
Input Space Splitting for OpenCL

Simon Moll Johannes Doerfert Sebastian Hack
Saarland University, Germany

{moll, doerfert, hack}@cs.uni-saarland.de

Abstract
The performance of OpenCL programs suffers from memory and
control flow divergence. Therefore, OpenCL compilers employ
static analyses to identify non-divergent control flow and memory
accesses in order to produce faster code. However, divergence is
often input-dependent, hence can be observed for some, but not all
inputs. In these cases, vectorizing compilers have to generate slow
code because divergence can occur at run time.

In this paper, we use a polyhedral abstraction to partition the
input space of an OpenCL kernel. For each partition, divergence
analysis produces more precise results i.e., it can classify more code
parts as non-divergent. Consequently, specializing the kernel for
the input space partitions allows for generating better SIMD code
because of less divergence.

We implemented our technique in an OpenCL driver for the AVX
instruction set and evaluate it on a range of OpenCL benchmarks.
We observe speed ups of up to 9× for irregular kernels over a
state-of-the-art vectorizing OpenCL driver.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Optimization

General Terms Algorithms, Performance

Keywords Polyhedral Representation, OpenCL, SPMD, Vectoriza-
tion, Divergence

1. Introduction
For OpenCL on modern vector CPUs, control flow and memory
access divergence is a major performance obstacle [25]. A branch
is divergent if not all (active) vector lanes either take it or do not
take it. In such a case, the compiler has to convert control flow to
data flow and replace branching with predication or blending. The
program has to execute both directions of the branch and reconverge
later. As a consequence, more instructions are executed than in the
non-divergent case and SIMD utilization deteriorates. A memory
access is divergent if not all active vector lanes access memory either
uniformly (all access the same address) or in a consecutive manner.
As a consequence, the compiler has to resort to a complex and less
efficient scatter or gather instruction for a single vector memory
access. For the hardware this means that multiple cache lines have
to be transferred instead of only one.

[Copyright notice will appear here once ’preprint’ option is removed.]

x

y

Figure 1. Divergence in the convolution kernel. In the image center,
all stencil elements are applied regardless of the pixel position (lhs).
This is not true for the boundary, however (rhs). Whether a stencil
element is applied, varies between neighboring pixels. This causes
divergence in the i and j loops when the kernel is vectorized.

Typically, not all branches and memory accesses of a kernel are
divergent. To statically detect non-divergent code, vectorizing com-
pilers apply divergence analysis. Being a static program analysis,
divergence analysis has to be sound for all possible inputs. Many
kernels however only show divergence for some of their inputs but
not all of them. For example, consider the 2D stencil kernel in Fig-
ure 2. When this kernel is applied to a 2D grid (see Figure 1), only
the instances on the grid’s border exhibit divergence in the loop
counters. For the border work items of the image, the loop iterates
less often. For the large majority of the instances the loop trip counts
are uniform.

However, static divergence analysis has to classify the loop
branches as divergent due to these “corner cases”. Consequently, the
compiler generates code that accommodates divergence. This does
not only involve vectorizing the loop trip count but also complex
mask manipulation code to track which instances still iterate the
loop and which have already left it. This code is significantly slower
than a variant that handles the border and another variant—in which
the loop trip counter is uniform—for the inner part of the image.
This variant for the inner part of the image is shown in Figure 3 in
a vectorized version. Because there is no divergence in the image
center, all control flow is preserved.

In this paper, we present an approach to create these variants
automatically. To this end, we represent OpenCL kernels in the
polyhedral model. We express non-divergence (for both, control
flow and memory accesses) using linear constraints on the iteration
domain and memory access functions of the kernel. Based on this
representation we generate variants of the kernel that exhibit less
divergence than the original kernel. In turn, for these variants
more efficient vector code can be generated. Furthermore, we
use polyhedral techniques to generate a dispatcher that selects at

1 2016/2/8



runtime—based on the parameters of the kernel—an appropriate
variant of the kernel.

In summary, this paper makes the following contributions:

• We introduce a polyhedral representation of OpenCL kernels.
We show how to model the OpenCL execution model and API
interactions in the polyhedral model and present overapprox-
imation techniques to represent kernels that are not naturally
representable in the polyhedral model (Section 5).

• We present a novel technique to specialize OpenCL kernels
based on architecture-specific properties like non-divergence. To
this end, we represent these properties as linear constraints in a
polyhedral representation of the kernel (Section 3.2).

• We show how the polyhedral representation can be used to
automatically synthesize a dispatcher that selects an appropriate
variant at runtime (Section 4.1).

• We demonstrate the efficacy of our approach on an OpenCL
implementation for the AVX SIMD instruction set. The imple-
mentation optimizes for regular control flow and memory access
patterns. We show that our technique can automatically create
and select variants of kernels. We observe speed ups up to 9×
over a state of the art OpenCL driver (Section 6).

__kernel
void Convolution2D(int *output, int *input,

float *mask, int width,
int height, int maskWidth,
int maskHeight) {

int x = get_global_id(0);
int y = get_global_id(1);

int vstep = (maskWidth - 1) / 2;
int hstep = (maskHeight - 1) / 2;

int left = MAX(0, x - vstep);
int right = MIN(width - 1, x + vstep);
int top = MAX(0, y-hstep);
int bottom = MIN(height - 1, y + hstep);

float sumFX = 0;
for (int i = left; i <= right; ++i) {
for (int j = top; j <= bottom; ++j) {
int maskIndex = (j - (y - hstep)) * maskWidth

+ (i - (x - vstep));
int index = j * width + i;

sumFX += input[index] * mask[maskIndex];
}

}
output[y * width + x] = (int)(sumFX + 0.5);

}

Figure 2. Convolution 2D kernel.

