / 2

// vectorized loop
for (x = 0; x + 3 < width; x = x + 4) {
[x1,x2,x3,x4] = x + [0,1,2,3]
left = max(0, [x1,x2,x3,x4] - vstep)
right = min(width - 1, [x1,x2,x3,x4] + vstep)
sum = [0,0,0,0]

// stencil loop
i = left
do {
[p1,p2,p3,p4] = i <= right
if (!p1 && !p2 && !p3 && !p4)

break

[a1,a2,a3,a4] = i - (x - vstep)
[in1,in2,in3,in4] = [0,0,0,0]
[s1,s2,s3,s4] = [0,0,0,0]

if(p1) { in1=input[i1]; s1=stencil[a1] }
if(p2) { in2=input[i2]; s2=stencil[a2] }
if(p3) { in3=input[i3]; s3=stencil[a3] }
if(p4) { in4=input[i4]; s4=stencil[a4] }
v = [in1,in2,in3,in4] * [s1,s2,s3,s4]
sum = sum + v
i = i + 1

} while(true)
output[x:x + 3] = sum

}

Fig. 3: With predicating vectorization. The compiler vectorizes
the outer loop that iterates over the pixel coordinates x. As its
trip count varies by the pixel, the inner loop is fully predicated:
the loop iterates until all work items have finished (p1 to p4).

vstep = (stencilWidth - 1) / 2
sum = [0,0,0,0]
left = x - vstep
right = x + vstep

for(i = left; i <= right; ++i) {
pixel = input[i:i + 3]
weight = stencil[i - (x - vstep)]
sum = sum + pixel * weight

}

output[x:x + 3] = sum

Fig. 4: Vectorized loop body for SIMD groups in the image
center.

is consecutive in the pixel position. For all of the work items
in such a work group, either p1-p4 are either all true or all
false. For these work items, the more efficient code show in
Figure 4 could be used. This code does not need to handle the
divergence imposed by the boundary condition. The counter
variable i is consecutive and increases by one from one
instance to the next. A single vector load instruction accesses
the elements of the input array indexed by i. Similarly, the
load to the stencil array is uniform and remains scalar. No
predication is needed.

The condition under which the uniform loop can be exe-
cuted is checked quickly by the following test and without
any vector instructions:

(x ≥ vstep) ∧ (x + vstep + 3 < width) (1)

This condition is independent of the i loop iterating over

the stencil elements. Thus, the compiler can optimize the
x loop by splitting it at the boundaries of the optimization
condition. This generates a code path for the left image
margin, the optimized code path for center pixels and again
a path for the right image margin as shown in Figure 5. The
condition is simple enough such that the compiler achieves
this transformation this with standard optimizations such as
loop splitting and unswitching. However, to the best of our
knowledge no existing compiler optimization is able to infer
this condition automatically.

In this paper, we present a technique that is able to infer
equation 1 automatically by employing a mode of reasoning
called abduction. Given a proposition N , one looks for a possi-
ble explanation M , such that M =⇒ N . The proposition M
is then said to be abducted form N . We use abduction to
infer from constraints, under which more aggressive program
optimization would be possible, a condition that guards a path
where the optimizations are applicable.

Coming back to our example, our technique starts with the
vectorized program (Figure 3). We want to find a condition
under which the control flow of the inner stencil loop is
preserved. To this end, we state the initial proposition (2) that
the exit condition of the loop is uniform.

(i <= right) : U (2)
⇐= left : C ∧ right : C (3)
⇐= (x ≥ vstep) ∧ (x + 3 < width− vstep) (4)

Our procedure implements two kinds of abductive reasoning.
In Abstract Abduction, the procedure assigns more precise
abstractions to program variables such that the proposition
holds. We apply abstract abduction whenever the proposition
uses loop-carried variables as it is the case in our example. The
procedure abducts proposition (15), which states that left
and right are consecutive. This condition could be tested
in the outer loop at run time. However, we generate a more
efficient test, that can be tested outside of both loops, through
a second kind of abduction. Concrete Abduction synthesizes a
predicate on the program variables that implies the proposition.
This finally leads to proposition (4), which directly checks if
the SIMD group is in the image center.

A. Contributions

In this paper, we make the following contributions.

• We present a novel synthesis procedure for boolean pred-
icates over linear integer terms. The procedure combines
SMT solving with edge detection in binary images to
implement a variant of the Counter-Example Guided
Inductive Synthesis (CEGIS) paradigm.

• We apply our synthesis procedure in the context of whole-
function vectorization [1]. The procedure synthesizes
efficient tests for code paths that exploit optimizable
memory and control flow patterns. To our knowledge,
these optimizations were before only possible with spec-
ulative approaches or profiling data. Our technique is

int vstep = (stencilWidth - 1) / 2
int x = 0;
for(;x - vstep < 0; x +=4) {
... //default

}

for (; x + 3 + vstep < width; x += 4) {
float4 sum = 0
int left = x - vstep
int right = x + vstep

for(int i = left; i <= right; ++i) {
float4 pixel = input[i:i + 3]
float weight = stencil[i - (x - vstep)]
sum += pixel * weight

}
output[y * width + x] = sum

}

for(;x + 3 < width; x +=4) {
... // default

}

Fig. 5: With optimized path for center pixels. The pre-existing
loop splitting pass in LLVM optimizes the program further.

applicable at compile time. Although evaluated in this
specific domain, our technique is generally applicable.

• We evaluated our technique experimentally on a research
OpenCL driver, which uses a state-of-the-art Whole-
Function Vectorizer based on LLVM. We observe an
additional speed-up of up to 146.14% over functions
vectorized without the optimization. The experiments also
confirm the efficiency of the synthesis procedure in terms
of compile time: It reliably terminates within seconds.

This paper is organized as follows. In Section II, we give
an overview of the steps involved in our optimization. We
continue in Section III with a detailed explanation of, first,
the optimization algorithm and, second, the actual synthesis
procedure. We report experimental results in Section V and
conclude in Section VI.

II. OVERVIEW

We give a schematic overview of our optimization procedure
in Figure 6. The vectorizing compiler invokes the optimiza-
tion procedure on the scalar input function and provides a
constraint that describes the hot code path to optimize. In
our example, this is the condition α(i < right) v U . In
this section, we outline the steps involved in the optimization
starting from the moment of invocation.