2. Background
In this work, we use the polyhedral model as intermediate represen-
tation to optimize the vectorization of OpenCL kernels.

2.1 Polyhedral Model
The polyhedral model is a mathematical program representation
that precisely represents the control and memory effects of dynamic
statement instances in parametric Static Control Parts (SCoPs) [4].
It is used as an intermediate representation by polyhedral loop
optimizers such as Polly [12], Graphite [30], Pluto [5] or PoCC [31].
Conceptually, the polyhedral model describes statement instances
as well as memory access functions as parametric polyhedra. These
are internally represented as sets of quasi-affine inequalities of
parameters (statically unknown but dynamically invariant values)

// [..] Definition of vstep, hstep, top, bottom, y
int x = <x position of first vector lane>;

float8 sumFX = (float8) 0.0;
for (int i = x - vstep; i < x + vstep; ++i) {
for(int j = top ; j <= bottom; ++j) {
int maskIndex =

j - (y - hstep)) * maskWidth
+ (i - (x - vstep));

int index = j * width + i;

sumFX += input[index:index+7]

* (float8) mask[maskIndex];
}

}

Figure 3. Vectorized Convolution2D kernel for the image center.
The vectorized version exploits the regular structure of the i and j
loops and the memory acccesses.

and loop iteration variables. We will use P to denote the set of all
SCoP parameters and consequently IV for the iteration variables. To
build a polyhedral representation of a program part it has to fulfill
the requirements of a SCoP:

Static Control Parts (SCoPs) Polyhedral optimizers analyze pro-
gram regions known as Static Control Parts (SCoPs). Classically,
SCoPs are restricted to loop nests that satisfy the following condi-
tions:

Control Flow inside a SCoP is representable by affine functions in
the parameters of the SCoP as well as loop iteration variables
surrounding the branch conditions.

Memory Accesses have access functions that can be described as
affine functions in the parameters of the SCoP as well as loop
iteration variables surrounding the access. Furthermore, there
cannot be aliasing between different base pointers.

Function Calls are only allowed if the called function is pure, e.g.,
common math functions like sqrt.

However, in Section 5 we will describe approximations for these
restrictions that allow to represent general OpenCL kernels.

Polyhedral Representation In the polyhedral model a program is
defined by the statements it contains. Each statement in turn by
an iteration space and the memory accesses it contains. Both are
represented with parametric integer polyhedra denoted as ZP. For a
statement Q surrounded by n loops, we denote the iteration space,
or domain, with IQ ∈ Zn

P and the set of access functions in Q with
FQ ⊂ Zn

P → ZP.
Intuitively, IQ describes all dynamic statement instances of Q.

Each instance is identified as an iteration vector ~iQ ∈ Zn
P that

contains all loop iteration variables (from the outer to innermost)
surrounding Q. We will use the notation id to subscript dimension d
in an iteration vector~i. We will denote an increment in this iteration
variable by the vector ~vd.

An access function F ∈ FQ maps dynamic statement instances
to the accessed memory location. To simplify our representation
and to be consistent with our approach, we omit the access base
pointer in the definition of F . While this is important for polyhedral
optimizers that compute and use the dependences between statement
instances, we do not use it in this work.

Vectorization in the Polyhedral Representation The polyhedral
representation models scalar instances of statements. Only when a
statement is vectorized later on, instances are grouped together to
form a vector instruction. To this end, we define the vector width w
as the number of scalar instances that will be mapped to one vector
instruction.

2 2016/2/8



3. Optimization
Our optimization relies on two principal techniques that both
operate on the polyhedral representation of the kernel: Control Flow
Simplification and Domain Splitting.

3.1 Control Flow Simplification
Polly’s code generator [13] allows to hoist conditionals based on
their domain. In the simplest form this corresponds to versioning
as illustrated in Figure 4. Our optimizer applies this versioning on
every dimension of the input in order to simplify the control in the
vectorized part as much as possible. As the code duplication might
become an optimization criterion or obstacle at some point, we allow
the user to limit the versioning to some dimensions.

for (unsigned d0 = 0; d0 < size0; d0++)
for (unsigned d1 = 0; d1 < size1; d1++)
if (d0 < p)

S: ...
else

P: ...

(a) A parametric branch condition inside an affine loop nest.
for (unsigned d0 = 0; d0 < p; d0++)
for (unsigned d1 = 0; d1 < size1; d1++)

S: ...
for (unsigned d0 = p; d0 < size0; d0++)
for (unsigned d1 = 0; d1 < size1; d1++)

P: ...

(b) Simplified control flow after the condition is hoisted.

Figure 4. Control flow simplifications using code versioning.

3.2 Domain Splitting
Domain Splitting is concerned with creating multiple versions of
static program statements such that most of them result in more
efficient vector code. Domain splitting was pioneered in the context
of polyhedral schedule optimizations [11].

In the case of our optimization, the partition is defined by a binary
splitting predicate that splits the input space into two partitions.
Consequently, the statement is duplicated: One of the two statements
will execute for all instances for which the predicate holds. The
other statement is split off and will execute for the remaining part.
Consider the simple kernel in Figure 5a.

__kernel
void foo(float * A, float * B) {
int x = get_local_id(0);

R: A[x] = B[max(5, x)]; // irregular access to B
}

(a) A simple kernel with an irregular memory access.
__kernel
void foo(float * A, float * B) {
int x = get_local_id(0);
if (5 <= x) {

Rtrue: A[x] = B[x]; // consecutive accesses
} else {

Rfalse: A[x] = B[5]; // remaining accesses
}

}

(b) The same kernel after splitting the iteration domain of statement R with
the splitting predicate x >= 5. The split yields two versions, Statement
Rtrue where all memory accesses are consecutive and Statement Rfalse
for the remainder of the domain.

Figure 5. Domain splitting.

In Statement R, the memory access to the array B is irregular
and will yield slow code when the kernel is vectorized. Statement R
has the iteration domain

R(x) : 0 ≤ x < get_local_size(0) .

However, the splitting predicate 5 ≤ x defines a subset of the
iteration domain of R for which the memory access is consecutive.
We partition the iteration domain of Statement R into two parts.
One part characterizes the iterations for which the predicate holds.
The other is split off and contains all remaining iterations. We split
Statement R into copies Rtrue and Rfalse and assign to each of them
one of the two domain parts of R.

Rtrue(x) : 5 ≤ x < get_local_size(0)

Rfalse(x) : 0 ≤ x < min
(
5,get_local_size(0)

)
Figure 5b shows the result of the transformation. If the kernel

is vectorized, Statement Rtrue exhibits a fast consecutive access.
The remainder of the work items will use the memory access of
Statement Rfalse , which has become uniform as a side effect.

In the following, we introduce splitting predicates for control
flow and memory access patterns as they are used in our optimiza-
tion. The splitting predicates are parametric in the vectorized dimen-
sion d.

3.2.1 Full Tile Splitting
When a loop is to be vectorized in the polyhedral model, it is first
strip-mined with the vector width w. The loop iterating over the strip
elements, the strip loop, describes a vector tile. Figure 6a shows the
result of strip mining a simple loop iterating from 0 to n− 1.

For loops with a trip count that is not a multiple of the vector
width, strip mining produces a remainder loop that executes the
remaining instances. Full Tile splitting partitions the iteration do-
main of the vector tile into a full part that contains an instance for
each vector lane and a partial remainder. This makes sure that the
vector tile is in fact full and the remaining iterations can run scalar
as shown in Figure 6b.

for (int i = 0; i < n; i += 8) {
for (int j = i; j < min(i + 8,n); ++j) {

R: ...
}

}

(a) Naively strip mined loop. Applied to the inner loop, the vectorizer will
have to account for cases where n is not a multiple of the vector width
8, i.e. the vector tile is partial.

for (i = 0; i + 7 < n; i += 8) {
for (int j = i; j < i + 8; ++j) {

S: ...
}

}
for (;i < n; ++i) {

T: ...
}

(b) With full tile splitting. When Statement S is vectorized, no predication
is necessary because the trip count of the inner loop always equals the
vector width, i.e. the vector tile is full. The remaining instances, now
belonging to Statement T , remain scalar.

Figure 6. The effect of full tile splitting on a strip mined loop.

We formally define the full tile predicate as

Fulln(d) := (id − (id mod w)) + w − 1 < n .

We require id to range from 0 to n − 1 where n is a supplied
upper bound on the iteration dimension. This requirement is met
by the OpenCL work item loops in our model for which n is
a parameter of the polyhedral representation. Figure 7 gives an
intuitive understanding of the predicate.

3 2016/2/8



. . .0 n − 1 n
full
tile

. . .0 n − 1 n

idid − (id mod w)

partial
tile

id − (id mod w) + (w − 1)
id

Figure 7. An iteration id only belongs to a full tile, if the last
iteration of its vector tile executes as well. Consequently, the vector
tile in the upper part is partial whereas the vector tile below is full.
The predicate is shown for a vector width of 8.

3.2.2 Vector Memory Access Patterns

__kernel void replicate(float * A, float * B) {
A[local_id(1) * width + local_id(0)] = B[local_id(1)];

}

Figure 8. Memory access patterns in an OpenCL kernel. The write
access to A is consecutive in the first dimension. The read access to
B is consecutive in the second dimension and uniform in the first.

When a scalar memory instruction is vectorized, it operates on a
vector of addresses instead of a single memory address. In the worst
case, these addresses are unrelated. Thus, the compiler has to emit
slow scatter/gather instructions or scalar memory accesses along
with vector pack/unpack instructions. Slow memory accesses due to
memory-access divergence are a major cause of poor performance
in vectorized programs.

However, compilers generate fast vector accesses if they can
prove that the address vector has certain properties which we define
below. Figure 8 shows a simple data transfer kernel which features
the memory access patterns captured by our splitting predicates.

Let F ∈ FQ denote a memory access function of statement Q.
We model vector access patterns as parametric in the access function
F and the vectorized dimension d.

Consecutive In a consecutive address vector, the values referenced
by consecutive address components are laid out contiguously in
memory without any gaps between them. A consecutive memory
access is vectorized by transferring an entire vector register to or
from the memory pointed to by the first address vector component.
This requires the accessed addresses to be offset by a multiple of the
vector component size from the first address.

ConsF (d) := F(~iQ + ~vd) = F(~iQ) + 1

Uniform In an uniform address vector, all components point to
the same address. The compiler leaves the memory access scalar
and in case of a load operation broadcasts the loaded value into the
components of a fresh vector register.