A. Abstract Abduction.

If the hot path contains loop-carried variables, as it is the
case in our example, we need a loop invariant to reason about
the program and the condition statically. In this work, we use
the invariants provided by divergence analysis [2], [1]: Current
vectorizers use data flow analysis to restrict the locations
where divergence can occur. If all operands of an instruction
are identical for all vector elements, we say that the operation
is uniform and the corresponding instruction may remain scalar
in the vectorized program. The analysis classifies control-
flow masks and program variables according to a divergence

lattice. We show the parts of the lattice relevant to our work
in Figure 7. Note, that control-flow masks, which implement
predication in the vector program are boolean and are therefore
abstracted to either uniform or >. Figure 8 shows the results

>

C U

⊥

Abstract Concrete
> [x, y, z, w]

C [n, n+ 1, n+ 2, n+ 3]

U [n, n, n, n]

Fig. 7: Hasse diagram of the simplified divergence lattice
L without alignment (for vector width 4). The abstraction
function α : Z4 → L maps concrete valuations to lattice
elements.

of divergence analysis on our running example. The divergent
behavior of the stencil loop reflects in the > annotations for
the variables i,left and right controlling it.

stencilWidth:U
vstep:U = (stencilWidth - 1) / 2
for (x = 0; x < width; ++x) {
x:C
left:> = max(0, x - vstep)
right:> = min(width - 1, x + vstep)
sum:U = 0

for(i:> = left:>; (i <= right):>; ++i:>) {
sum = sum:> + input[i]:>

* stencil[(i - (x - vstep)):>]:>
}
output[x:C] = sum:>

}

Fig. 8: One dimensional convolution kernel as it is annotated
by the divergence analysis. Here, v:l denotes that variable v
receives the abstraction l with respect to the divergence lattice
of Figure 7.

The condition under which we can make our optimization
is that

Z := α(i ≤ right) v U

where α is the abstraction function (in the sense of abstract
interpretation) of divergence analysis that maps concrete to
abstract values. Condition Z means that the comparison i ≤
right yields either true or false for all vector elements, that
is the loop has no control flow divergence. Now we want
to abduct a condition X that implies Z but comprises only
variables that are not carried by the loop. Therefore, X can be
checked before the loop. In abstract abduction, this condition
is expressed on the abstract values of a divergence analysis.

To this end, we cast the divergence analysis of the input
program as an SMT formula. This formula encodes the data
flow equations and the abstract semantics that relates abstract
to concrete states. The divergence analysis of the loop-carried
variable i in our running example is represented by the

Vectorizing
Compiler

Abstract
Abduction

SMT Encoder
Concrete Abduction

Literal Discovery

Clause Construction

Scalar function

Optimization constraint

SMT vector program

Lattice constraints
Acyclic

Linear
inequalities

Linear predicate (DNF)

Fig. 6: Schematic overview of the optimization procedure.

following formula:

φ :=

∃left], right], ipp], i].(
i] v left] t ipp]∧

∀σ.(
α(i(σ)) v i] =⇒ α(ipp(σ)) v ipp])

)
∧

α(right(σ)) v right]∧

α(left(σ)) v left]
)

(5)

Any fixed point solution of formula (5) is a solution to the di-
vergence analysis problem. The least fixed point solution with
respect to left] ,right],ipp] and i] is the most precise solution.
For example, a trivial fixed point is given by abstracting all
variables to >.

We find the least fixed point solution using a refinement
loop based on program state samples σ. We start by setting
all abstract variables left] ,right],ipp] and i] to ⊥. Then, we
repeatedly generate program states σ that are counter examples
for the universal quantifier. If a counter example exists, we
generalize the abstract variables such that the formula is again
satisfied. The process terminates in a fixed point solution, for
which no counter example states σ exist. In the case of the
divergence lattice, this is the least fixed point solution. For
brevity we will only the show the part of the program state
samples relevant to the solution process.

Initially, all abstract variables are ⊥ and so a possible
counter example is:

σi = [0, 0, 2, 1] ∧ σleft = [3, 7, 6, 2] ∧ σright = [4, 8, 9, 3]

All evaluations in state σ are > and violate the current model
that sets all abstractions to ⊥. Therefore, we generalize the
abstract variables such that σ is not longer a counter example
of formula (5) by setting:

right] = > ∧ left] = > ∧ i] = >

Note, that we can not modify the abstract variable ipp] as the
counter example does not satisfy the precondition α(i(σ)) v
i]. We run the refinement loop again and might get the state
sample

σi = [5, 7, 8, 9] ∧ σipp = [6, 8, 9, 10]

We finally refine ipp] = >. As all abstract variables are now
> any program state is admissible and no further counter
examples exist. The process outlined above generates a least
fixed point solution of the data flow problem for all states.
However, the optimization we want to perform, that is to
produce a special variant of the inner loop for all non-divergent
work items, is not valid for all states but only for those states
for which condition Z holds.

To abduct X from Z, we modify the analysis equation in
the following way: We add the optimization constraint Z to
the data flow equation part of φ. This restricts the set of states
to those for which Z is holds. In general, this alone makes
the formula unsatisfiable. Therefore, we relax the formula in
the sense that we allow the solver to select a more restrictive
abstraction to potentially satisfy the formula. In the example,
we will relax the abstract variables right] and left]

φ :=

∃left], right].∃ipp], i].(
i] v left] t ipp]∧

∀σ.(
α(i(σ)) v i] ∧ α(right(σ)) v right] ∧ α(left(σ)) v left]

=⇒
α(ipp(σ)) v ipp]∧

α(i(σ) ≤ right(σ)) v U)
))

In this abduction problem, we are interested in a greatest
fixed point solution in the relaxed variables that is consistent
with respect to Z. The restriction formula corresponding to a
greatest fixed point solution that is Z-consistent corresponds
is a weakest precondition for the optimization constraint.

This new problem, has the new trivial solution that sets all
relaxed variables to ⊥.

If we fix the relaxed variables to abstractions, we get again
a divergence analysis problem. We use this observation to
split the abduction problem in two parts, the inner data flow
problem and the outer abduction problem on the relaxed
variables. We solve the inner data flow problem with the
method outlined above. For the outer abduction problem, we
search for a greatest assignment to the relaxed variables such
that the inner problem has a solution that is consistent with
the optimization constraint Z. To this end, we initially set
left] and right] to ⊥. Each iteration generalizes the relaxed
variables, solves the data flow problem and checks whether
the solution satisfies the optimization constraint. If no further
generalization is possible, the process terminates.

For our running example, this finds the following greatest
assignment to the relaxed variables, which corresponds to the
abducted formula

X := α(left) v C ∧ α(right) v C

B. Concrete Abduction.

Abstract abduction derived constraints expressed by means
of the abstraction used in divergence analysis. Concrete ab-
duction abducts a linear integer predicate that implies the
constraint found by abstract induction. This is desirable as
linear constraints on loop indices are easily exploitable by
standard compiler optimizations as loop splitting (cf. Figure 5).
Furthermore, the linear predicates we abduct do not use vector
variables making them cheap to evaluate.

We devised a novel synthesis procedure that under-
approximates a boolean predicate s over a vector of integers,
Σ ⊆ Zn The procedure synthesizes a predicate p in disjunctive
normal form (DNF) where each literal has the form

±x · · · ± z ≤ c (mod m)

Unlike other template-based synthesis procedures, the number
of clauses, literals per clause, and integer variables per literal
is not limited a priori.

The synthesis procedure operates in two phases. During
literal discovery the method analyzes the specification s and
proposes a set of literals L of above form. In our running ex-
ample, the proposition (15) does hold at (x, vstep, width) =
([1, 2, 3, 4], 1, 8). It is invalidated, if increasing vstep by 1
or if decreasing all components of x by 1. The proposition is
tight in vstep and x, which is captured in the linear constraint
σx ≥ σvstep. If the number of literals exceeds a given
threshold, Literal Discovery proposes a modulus constraint
that subsumes as many already found literals as possible.