UniF (d) := F(~iQ + ~vd) = F(~iQ)

We refer to a memory access that is neither uniform nor consecutive
as divergent.

3.2.3 How to split?
At this point, the question remains how kernel statements should be
split given a set of splitting predicates.

Domain splitting is a trade-off between code size and optimiza-
tion potential in the split-off regions. Splitting results in new state-
ments and hence in more code. On the other hand, splitting-off a
part of the domain that shows a high potential for optimizations
(many statements become uniform or consecutive) is beneficial as

our experiments show. However, a part with high potential that is
executed only for a small part of the iteration domain will have a
negligible effect on the overall run time.

We present a heuristic solution to make appropriate splitting
decisions in Section 4.

4. Heuristics
In order to optimize OpenCL kernels for vectorization, we identify
parts of the work space that can be executed using vector memory
instructions. Hence, we identify and optimize the subdomains with
non-divergent memory accesses as well as non-divergent control
flow. However, at compile time the size of these subdomains are not
known. Furthermore, multidimensional kernels allow for different
dimensions to vectorize over.

As we cannot statically determine for which dimension vector-
ization will give the best result we instantiate the kernel for each
possible vectorization choice. In each kernel copy, called a subkernel,
we will then strip-mine and vectorize one dimension. Afterwards,
we can split the iteration domain of the subkernel according to the
subdomain constraints for the vectorized dimension only. While
e.g., the output code size might grow linear in the number of kernel
dimensions, the subkernel approach can be restricted to a given set
of dimensions to bound the code size. In any case it offers various
advantages over the single kernel version, including:

Vectorization Dimension The kernel chooses an appropriately vec-
torized subkernel at runtime given parameter assignments and
the work sizes.

Polyhedral Representation The subkernel selection logic is di-
rectly encoded in the polyhedral representation of the kernel.
It benefits from the same control simplification techniques as the
kernel code itself.

Static Subkernel Exclusion The driver detects which subkernels
are unlikely to benefit from vectorization and strips them from
the kernel.

4.1 Runtime Subkernel Selection
For an OpenCL kernel with n work dimensions we will create
n subkernels, each will be vectorized in a separate work item
dimension. Additionally, we generate one sequential fallback version
that is used if our cost heuristic will advise against vectorization,
e.g., if the local work group sizes are to small for full vectorization.

The cost heuristic yields for each subkernel an expression that
computes a score from the parameters of the kernel. This score
reflects how suitable a subkernel is for given work sizes and
parameter assignments. The kernel dispatches execution at runtime
to the subkernel that scores highest.

Cost Heuristic The cost heuristic generates a parametric cost
function for a subkernel k and its associated vectorized dimension
dk. The cost function defined in Equation 1 accounts for the number
of kernel iterations and the memory access patterns in the kernel.
We use boxes (in contrast to general polyhedra) to overapproximate
the iteration space of each memory access. While there exist more
precise methods to compute the volume of an iteration space, such
as Barvinok [3], we found that our approach works well in practice.

Scoren(k) :=


ΣQ∈k,F∈FQ
wcons‖Box (ConsF (dk))‖ if n ≥ w

+wuni‖Box (UniF (dk))‖
0 otw.

(1)

The result is a weighted product of the parameters, including the
work sizes. The parameter n refers to the upper bound of the

4 2016/2/8



Table 1. The heuristic combination of splitting predicates yields up
to 4 version of a statement. Each cell combines a row (control) and
column (memory) splitting predicate. The cell content shows how
a memory access A[i] will be vectorized for the intersection of
these splitting predicates.

Access pattern
Tile Consecutive (ICk ) Remainder (I>k )
Full A[i:i+7] scatter/gather
Partial mask move masked scatter/gather

iteration dimension kd. We optimized the weights wcons and wuni

empirically. The score reflects the number of iterations of the
subkernel and how well it can be vectorized. It defaults to 0, if
no full vector tile can be executed for this work size. The scalar
fallback code receives a score of 1 to be executed in cases where no
subkernel is beneficial.

Static Subkernel Elimination We exploit the regular structure of
the cost function to remove at compile time subkernels with detri-
mental expected performance. Consider the loop nest of Statement S

for (int i = 0; i < 2 * a; ++i)
for (int j = 0; j < i; ++j)
S(i, j);

Listing 1. Statement in a non-trivial loop nest.

in Listing 1. The iteration variables i and j are both bounded by
the parametric interval [0, . . . , 2a − 1]. Thus, the bounding box
volume of Statement S is (2a)(2a) = 4a2. Subkernel scores are
linear combinations of these volumes. Assume there is Subkernel A
with score 2xz+xy and Subkernel B with score xz+xy. Subkernel
A will always score greater of equal than B and the latter is statically
discarded.

As each subkernel vectorizes a distinct work item dimension, this
avoids vectorization in cases where it is unlikely to be beneficial.

4.2 Splitting Heuristic
The splitting heuristic determines which statements will be split for
which subdomains. Table 1 shows the iteration domains resulting
from splitting by this heuristic.

Access Function Splitting We split all statements with a global
predicate for consecutive memory accesses. The predicate ICk is
defined as the intersection of all non-trivial consecutive domain
parts of all memory accesses, or formally

ICk :=
⋂
Q∈k

⋂
F∈FQ,st

ConsF (dk)6=∅

ConsF (dk) .

In this subdomain ICk , all memory accesses are consecutive, if they
are ever consecutive at all. Its complement defines the split-off part
with

I>k := Ik \ ICk .