In the final boolean structure synthesis phase, the procedure
iteratively constructs conjunctive clauses that cover sections of
s that evaluate to true. The clauses are build from the literals
found during literal discovery.

At this point, we only state that the procedure will find the
following solution and refer the reader to Section III-E for a

detailed presentation of the synthesis procedure:

p(σ) = (σx ≥ σvstep) ∧ (σx + 3 < σwidth − σvstep)

III. METHODOLOGY

The optimization applies abductive reasoning to abduct
from the optimization constraint a quickly-checkable predi-
cate on program variables. If the abducted predicate holds,
the optimization constraint holds as well, and execution can
continue on a path that is optimized for the constraint. The
optimization procedure applies abductive reasoning through
two specialized abduction procedures - Abstract Abduction and
Concrete Abduction.

If the optimization constraint is loop carried, Abstract
Abduction abducts an intermediate constraint that is not. This
intermediate constraint is a conjunction of lattice constraints
of loop-carried variables. Finally, Concrete Abduction synthe-
sizes a linear predicate in Presburger Arithmetic that implies
the optimization constraint. The invoking compiler generates
a specialized code path conditioned on this predicate. We
describe the SMT formulation of the Vectorization Analysis
in Section III-A. In this work, we consider Presburger Arith-
metic, the theory of inequalities over linear integer terms,
for which the problem is decidable. We formally describe
Abstract Abduction in Section III-B and Concrete Abduction
in Section III-C. We finally specify our Synthesis Procedure
in Section III-E.

A. SMT Program Encoding

width:U x:C vstep:U

right left

(i<=right) i i + 1

L

Fig. 9: SSA data dependency graph of the running example.
Expressions in ellipses are fixed to the respective lattice
abstraction. Dashed edges denote data dependency through
abstract interpretation. Nodes in the gray-shaded rectangle are
located in the inner-most loop of the convolution kernel.

The normal divergence analysis is a forward flow analysis
with abstract semantics for the operators. In order to facilitate
the backward reasoning required for abduction, we transfer the
data dependency graph of the function into an SMT problem.
We show the SSA data dependency graph of our motivating
example in Figure 9.

The optimization constraint refers to properties of the vec-
torized function and thus the SMT encoding of the function
needs to be vectorized. The SMT encoding step translates
all variables of the function’s scalar SSA data dependency
graph into vectors in the SMT formulation. To this end, it

defines functions v(l) that compute the l -th component of
vector variable v in program state σ.
• Function parameters and values from calls of unknown

functions or memory accesses are represented as inde-
pendent components of σ. The functions v(l) will only
project their vector value from the program states. The
projection functions may still encode prior knowledge
about possible vector shapes. Lines (6) to (8) introduce
the uniform variables width ,vstep, and the consecutive
variable x .

• Cyclic data dependencies are broken by representing
the PHI nodes in loop headers as independent vector
variables. The data dependencies of these variables are
then approximated by means of abstract interpretation.
The variable i is loop-carried and modeled as a vector
variable in line (11). Constraint (12) preserves the data
dependence to left and i+ 1 by abstract interpretation.

• We remove data dependencies through operations that
exceed the capabilities of the SMT solver and make
the dependent variables independent components of σ
instead. For example, to stay in the realm of Presburger
Arithmetic, we only allow division by a constant but not
by a variable.

width(l)(σ) = σwidth (6)

vstep(l)(σ) = σvstep (7)

x (l)(σ) = σx + l (8)

left (l)(σ) = max (0, x(l) − vstep(l)) (9)

right (l)(σ) = min(x(l) + vstep(l),width(l) − 1) (10)

i (l)(σ) = σ
(l)
i (11)

α(i(σ)) v α(left(σ)) t α(i(σ) + 1) (12)

Note, that we eliminate PHI nodes in acyclic data depen-
dencies by if conversion, which represents the PHI as an
expression selecting its value from all incoming values based
on a boolean predicate. We will use v as a short hand for
v(l)(σ), if not indicated otherwise.

B. Abstract Abduction

Abstract abduction restricts the abstractions of program
variables such that the optimization constraint holds. Such a
restriction formula has the form∧

v∈Vrel

α(v) v av

A program state σ satisfies a restriction formula, if its as-
signment σv to each variable v, is included in the restricting
abstraction av . Vrel is the set of variables that may be
restricted. If Abstract abduction succeeds it returns a general-
most restriction formula. This means that the restriction on no
variable can be weakened without admitting program states
that violate the optimization constraint.

Abstract abduction is given a set of variables that it may
restrict to make the data flow problem satisfiable under the

optimization constraint. We call these variables relaxed as we
may give them any valuation to make the problem satisfiable.
We denote the set of relaxed variables as V]

rel . We choose as
relaxed variables those variables that interact with the opti-
mization constraint and that are immediate data dependences
of loop carried variables. Consider the data flow problem of
our running example shown in Figure 10. right and left
are relaxed because they are used by the iteration variable i.

On the other hand, the data flow problem contains the
abstract variable i]. This abstract variable is necessary to
preserve the loop-carried data flow. V]

abs is the set of abstract
variables occurring in the data flow problem.

The abstract abduction formula has the general shape

∃V]
rel .
(
∃V]

abs . (∀σ.(A(σ) ∧M(σ) =⇒ N(σ))
)

(13)

Formula (15) is existentially quantified in the relaxed and
abstract variables. A is the restriction formula on the relaxed
variables. The formulas M and N encode the data flow prob-
lem under the optimization constraint. M restricts concrete
states σ to be consistent with the abstract variables in V]

abs .
N contains the local consistency constraints of the data flow
problem and the optimization constraint. We are looking for
a greatest fixed point with respect to variables in V]

rel , such
that the nested data flow problem is satisfiable.

Consider the abstract abduction problem of our running
example shown in Figure 10.

right:? left:?

(i<=right):U i i + 1

L

Fig. 10: SMT formulation of the abstract abduction step. A
solution constrains the relaxed variables right and left,
such that i<=right is uniform.

In this case, the formulas are given as

A :=α(right(σ)) v right] ∧ α(left(σ)) v left] (14)

M :=α(i) v i] (15)

N :=α(i+ 1) v ipp] ∧ α(i) v ipp] t left] (16)
α(i ≤ right) v U (17)

a) Problem partitioning: The partition of the abstraction
variables into the two sets V]

rel and V]
rel divides the abstract

abduction formula (15) into two nested problems. The para-
metric data flow problem

φ(V]
rel) := ∃V]

abs . (∀σ.(A(σ) ∧M(σ) =⇒ N(σ))

for which, we are interested in a solution that is a least fixed
point in V]

abs and the abduction problem:

∃V]
rel .
(
φ(v]rel)

)

for which we are looking for a greatest fixed point solution.
In the following, we will discuss how both problems can be

solved independently using program state samples. We begin
with the inner data flow problem.

1) Inner Data Flow Problem: For the inner data flow
problem, the abstractions for relaxed variables are fixed and
the problem reduces to a forward flow analysis. Therefore, we
could use the abstract transformers of the default Divergence
Analysis to find a least fixed point solution.

We use a refinement loop based on example states σ to find
the least fixed point solution. We initially set v]abs := ⊥ and
solve the following formula with an SMT solver

∃σ.
∨

v∈V]
abs

α(σv) t v]abs A v]abs ∧ (A(σ) ∧M(σ) =⇒ N(σ))

(18)
If formula (18) is unsatisfiable, there is no program state that is
subsumed by the abstract variables v]abs . Therefore, v]abs is the
least fixed point solution. Otherwise, there is a program state
σ, that is not covered by the abstract variables. In this case,
we generalize the abstract variables such that they contain the
sample σ by setting:

v]abs := α(σv) t v]abs

After the data flow problem has been solved we check with
an SMT solver, if there is a program state σ that is valid in the
data flow problem but violates the optimization constraint. If
so, we report to the outer solver procedure that no fixed point
exists. Otherwise, the inner data flow problem is satisfiable
and the assignment to the relaxed variables is consistent with
the optimization constraint.

2) Outer Abduction Problem: A solution to the outer ab-
duction problem is a greatest fixed point solution such that
the inner data flow problem is satisfiable. We use fixed point
iteration starting from a valuation that assigns ⊥ to all relaxed
variables.

The iteration function f has two arguments: the current
restriction formula A and a validity formula C. While A
is current restriction formula, C encodes constraints how
the relaxed variables can be generalized. We set initially
C := true and av := ⊥.

In each iteration, the function f queries for new restrictions
a+ that generalize the current restriction a in a way that is
consistent with C.

∃a+
v

 ∨
v∈V]

rel

a+
v A av

 ∧ C(a+)

If the formula is unsatisfiable, the current restriction formula
A is already a greatest fixed point solution and the algorithm
terminates. If such a a+ exists, we fix all relaxed variables
and evaluate the resulting data flow problem. If the inner data
flow problem has a fixed point solution that is consistent with
the optimization constraint, we update the restriction formula
by setting a := a+ and repeat. Otherwise, a+ is an invalid

generalization and we update C to block it in future iterations
by setting:

C ′(a) := C(a) ∧

 ∨
v∈V]

rel

av w a+
v


As C ′ is a restriction on C, the iteration formula descends
on the lattice of validity functions. If the underlying lattice is
finite, the process is bound to terminate with a valid restriction
formula.

a) Motivation: Abstract Abduction is not strictly nec-
essary and concrete abduction could be applied directly. If
the optimization constraint is loop carried, concrete abduction
will generate a loop-carried predicate. This means, there will
only be a specialized code path for the loop body and the
predicate needs to be re-checked in each iteration of the loop.
On the other hand, if there is a non loop-carried implicant
for a loop-carried optimization constraint, the implicant allows
the creation of a path that specializes the loop completely.
Abstract Abduction is also motivated by code quality - a non->
annotation for a program variable means that the compiler can
generate more efficient code for it in the vectorized program.
For our running example, Abstract Abduction will find the
two implicants left : C ∧ right : C and left : U ∧ right : U .
By applying concrete abduction directly on the optimization
constraint, these two solutions are lumped together. While the
resulting linear predicate may apply for more program states,
it will also imply that

left : > ∧ right : >

meaning the computation of left and right has to be done
in vector registers. This is not the case, when applying
concrete abduction to one of the interpolants found by abstract
abduction.

b) Generalization & Limitations: Abstract abduction is
applicable to other flow analysis, given that the underlying
lattice is finite and the solver can handle the theory used in
the abstraction function.

Note, that by modeling computation in the SMT domain
on concrete valuations, our procedure does not need transfer
functions. One may still use an abstract transfer function to
improve the precision in the case where a new independent
variable is introduced instead of computing its value from
the program state. This would conserve some degree of data
dependence.

C. Concrete Abduction

Concrete Abduction infers a linear integer predicate that
implies a given condition. This is the hot path constraint, if the
control flow in the vectorized loop is acyclic, or otherwise the
condition found by Abstract Abduction. The SMT formula for
Concrete Abduction is based on the SMT formulation of the
Divergence Analysis problem. The condition is, in any case,
fully computable from the program state and no t-operator
is required in the construction of the formula. A solution to
the concrete abduction problem is a predicate, p : Σ → B,

that selects a subset of the program states σ which makes the
problem satisfiable:

∃p ∈ Σ→ B. (19)
∀σ ∈ Σ. (p(σ) =⇒ (M(σ) =⇒ N(σ))) (20)
∃σ∗ ∈ Σ. (p(σ∗) ∧M(σ∗)) (21)

The formula has a second-order existential quantifier for the
unknown predicate that will by synthesized. Predicates M and
N are place holders for the data flow constraints introduced
in Section III-A. Line (21) rules out the trivial solution p :=
false . This synthesis problem does not capture the notion that
the predicate p should hold on as many program states σ as
possible. We will present a formal grounding of this notion in
the presentation of the synthesis procedure in Section III-E.

For our running example of Figure 1, the predicates M and
N that encode the data flow constraints are:

M |=σwidth ≥ 0 ∧ σvstep ≥ 0 ∧ σx ≥ 0 (22)
N |=α(min(σwidth − 1, σx + σvstep)) v C (23)
∧α(max (0, σx − σvstep)) v C (24)

Variables ranges are encoded in line (22). Lines (23)-(24) en-
code the intermediate condition found by Abstract Abduction.

D. Consistency
It is not obvious, why the solution to the SMT-based

Divergence Analysis should be consistent. This is because of
the mixed use of abstract interpretation and computation, and
the fact that some data dependencies are completely ignored
in the SMT formulation. Consider the excerpt from a data de-
pendency graph in Figure 11 annotated with lattice constraints
found by abstract abduction. No actual program execution will
satisfy the lattice constraints x/a:C and x/b:U in conjunction.
When abducting a predicate, the only consequence of this is,
that execution will never enter the synthesized path. We argue
that, in the SMT Divergence Analysis step, ignoring all data
dependencies of a variable and fixing its abstraction to top is a
safe over approximation. This approximation yields consistent
solutions at the cost of being imprecise.

x

(x/a):C (x/b):U

Fig. 11: Example of a hidden non-linear data dependency that
will not transfer from the SSA data dependency graph to the
SMT formulation. Instead x/a and x/b will be treated as
independent variables of the program state. While the con-
straint (x/a):C and (x/b):U, generated by abstract abduction,
is infeasible, this only means that the synthesized path will
never be taken.

E. Synthesis Procedure
We devised a novel synthesis procedure that under-

approximates a boolean predicate s over a vector of integers,
Σ ⊆ Zn

s ∈ Σ→ B

We will refer to s as the specification and call the synthesized
predicate p. The procedure optimistically assumes that the
specification s can be approximated by a DNF formula over
linear inequalities of the octagon domain. In the octagon
domain, only zero and ±1 are allowed factors.