Full Tile Splitting We split all statements that depend on the
vectorized work item dimension with the full tile splitting predicate.
This means, if a memory access was split by access function splitting,
its parts may be split again for full tiles. The upper bound n required
by full tile splitting predicate is given by the parameter LocalSized.

Discussion Despite their simplicity, the heuristics lend themselves
to identify regions with consecutive accesses in arbitrary kernels
operating on affine grids. For example, it successfully identifies the
regular interior part of the 2D stencil kernel in Figure 2. However,

approaches that split multiple times should account for the volume
of the split-off parts to estimate their relevance to the total kernel
runtime.

5. Polyhedral Representation of OpenCL Kernels
In this section, we describe how we model an OpenCL kernel in
the polyhedral model. As OpenCL programs are not necessarily
SCoPs, we first discuss overapproximations that we use to deal with
the limitations of the polyhedral model described in Section 2.1.
Second, we present how to represent features special to the OpenCL
execution model in the polyhedral setting.

5.1 Polyhedral Applicability Issues
Non-Pure Function Calls Non-pure function calls are generally
not allowed in polyhedral optimizers. In order to avoid them inlining
is usually performed. As the restriction to recursion free OpenCL
code is not uncommon, we will assume the same and inline all
function calls prior to the modeling.

Non-Affine Memory Accesses In order to allow non-affine mem-
ory accesses we overestimate their effect. Hence, a non-affine access
to an array element is modeled as an access to the whole array. As
we cannot represent the access pattern precisely, we evaluate mem-
ory predicates for non-affine accesses conservatively, thus pretend
each non-affine access is diverging.

Non-Affine and Non-Static Control Flow Polyhedral optimizers
have been extended to allow dynamic control flow as well as non-
affine bounds before [4, 10]. They describe how to model and
generate code for dynamic control flow in order to exploit more
parallelism and data locality. In our context we are interested in
conditions on memory accesses and control patterns which can be
derived statically and evaluated prior to the execution of the analyzed
region. To this end, both techniques could allow us to derive
assumptions about arbitrary control, though it might require the
use of more sophisticated runtime checks, e.g., inspector loops [9].

bool cond(int, int);
void dynamicControl(float *In, float *Out, int N) {
for (int i = 0; i < N; i++)
for (int j = 0; cond(i, j); j++)
Out[i] += In[j];

}

Figure 9. Loop nest with one affine and one non-affine loop.

For our prototype implementation we choose a simpler approxi-
mation that does not represent dynamic control flow but over approx-
imates it as one atomic polyhedral statement. Thus, our polyhedral
representation for the loop nest in Figure 9 will contain the i-loop
and the complete j-loop will be represented by a single statement.
As a result we cannot refer to the inner j-loop in the polyhedral
representation, thus the access function for the access to In cannot
be represented as an affine function in the model. Nevertheless, the
accesses to Out are accurately represented in the model.

5.2 Barrier Elimination
By default the work item instances of an OpenCL kernel execute
asynchronously. Synchronization can only be achieved within the
same work group and through explicit barrier statements. Work
items will suspend execution at the barrier until all instances in
the work group have reached it. Only afterwards, work items will
resume independent execution. In a well-defined OpenCL kernel,
work items belonging to the same work group will always reach the
same barrier statement.

Our OpenCL driver splits kernels at barriers into continuation
kernels [15]. Values that live through barriers are stashed in local

5 2016/2/8



__kernel void simple1D(float *In, float *Out, int N) {
S: float val = In[get_local_id(0)];

for (int i = 0; i < N; i++)
P: Out[N * get_local_id(0) + i] += val;
}

(a) Simple OpenCL kernel with one implicit work group dimension.
void simple1D(float *In, float *Out, int N) {

for (unsigned d0 = 0; d0 < get_local_size(0); d0++) {
S: float val = In[d0];

for (int i = 0; i < N; i++)
P: Out[N * d0 + i] += val;

}
}

(b) C-version of Figure 10a with an explicit work group dimension.

Stmt S

i

Stmt P

(c) Polyhedral iteration space of
Figure 10a

d0

0

Size-1

Stmt S

d0

i

Stmt P

(d) Polyhedral iteration space of
Figure 10b

Figure 10. Simple function as OpenCL kernel (a) and as C version
with an explicit work group dimension (b). The polyhedral iteration
space representation for both is given in part (c) and (d), respectively.

memory. Different to regular kernels, continuation kernels return
the id of the next continuation kernel that shall execute or signal
termination. Support code generated by the driver controls the
execution of continuation kernels for each work group.

5.3 Modelling OpenCL-specific Features
In order to derive a unified model for both kernel as well as driver
code we explicitly add the dimensions over the work groups to the
polyhedral representation. These dimensions iterate over the work
group, hence they range from 0 to the local work group size for
the dimension. Consequently, the local work group id in the kernel
can be replaced by the iteration variable of that dimension. Due
to this explicit representation we can reuse polyhedral techniques,
e.g., to determine the pattern of memory accesses. Additionally, this
will allow us to generate the specialized loops for the work group
dimensions together with the rest of the kernel code.

Figure 10a shows an one-dimensional OpenCL kernel together
with its polyhedral representation in part (c). As we represent
the kernel together with the implicit work group dimension, the
polyhedral iteration space we generate is one dimensional for
statement S and two dimensional for statement P . An illustration
of the iteration space is given in part (d) and it corresponds to the C
input in part (b).