±x · · · ± z ≤ c (mod m)

Unlike other template-based synthesis procedures, the number
of clauses, literals per clause, and integer variables per literal
is not limited a-priori.

The synthesis procedure operates in two phases. During
Literal Discovery the procedure analyzes the specification
s and proposes a set of literals L. In the final Boolean
Structure Synthesis phase, the procedure iteratively constructs
conjunctive clauses that imply parts of s. The clauses are build
from the literals found during Literal Discovery.

1) Literal Discovery.: The Literal Discovery phase is con-
cerned with proposing a set of literals L that the synthesized
predicate will be composed of. It exploits the relation between
aliasing artifacts of the specification and the constraints under-
lying the specification. The generated literals are linear integer
constraints.

Given that the assumption holds, the literals of the formula
correspond to linear inequalities of the form: n · σ ≤ b
where n is the normal vector and σ ∈ Σ. We will initially
consider the case of a single linear inequality. Note, that
the inequality does not necessarily occur in this normalized
syntactic representation in the specification. Literal Discovery
does not introspect into the syntactic structure of the formula.
Instead, it infers the normalized representation solely by
drawing point samples under constraints. The linear inequality
is sampled on the integer lattice giving raise to aliasing in the
image interpretation of the samples. The aliasing appears as a
jagged line separating sets of points that are contained in the
inequality and all the others. We overlay the jagged line with
a real-valued interpretation of the inequality in Figure 12a:
the jagged line loosely follows the straight line. Without
introspection, we are facing the challenge of reconstructing
the actual inequality from the aliasing information that is
summarized in the jagged line. We shall refer to the straight
line segments of the jagged line as edges and call sample
points that have neighboring edges border points. We will
refer to edges as feature of border points and shall make
the convention that normals of edges are pointing away from
the border point under consideration. In the integer lattice,
two neighboring points differ only in a single component.
Consequently, the normals of edges have only one non-zero
component and we shall identify the normal, up to the value of
that component, by calling it an edge in v. We will attribute the
edges the sign of the single non-zero component. We observe
the following relation between the normals of edges and the
unknown normal n of the underlying linear inequality: If the
normal of an edge in v is positive (negative), then nv < 0
(nv > 0). Importantly, there is also a point σ with edges for all
v where nv 6= 0. This result yields constraints on the unknown
linear inequality given a border point σ and its set of edges.

(a) Dashed: Rendering of the unknown in-
equality constraint with normal. Continuous:
aliasing in form of a jagged line, shown with
normals.

a

b

(b) Lines a and b are sufficient to partition the
points. With the symmetry constraint (y � x),
Literal Discovery finds the three dashed lines.
Without the constraint, it will find all eight
lines.

(c) Approximation of bound shapes with con-
straints of the octagon domain (y � x).

(d) Missing literals for small shapes
due to the symmetry constraint
(y � x).

(e) Artifacts superseded by correct
literals in larger shapes (y � x).

0

σv

1

b1

4

b2

6

m

1

6σv + 1

4

6σv + 4

(f) Above: remainder b1 and b2 and modulus m in
variable v as returned from DETECT_MODULUS.Below
left: sub lattice for congruence class [b1]. Below right:
sub lattice for congruence class [b2].

We restrict our procedure to normals with components of zero
or absolute one value. This corresponds to linear inequalities
of the octagon domain [3]. Coincidently, the factor restriction
cancels all but one unique solution to the constraints on the
unknown linear inequality. The restriction has two immediate
consequences, which allow us to identify the linear inequality
with a single border sample σ and its edge set: Firstly, any
border point will have an edge in v, iff nv 6= 0. This is because
all sample points with edges are border samples, where the
inequality is tight. In fact all border samples will have exactly
the same set of edges and if there is no edge in v at a sample
point, then nv = 0. Secondly, we can rephrase the general
result above specializing it for the restricted set of factors. If
at a border point σ there is an edge in v with positive (negative)
sign, then nv = −1 (nv = 1), and if there is no edge in v,
then nv = 0. The constant b is then n · σ.

The distinction of edges by the sign of their normals reflects
in the formal definition of two kinds of edges: We formally
define up edges for negative normals and down edges for
positive ones. Edges are defined at a position σ and in variable
v1.

upv(σ) :=s(σ)⊕ s(σ[v → σv + 1])

downv(σ) :=s(σ)⊕ s(σ[v → σv − 1])

1⊕ denotes exclusive-OR.

An edge sample is given by a point σ and the set of up and
down edges at that point. With the definition above, an edge
sample is given by a solution to the following formula:

Input: E ⊆ Σ→ B Output: σ, upv(σ), downv(σ)

σ ∈ Σ (25)∧
e∈E

e(σ) 6= 0 (26)∨
v∈V

upv(σ) (27)

∧
v∈V

downv(σ) =⇒
∨
v′�v

upv′(σ)

 (28)

Constraint (26) blocks edge samples that would yield already
discovered inequalities. The set E controls which edge sam-
ples can be found. It invalides any edge sample that lays
on lines that were constructed from earlier edge samples.
Therefore, in the initial query, E is the empty set. Constraint
(27) enforces that sampleσ has an edge.

A linear inequality will only be proposed for a sample σ
under an order �, iff constraint (28) holds. The performance
of boolean structure synthesis phase is sensitive to the size
of the literal set. This motivates the symmetry breaking
constraint (28). Its effect can be seen in Figure 12b. Of the 6
proposed literals, only a and b are necessary to represent the

specification. This is because literals may be negated and so
the upper left part is enclosed by the clause a∧b and the lower
right part by a∧b. The symmetry constraint blocks inequalities
that are equivalent to already detected inequalities.

Algorithm 1 Literal Discovery main loop.

procedure FIND LITERALS(spec)
E ← ∅
for σ ← query(E) do . Edge query

e← 0
for v ∈ V do

if upv(σ) then
e← e+ (v − σv)

else if downv(σ) then
e← e− (v − σv)

end if
end for
if |E| > threshold then

if (v, b1, b2,m)← DETECT MODULUS(E) then
E′ ← FIND LITERALS(s(σvm+ b1))
E′′ ← FIND LITERALS(s(σvm+ b2))

E ←{e(σvm+ b1)|e ∈ E′}∪
{e(σvm+ b2)|e ∈ E′′}∪
{σv = b1 (mod m)}∪
{σv = b2 (mod m)}

else
abort

end if
end if
E ← E ∪ {e}

end for
L← {e ≤ 0|e ∈ E} . Generate literals

end procedure

a) Sampling loop.: Our algorithm, shown in Listing 1
proposes a new linear inequality constraint for every edge
sample σ, that the SMT solver finds. The state of the algorithm
consists in the set E, which is comprised of lines over Σ, the
set of program states.

In each iteration, the algorithm queries for a new edge
sample that is not covered by the lines in E. The sample
loop terminates when the set E saturates or the sampling
loop seems to diverge. The algorithm assumes saturation in
E if all further edge samples would lay on lines already
contained in E. At this point, the last edge query becomes
unsatisfiable and the algorithm terminates. Otherwise, if the
size of E exceeds a given threshold, the algorithm tries to
infer a modulus constraint from the lines in E.

b) Modulus detection.: FIND_LITERALS applies mod-
ulus detection, if the edge sampling loop seems to diverge
which manifests in an excessive numbers of literals. Our
prototype modulus detection will propose one modulus con-
straint for each variable. Modulus detection heuristically infers
from the lines of E found so far a suitable modulus m and

two remainders b1 and b2. As shown in Figure 12f above, a
repeating pattern in the specification starts at b1 and ends at
b2 modulus m.

A single modulus constraint corresponds to a repeating
pattern with infinite extend. In order to find the ends of the re-
peating pattern, FIND_LITERALS recursively samples edges
on the remainder classes of b1 and b2. We see in Figure 12f
below the two sub lattices: the sub lattice for b1 is empty.
When applied to the sub lattice for b2 FIND_LITERALS
detects two bounding lines for the modulus constraint and
returns. Note, that the threshold criterion implies that literals
with modulus will be used even for large specifications that
do not require them. However, this may still amount to a more
compact representation in these cases.

Eventually, each line e ∈ E is converted to a linear
inequality by setting l(σ) := e(σ) ≤ 0.

c) Completeness and Divergence.: A literal set L is
complete, iff the specification can be expressed as a DNF
formula over literals of L. Consequently, Literal Discovery
only terminates for specifications that can be expressed with
a finite literal set L. If all the required literals are in the
octagon domain this is clearly the case. Otherwise, two kinds
of divergence can occur: Firstly, consider the case of a single
convex shape: Any bound convex shape can be approximated
with constraints of the octagon domain as shown in Figure 12c.
If the shape is unbound and contains a non-octagon line with
infinite extend, then Literal Discovery will diverge in the
attempt to approximate it with infinitely many octagon lines.
Secondly, there can infinitely many convex shapes, possibly
connected by superposition in a concave shape with infinite
extend. In this case, our literal discovery algorithm implements
partial modulus detection.

2) Boolean Structure Synthesis: During Boolean Structure
Synthesis, the synthesis procedure incrementally constructs a
DNF formula p that implies the specification s. The algorithm
repeatedly constructs conjunctive clauses C, such that:

∀σ∈Σ (C(σ) =⇒ s(σ))

Each constructed clause gets adjoined to p by disjunction p←
p ∨ C(σ), meaning that initially p = ⊥.

It is known that DNF formula can be exponentially larger
than the smallest possible boolean structure to represent a
boolean predicate. However, the synthesis problems arising in
our optimization are small and consist only of few literals and
program variables. The standard compiler optimizations, such
as loop peeling or unrolling, running after our optimization
readily exploit the synthesized DNF formulas.

a) Cost model.: We define the cost of p to be the quality
of the approximation, given by the number of assignments
σ that are valid with respect to the specification s but not
accepted by p:

cost(p) = |{σ ∈ Σ|s(σ)}| − |{σ ∈ Σ|p(σ)}|

This cost model motivates the design choices behind our
synthesis procedure. Firstly, if a new clause C implies the
specification but not the current DNF formula p, then the

cost of p decreases by adding the clause to it. Secondly, the
algorithm minimizes the cost of each individual clause by only
constructing prime implicants. Prime implicants are clauses,
from which no literal can be dropped without violating their
property that the clause implies the specification.

b) Clause construction.: Clauses are constructed from all
literals found during Literal Discovery and any free boolean
variable used in the specification. The algorithm operates by
constructing an initial clause with the query:

Input: L ⊆ Σ→ B Output: enable,negate ∈ B|L|, σ∗

C(σ) :=
∧
l∈L

(enablel =⇒ negatel ⊕ l(σ)) (29)

∀σ∈Σ (C(σ) =⇒ s(σ)) (30)

σ∗ ∈ Σ ∧ s(σ∗) ∧ C(σ∗) ∧ p(σ∗) (31)

Constraint 29 defines a clause C as a conjunction of selected
literals from L (enablel) that are optionally negated (negatel).
Line (30) encodes that a valid clause must be a model of the
specification. As of constraint (31), the query enforces that
the clause is satisfiable by at least the program state σ∗. We
will refer to this program state σ∗ as the seed point. While an
initial solution clause may only hold at the seed point, clause
refinement will generate more general clauses that include
bigger sets of program states.

Let C ′ be a clause by the clause construction query. In one
iteration of refinement, the algorithm tries to find a new clause
C that holds at more program states than C ′

∀σ ∈ Σ.C ′(σ) =⇒ C(σ) (32)∨
l∈C′

(
enablel

)
(33)

Here, l ∈ C ′ denotes all literals that were enabled - through
assignment to enablel - in the solution to the last query. The
new clause C must imply the old clause C ′ as of line (32).
Line (33) encodes the property of prime implicants, that none
of their literals can be dropped without invalidating the clause.

Finally, the refinement loops terminates with an unsatisfiable
formula, meaning that a prime implicant clause was found. The
algorithm adds the last refined clause to the DNF formula p
and queries for a new initial clause with a new seed point.
If already the initial query fails, no further clause could be
constructed from the given literals and the synthesis procedure
returns the last DNF formula p as synthesized predicate. Oth-
erwise, the process stops on a timeout with the last constructed
DNF formula.

IV. RELATED WORK

Finding least and greatest fixed points is not new and is,
for example, discussed in the dissertation of Srivastava [4]. [5]
introduce Z-Polyhedra, which is the intersection of polyhedra
and lattices, and proof the equivalence of z-polyhedras to
predicates in Presburger Arithmetic. This means our predi-
cate template covers all predicates expressible in Presburger
Arithmetic.

c) Polyhedral optimization: In the linear case, it is
possible to generate the preconditions using a polyhedral
model. In the polyhedral model, the optimization constraint is
encoded as a union of Z-polyhedra. Loop invariant precondi-
tions can be generated by eliminating iteration variables from
the polyhedra. However, even state-of-the-art vectorization
techniques based on the polyhedral model [6], [7] do not
explicitly consider precondition synthesis. A similar effect
may be achieved in some cases if the polyhedral optimizer
supports loop peeling.

d) Counter-example Guided Abstraction Refinement:
Both abduction procedures use ideas of Counter-Example
Guided Abstraction Refinement: Literal Discovery is closely
related to predicate inference. Predicate inference is involved
with finding a predicate the separates a given example from
a counter example. Unlike approaches based on proof inter-
polation, such as [8],[9], Literal Discovery uses an efficient
heuristic based one edge detection to propose new predicates.