5.4 OpenCL API Calls
OpenCL kernels use API calls to communicate with the driver at
runtime. Information about the sizes of the work or the work groups,
as well as to the current offset in both are accessible. In the kernel
this information is commonly used to compute offsets for memory
accesses but also in loop bounds or conditionals.

As our approach models and materializes the work group di-
mensions it has to represent these calls. However, all but one are
also parameters (or affine combinations thereof) in the polyhedral
representation as they do not vary during the exeuction of one work
group. The exception are calls to get_local_id(d). The re-
turned value corresponds to the current iteration in dimension d,

which in the polyhedral representation translates to the iteration
variable id ∈ IV.

Table 2 lists all OpenCL API calls we currently detect and their
representation in the polyhedral model.

Table 2. Polyhedral representation of OpenCL API calls. We in-
troduce the additional parameter GroupOffsetd for purposes of the
representation. There is no function to query it in the OpenCL lan-
guage.

OpenCL API Call Polyhedral Representation
get_global_size(d) 0 ≤ GlobalSized ∈ P
get_local_size(d) 0 ≤ LocalSized ∈ P
n/a 0 ≤ GroupOffsetd ∈ P
get_local_id(d) 0 ≤ id ≤ LocalSized ∈ IV
get_global_id(d) id + GroupOffsetd
get_group_id(d) 0 ≤ GroupIdd ∈ P

The parameter GroupOffsetd does not correspond to an OpenCL
function. It is used to define get_global_id(d) without
non-affine expressions. It relates to the other parameters by
GroupOffsetd = GroupIdd ∗ LocalSized.

6. Evaluation
6.1 OpenCL Driver
Our experimental OpenCL driver is based on LLVM [19] and its
pipeline is illustrated in Figure 11.

The pipeline is activated by a call to the OpenCL API function
clCreateKernel, which requests an executable OpenCL kernel
object. First, the OpenCL source code is translated into LLVM Bit-
code. The barrier elimination stage splits the kernel function into a
dispatch function and barrier-free continuation kernels (Section 5.2).
The dispatch function controls the execution of the continuation
kernels. The continuation kernels are passed on to the polyhedral
optimizer Polly [12], which translates them into the polyhedral rep-
resentation (Section 2.1). The optimization applies domain splitting
for full tiles and memory access patterns according to the heuristics
(Section 4). At this point, the user can provide additional domain
knowledge about parameter constraints and the like to the optimiza-
tion. Afterwards, Polly materializes each continuation kernel as
LLVM bitcode. The bodies of strip-mined loops are extracted into
separate functions. These functions represent the scalar codelets.
The driver vectorizes the codelets with the OpenCL compiler of the
Intel CodeBuilder SDK [24]1. The compiler emits the vectorized
kernels in LLVM bitcode. Eventually, the driver inlines all vector-
ized codelets and compiles them with the builtin JIT compiler of
LLVM (MCJIT).

The Intel OpenCL driver that we compare against is also based on
LLVM. It supposedly uses the same vectorizer as the Intel OpenCL
compiler of the CodeBuilder SDK. We initially experimented with
the Intel C Compiler (icc) for vectorization [17]. We decided
against using it, as icc is an independent compiler with its own
optimizations and code generation backend. We found that this
would have obscured the contribution of our optimization to the
runtime performance. The reported results are thus not biased
by differences in the employed vectorizer. Instead, they reflect
performance gains due to our optimization on top of a production-
quality vectorizer.

1 We use the bitcode-to-source translator axtor [20] to generate OpenCL
source code from LLVM bitcode.

6 2016/2/8



AppOpenCL driver

Barrier elimination

Polly

Optimization

JIT

IOC

OpenCL API

Kernel module (LLVM)

Barrier-free kernels

Polyhedral kernel

Vector
codelets

Scalar codelets

Dispatch code

Domain
Knowledge

Figure 11. Driver pipeline.

6.2 Benchmarks
We evaluated our optimization on OpenCL benchmarks from the
Rodinia 3.0 [6, 7], Parboil [28] and AMD APP SDK v3.0 bench-
mark suites. The DCT, LU decomposition, 2D convolution, Floyd-
Warshall, Fast Walsh Transform, Bitonic sort, Binomial Option and
Black-Scholes benchmarks are from the AMD APP SDK v3.0. The
cfd, gaussian, kmeans, myocyte, and nn benchmarks from the Ro-
dinia benchmark suite. The mri-q and sgemm benchmarks are from
the Parboil benchmark suite.

Benchmark Selection The selection of suitable benchmarks was
affected by two main points:

1. Our OpenCL pipeline is a prototype implementation that does
not implement the entire OpenCL language. Kernels that use
special features, e.g., atomic functions, have been ruled out.

2. Kernels distribute into families with regards to our optimization
due to the implicit normalization when they are translated to
the polyhedral representation (ref. Section 3.1). The performed
optimizations will be the same for each kernel in a family and the
results can be expected to be at least similar too. For two major
families we choose a representing kernel, namely Bitonic sort
and Floyd Warshall, but omitted benchmarks that would simply
show the same behaviour e.g., DwtHaar1D from the AMD APP
SDK.