On the other hand, solving the abstract abduction problem
relates to the refinement loop in CEGAR. In CEGAR, a
counter example that is valid within the current abstract model
is ruled out by refining the underlying lattice with predicate
inference. In abstract abduction, however, we retract to more
restrictive abstractions within the same lattice to rule out the
counter example.

e) Pre-condition Synthesis: The problem of weakest
precondition synthesis has been studied extensively in the
literature, e.g. by Dijkstra [10]. Nuno et Al[11] infer pre-
conditions for code rewriting rules. The preconditions are
constraints on the read-write dependencies of the gaps in the
matching pattern of the rule. If the precondition holds, the
code transformation can be applied. Our approach splits the
problem in two phases: Abstract Abduction, which infers a
loop invariant, and Concrete Abduction, which generates a
linear predicate. Dillig et al [12] discuss the synthesis of loop
invariants with the MistralSMT solver engine. Other tech-
niques rely on backward flow analysis to infer loop invariants
and preconditions, such as in work by Cousot et al [13]. This is
not directly applicable as the Divergence Analysis is a forward
flow analysis. We solve the abduction problem without an
explicit inverse transformer by virtue of searching the greatest
abstractions on input variables that satisfy the constraints on
the program. Abstract abduction solves a similar problem as
in abstract debugging by Bourdoncle [14] where an early
precondition for erroneous behavior later in the program is
found. However, the explicit reversal of abstract interpretation
has been studied extensively in the 80s, including works by
Hughes et al [15].

f) Best Abstract Transformer: Abstract abduction resem-
bles the problem of synthesizing a most precise abstract
transformer as discussed in Reps et Al [16]. Their approach
constructs the most precise abstract transformer pointwise for
each combination of fixed abstractions on the inputs. They
generate abstract transformer for a forward analysis. On the
other hand, abstract abduction applied to a single operator with
a lattice constraint on its output corresponds to the abstract

backward transformation of that output.
g) Counter-example Guided Synthesis: Pre-condition

synthesis is a specific case of inductive synthesis, where are
en explicit function is constructed from a set of implicit
constraints. Many techniques implement the Counter-Example
Guided Inductive Synthesis (CEGIS) paradigm, where a can-
didate function is refined with input/output samples. These in-
clude function templates with holes [17], [18], [19] and SMT-
guided linking of operators, e.g. Jha et al [20]. Recently, Jha et
al [21] presented History Bounded Counter example Guided
Inductive Synthesis (HCEGIS), where counter-examples are
weighted by their distance to the next positive sample with
respect to some metric. Our edge sampling technique confines
counter-examples to lay immediately next to positive exam-
ples.

There is a rich corpus of work on finding abstract inter-
pretations of convex sets [22], [23], [24], [3], to name a
few. Note, that abstract interpretation procedures only consider
quantifier-free conditionals as they occurr, for example in
program assertions. Our technique, however, can generate
preconditions even if the specification contains quantifiers,
given the underlying SMT solver is powerful enough.

A. Vectorization in presence of divergent control flow

There are two main strategies that deal with control flow
divergence in vectorized programs in the literature, for ex-
ample discussed in the work of Mahlke [25], A predicating
vectorizer ([26]) applies if-conversion to divergent branches.
Where predicated execution is not available through hardware,
the vectorizer emulates it with additional fix-up code. State-of-
the-art function vectorizer use a technique called Divergence
Analysis, see [1], [2], to preserve as much control flow as
possible in the vectorized function. For the convolution kernel,
a predicating vectorizer produces code as seen in Figure 3.
The predicated program does not exploit the regular behavior
of traces in the image center in any way.

B. Speculative optimizations in Whole-Function Vectorization

Speculative vectorizers (Sujon et al [27]) pick paths through
the program and vectorize them as straight line code. Sentinels
placed at points of divergence in the paths dispatch execution
to scalar code, if the assumed coherence is violated. Due
to the high cost of speculation, these approaches have only
been implemented in iterative compilers that rely on runtime
measurements or profiling data. In our running example,
speculation enables unpredicated execution of the stencil loop
until the first lane diverges. This lumps the irregular address
vectors at the image boundary together with the consecutive
and uniform addresses in the image center, destroying the
potential to optimize for the latter in the run.

Karrenberg et al [28] optimize hot code path in vectorized
programs. Their experimental approach uses an SMT solver to
aggregate program states that are amendable to the hot code
path. They demonstrate the applicability of their technique on
two benchmarks, FastWalshTransform and BitonicSort, which
we revisit in our experimental section V. We supplement the

synthesis procedure missing in their work and introduce a
structured approach to these optimizations.

Shin et al [29] insert skipping branches in vectorized
functions, that are taken if no lane will be active in a section.
As their technique relies on direct tests of mask registers,
the test is loop carried, if the mask is it too. In contrast,
our technique is applicable for a wide-range of optimizable
patterns and generates simpler conditions, that also eliminate
loop dependencies by abductive reasoning.

V. EXPERIMENTS

We implemented our optimization technique in the Whole-
Function Vectorizer by Karrenberg [1] and used the Z3 solver
by De Moura et al [30] for the SMT queries. We evaluated
the runtime of the two phases of Concrete Abduction for
vectorization factors 4 and 16. The number of independent
integer components in the SMT encoding of the programs is
shown in the last column ||Σ||.

For a vectorization factor of 4, we compare the kernel
runtime against the unmodified vectorizer (column WFV) and
the OpenCL driver 2012 of Intel (column Intel ’12). Newer
versions of the latter were not supported on the machine used
for runtime measurements.

The concrete abduction problems of DwtHaar1D and Prefix-
Sum are identical. The same holds for the FastWalshTransform
and BitonicSort benchmarks. The latter two involve non-linear
integer arithmetic that neither Z3 nor other SMT solvers, such
as CVC4 [31] or MiniSmT by Zankl and Middeldorp [32]
could handle. However, there exists a linear predicate that
could be abducted. We report how long the synthesis procedure
takes to reconstruct the target solution t (mod 4) = 0. The
threshold for modulus detection is 100, resulting in a total of
103 SMT queries for these benchmarks.

Of the benchmarks, only Convolution2D requires Abstract
Abduction.

VI. CONCLUSION

Abduction is a powerful tool for inferring preconditions for
highly optimizable program paths. We have shown its utility
for finding preconditions for non-divergent execution in vec-
torized functions. Despite the theoretic complexity, the SMT
problems arising in this work are small and the preconditions
are found quickly in the considered benchmarks.

REFERENCES

[1] R. Karrenberg and S. Hack, “Whole Function Vectorization,” in Code
Generation and Optimization, 2011.

[2] D. Sampaio, R. M. d. Souza, S. Collange, and F. M. Q. a. Pereira,
“Divergence analysis,” ACM Trans. Program. Lang. Syst., vol. 35, no. 4,
pp. 13:1–13:36, Jan. 2014.

[3] A. Miné, “The octagon abstract domain,” Higher Order Symbol.
Comput., vol. 19, no. 1, pp. 31–100, Mar. 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10990-006-8609-1

[4] S. Srivastava, S. Gulwani, and J. Foster, “Template-based program
verification and program synthesis,” International Journal on Software
Tools for Technology Transfer, vol. 15, no. 5-6, pp. 497–518, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s10009-012-0223-4

SIMD factor 4 SIMD factor 16
Opt WFV Intel ’12 Edges Clauses Edges Clauses ‖Σ‖

Benchmark n [ms] [ms] [SpeedUp] [ms] [SpeedUp] [ms] (# queries) [ms] (# queries) [ms] (# queries) [ms] (# queries) #
DwtHaar1D 216 6.24 7.90 +26.60 % 6.27 +0.48 %
PrefixSum 512 0.077 0.119 +54.55 % 0.08 +3.90 % 6.87 (2) 14.00 (2) 8.03 (2) 15.37 (2) 2
Convolution2D 666.06 1639.47 +146.14 % 2569.46 +285.77 % 24.74 (3) 27.57 (2) 87.57 (4) 63.14 (2) 3
FastWalshTransform 224 794.74 1583.77 +99.28 % 1783.75 +124.44 %
BitonicSort 220 584.29 576.27 -1.37 % 11625.53 +1889.68 % 979.59 (103) 16.65 (2) 1054.71 (103) 18.28 (2) 1

TABLE I: Runtime of the benchmarks and concrete abduction as measured on a Intel R©CoreTM2 Quad CPU Q9550 machine
with 2.83GHz. The CPU has SSE vector registers of width 4.

[5] G. Gupta and S. Rajopadhye, “The z-polyhedral model,” in
Proceedings of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’07. New
York, NY, USA: ACM, 2007, pp. 237–248. [Online]. Available:
http://doi.acm.org/10.1145/1229428.1229478

[6] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan, “When polyhedral transformations meet simd code
generation,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: ACM, 2013, pp. 127–138. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462187

[7] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen,
“Polyhedral-model guided loop-nest auto-vectorization,” in Proceedings
of the 2009 18th International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 327–337. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2009.18

[8] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan,
“Abstractions from proofs,” in Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2004, Venice, Italy, January 14-16, 2004, N. D. Jones and
X. Leroy, Eds. ACM, 2004, pp. 232–244. [Online]. Available:
http://doi.acm.org/10.1145/964001.964021

[9] M. N. Seghir and D. Kroening, “Counterexample guided precondition
inference,” in European Symposium on Programming (ESOP), ser.
LNCS, M. Felleisen and P. Gardner, Eds., no. 7792. Springer, 2013,
pp. 451–471.

[10] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal deriva-
tion of programs,” Commun. ACM, vol. 18, no. 8, pp. 453–457, Aug.
1975. [Online]. Available: http://doi.acm.org/10.1145/360933.360975

[11] N. P. Lopes and J. Monteiro, “Weakest precondition synthesis for
compiler optimizations,” in Proc. of the 15th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI),
Jan. 2014.

[12] I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant
generation via abductive inference,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13. New
York, NY, USA: ACM, 2013, pp. 443–456. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509511

[13] P. Cousot, R. Cousot, and F. Logozzo, “Precondition inference from
intermittent assertions and application to contracts on collections,” in
Verification, Model Checking, and Abstract Interpretation, ser. Lecture
Notes in Computer Science, R. Jhala and D. Schmidt, Eds. Springer
Berlin Heidelberg, 2011, vol. 6538, pp. 150–168.

[14] F. Bourdoncle, “Abstract debugging of higher-order imperative
languages,” in Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, ser. PLDI ’93.
New York, NY, USA: ACM, 1993, pp. 46–55. [Online]. Available:
http://doi.acm.org/10.1145/155090.155095

[15] J. Hughes and J. Launchbury, “Reversing Abstract Interpretations,” in
European Symposium on Programming, ser. LNCS, vol. 582. Rennes:
Springer-Verlag, 1992, also to appear in Science of Computer Program-
ming.

[16] T. W. Reps, S. Sagiv, and G. Yorsh, “Symbolic implementation of the
best transformer.” in VMCAI, ser. Lecture Notes in Computer Science,
B. Steffen and G. Levi, Eds., vol. 2937. Springer, 2004, pp. 252–266.

[17] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as
constraint solving,” Microsoft Research, Tech. Rep. MSR-TR-2008-44,
March 2008.

[18] A. Solar-Lezama, “Program Synthesis by Sketching,” Ph.D. dissertation,
2008. [Online]. Available: http://people.csail.mit.edu/asolar/

[19] S. Srivastava, Satisfiability-Based Program Reasoning and Program
Synthesis. Proquest, Umi Dissertation Publishing, 2011. [Online].
Available: http://books.google.de/books?id=l6tJLgEACAAJ

[20] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 215–224.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806833

[21] S. Jha and S. A. Seshia, “Are there good mistakes? a theoretical analysis
of cegis,” in Proceedings 3rd Workshop on Synthesis, Vienna, Austria,
July 23-24, 2014, ser. Electronic Proceedings in Theoretical Computer
Science, K. Chatterjee, R. Ehlers, and S. Jha, Eds., vol. 157. Open
Publishing Association, 2014, pp. 84–99.

[22] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, ser.
POPL ’78. New York, NY, USA: ACM, 1978, pp. 84–96. [Online].
Available: http://doi.acm.org/10.1145/512760.512770

[23] V. Laviron and F. Logozzo, “Subpolyhedra: A (more) scalable approach
to infer linear inequalities,” in Verification, Model Checking, and Ab-
stract Interpretation: Proceedings of the 10th International Conference
(VMCAI 2009), ser. Lecture Notes in Computer Science, N. D. Jones and
M. Müller-Olm, Eds., vol. 5403. Savannah, Georgia, USA: Springer-
Verlag, Berlin, 2009, pp. 229–244.

[24] J. Brauer, A. King, and S. Kowalewsk, “Abstract interpretation of
microcontroller code: Intervals meet congruences,” Science of Computer
Programming. Methods of Software Design: Techniques and Applica-
tions, vol. 78, issue 7, pp. 862–883, 2013.

[25] S. A. Mahlke, “Exploiting instruction level parallelism in the presence
of conditional branches,” Tech. Rep., 1996.

[26] J. C. H. Park and M. Schlansker, “On predicated execution,” 1991.
[27] M. H. Sujon, R. C. Whaley, and Q. Yi, “Vectorization past dependent

branches through speculation.” in PACT. IEEE, 2013, pp. 353–362.
[28] R. Karrenberg, M. Kosta, and T. Sturm, “Presburger arithmetic in

memory access optimization for data-parallel languages.” in FroCos,
ser. Lecture Notes in Computer Science, P. Fontaine, C. Ringeissen,
and R. A. Schmidt, Eds., vol. 8152. Springer, 2013, pp. 56–70.

[29] J. Shin, M. W. Hall, and J. Chame, “Evaluating compiler technology
for control-flow optimizations for multimedia extension architectures,”
Microprocess. Microsyst., vol. 33, no. 4, pp. 235–243, Jun. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2009.02.002

[30] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,”
in Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 337–340. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792766

[31] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the
23rd International Conference on Computer Aided Verification, ser.
CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 171–177.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2032305.2032319

[32] H. Zankl and A. Middeldorp, “Satisfiability of non-linear (ir)rational
arithmetic,” in Proceedings of the 16th International Conference on
Logic for Programming and Automated Reasoning, ser. Lecture Notes
in Artificial Intelligence, vol. 6355. Dakar: Springer-Verlag, 2010, pp.
481–500.