6.3 Experimental Setup
All measurements were taken on an Intel© Core™ i7-4810MQ CPU
@ 2.80GHz machine running ArchLinux (kernel 4.1.6-1-ck). We
measured runtime performance under six settings, all except intel
were run through our pipeline illustrated in Figure 11.

intel Execution with the Intel OpenCL driver version 1.2.0.57.

scalar No optimizations (incl. vectorization) are performed.

vec only No scoring function is generated and only full tile splitting
is applied. The driver chooses the first subkernel whose work
dimension has at least vector width iterations.

split only No scoring function is generated. The driver chooses
the first subkernel whose work dimension has at least vector
width iterations. All splitting optimizations and active control
simplification are applied to each subkernel.

score only The driver creates a parametric scoring function for each
subkernel. Subkernels with statically lower scores are removed.
The scoring functions of the remaining subkernels are evaluated
at runtime to decide which subkernel is executed. For each
subkernel full tile splitting but no other splitting optimizations
are applied.

split+score All optimizations presented in this paper are applied.
Subkernel selection is the same as for score only and subkernel

optimizations are the same as for split only. Consequently,
every remaining subkernel is subjected to our splitting for full
tiles and memory access patterns as well as active control flow
simplification.

Single-threaded Evaluation All kernels were executed by a single
thread2. Our optimization improves the per-thread processing time
for each work group and is conceptually orthogonal to work group
parallelization. Hence, we measure single-threaded execution time to
assess the efficacy of our optimization without the non-deterministic
effects of multi-threaded execution.

6.4 Runtime Results
In Figure 12 we compare our full optimization pipeline (split+score)
with scalar execution, the Intel OpenCL driver as well as plain
vectorization (vec only). Complementary, we detail the effects of
the different optimizations in Figure 13.

General Discussion In our evaluation we found that both plain
vectorization and split+score performed in our pipeline are generally
better than the Intel OpenCL driver. Furthermore, vectorization
with any of our proposed optimizations will even increase the
average performance. Consequently, the best overall performance
was achieved by applying all proposed optimizations, namely full
tile splitting, memory access splitting as well as active control flow
simplification.

While benchmarks as Floyd Warshall are so regular that plain full
tile splitting suffices to achieve the best result, we found that others,
e.g. gaussian, require scoring to pick the best work dimension for
vectorization. In contrast, the Binomial Option benchmark needs
control flow simplifications to perform best. Finally, our running
example, Convolution2D, can only be beneficially vectorized if both,
full tile splitting as well as memory splitting is performed.

Effect of Input Space Splitting The gap between vec only and
split only reflects performance gains due to input splitting and active
control flow simplification. Where this gap is small, the kernel
features little divergence and can be vectorized well without splitting.
While this holds for most kernels, Convolution2D is one example
that mainly benefits from the separation of different input areas.
Additionally, active control flow simplification is performed in the
split only setting. While this improves benchmarks like Binomial
Option with many control conditions based on the work group
dimensions, it can cause regressions as seen for the nn benchmark.
Here, the control flow conditions generated by Polly are too complex
in comparison to the actual kernel code.

Effect of Subkernel Scoring Subkernel scoring is the difference
between the vec only and score only settings in Figure 13. It
shows generally good results but can cause regressions. This is
mainly due to the static elimination of subkernels. Especially
for benchmarks with unbalanced work group sizes or a majority
of non-affine accesses this can cause problems. A statically less
beneficial subkernel might be the only one with a sufficient number
of iterations to be vectorized, though it would be eliminated by this
scheme statically. Additionally, non-affine access functions will not
increase the score. Consequently, a completely non-affine kernel,
e.g., Bitonic sort, will be effectively scalarized as the scalar fallback
kernel will statically have the highest score.

The best result for subkernel scoring is achieved for gaussian
because it is not the first dimension that should be vectorized but the
second. However, most other benchmarks are written especially for
general OpenCL drivers that vectorize always the first dimension.

2 The OpenCL command queue was constructed with the flag
CL_QUEUE_THREAD_LOCAL_EXEC_ENABLE_INTEL to make the In-
tel OpenCL driver execute in single-thread mode.

7 2016/2/8



As this dimension is implicitly picked by the other schemes too,
subkernel scores will not yield a benefit for them.

Vectorization-only Speed Up The vec only setting is already per-
forming better than the Intel OpenCL driver. This may come as
a surprise as the Intel OpenCL driver is also based on the LLVM
framework and thus applies similar bitcode optimizations. Addition-
ally, our pipeline uses it to vectorize the codelets. However, there
are two main factors for this difference in performance:

Control-Flow Simplification In every evaluation setting (except
intel), we represent all benchmarks in the polyhedral model.
Hence, they all undergo polyhedral code generation which
might—as a side effect—hoist some conditionals. Therefore,
also the kernels in scalar may profit from this.

Live Values at Barriers Live value optimization minimizes the
amount of memory that has to be allocated for live values that
live through OpenCL barrier statements. When variables are live
through barriers, their values have to be stashed temporarily to
memory. We found out that the Intel OpenCL compiler is using
the same barrier elimination approach [15] as we do. Manual
inspection of the Binomial Options kernel bitcode shows that
the Intel OpenCL driver accesses 72 bytes per work-item. In
contrast, for our implementation it is only 12 bytes.

Table 3. Listing of vector codelets with static divergence properties
and observed number of executions. Each row refers to a vector
codelet of a barrier-free continuation kernel. The codelets are
grouped by the continuation kernel they belong to and ordered
by execution count.

Loops Memory Accesses
Kernel uni div cons uni div exec [%]

mri-q PhiMag 0 3 100.00
mri-q CompQ 0 3 3 3 100.00
DCT 0 3 3 3 3 100.00

1 3 3 3 3 100.00
gauss Fan1 0 3 3 100.00
gauss Fan2 0 3 3 38.88

0 3 3 35.45
0 3 3 15.93
0 3 3 5.80
0 3 3 2.59
0 3 3 1.34

NN 0 3 3 100.00
BinOpt 0 3 100.00

1 3 3 50.82
1 3 3 48.40
1 3 0.78
2 3 100.00
3 3 3 100.00

BlackScholes 0 3 100.00
FloydWarshall 0 3 3 100.00
LUCombine 0 3 74.78

0 3 25.22
LUDecompose 0 3 3 3 50.05

0 3 3 49.95
1 3 3 100.00

kmeans kernel 0 3 3 3 100.00
kmeans swap 0 3 3 3 100.00
sgemm 0 3 3 3 100.00
C2D 0 3 3 3 99.59

0 3 3 3 3 0.20
0 3 3 3 3 0.20
0 3 3 3 3 0.02
0 3 3 3 3 0.00

6.5 Vector Codelet Statistics
We show relative execution counts of vector codelets along with their
divergence properties in Table 3. The table lists all executed codelets
grouped by the continuation kernel they belong to (Section 5.2).
Some benchmarks execute multiple OpenCL kernels, for example
gaussian Elimination consists of the OpenCL kernels Fan1 and Fan2.
The number in Column 2 refers to the ID of the continuation kernel.
The continuation kernel with ID 0 is always the first that is executed.
The table only shows codelets that were executed at least once.

Columns 3 and 4 show whether the codelet has loops with
uniform or divergent control flow. Columns 5 through 7 show
whether the memory accesses in the codelet are consecutive, uniform
or divergent as of Section 3.2.2. The last column ultimately shows
the relative execution count of the vector codelet among all vector
codelets of this continuation kernel.

Convolution2D In the case of Convolution2D, we see that a highly
regular vector codelet is used for the bulk of the executions. The
vector codelet operates in center of the image and thus only features
regular control and memory accesses. This leads to the 5.8× speed-
up we observed in our runtime experiments, shown in Figure 12.

Myocyte The myocyte benchmark consists of one OpenCL kernel
that specifies two completely distinct tasks. The kernel is spawned
for just two work groups that each execute one task with only the first
work item performing any work3. Polly only partially recognizes
these guard conditions, strip-mines one work item loop and moves
the scalar guard into a vector codelet. This happens both in the split
and vec only settings. However, the kernel runs with a local size
of 2 and so the vector code is never executed, which explains the
equivalent runtimes for all settings.

7. Related Work
State-of-the-art vectorizers employ divergence analysis [8, 15]
to detect optimizable patterns in memory accesses and control
flow. Linear variants of divergence analysis have been integrated
with polyhedral loop nest optimizers [18, 29] for SIMD code
generation. In these polyhedral approaches, vector memory access
patterns are made an optimization target in the cost function of
the scheduler. Polyhedral-based vectorizers extract codelets that
are then subjected to vectorization. Some OpenCL drivers apply
loop switching between work dimensions and other kernel loops to
optimize memory access patterns [14, 17]. In all prior work that we
are aware of, vector patterns are only optimized and detected if they
occur for all inputs and loop iterations in the vectorized function or
codelet.

We are to our knowledge the first to split the input space with
optimization constraints to drive code specialization. In earlier
work [11], input space splitting has been used to improve polyhedral
schedules by simplifying the dependence structure of the program.

The codelets extracted by other polyhedral approaches must
either be acyclic [18] or contain only affine loops [29] due to
constraints of the employed codelet vectorizer. In contrast, we
leverage the Intel OpenCL vectorizer [24], which handles arbitrary
control flow inside the codelet by predication.

Our implementation partitions OpenCL kernels with barriers into
barrier-free continuation kernels [15, 27].

Earlier work in the context of SIMD code generation understood
statement splitting as insertion of local divergence tests [16, 26].
Local divergence tests are simpler in that they merely evaluate
branch predicates for all lanes and require vector masks to test. Our
approach models linear divergence tests in the polyhedral represen-

3 The kernel contains guard conditions of the form
if (get_local_id(0) == 0) {...}

8 2016/2/8



C2D BinOptBSFloyd FWTLUD DCTmyoBito gaussnn cfdkmeansmri-q sgemm mean
0

0.2

0.4

0.6

0.8

1

S
p
ee
d

u
p

scalar Intel vec only split+score

Figure 12. Full optimization setting (opt) compared against Intel, vec only and scalar execution. Median speed ups, normalized to the fastest.

mri-q Bito LUD nn kmeans myo Floyd sgemm FWT cfd DCT BS gauss C2D BinOpt mean
0

0.2

0.4

0.6

0.8

1

S
p
ee
d

u
p

split only score only vec only split+score

Figure 13. Runtime results, if only splitting (split only) or only subkernel scoring (score only) are applied. Median speed ups, normalized to
the fastest.

tation of the kernel. In that representation, the local conditions help
to transform the entire kernel function in a holistic way.

Including user-provided domain knowledge into a polyhedral
optimization pipeline is, for example, implemented in the pencil
language [2].

Runtime variant selection [1, 32], also in a polyhedral set-
ting [23], is an established technique. However, these approaches
rely on profiling or user-supplied program variants and heuristics
and none of them targets vectorization specifically.

On-the-fly divergence elimination [33] uses data and thread id
permutations to reduce control and memory access divergence. Their
approach employs a complex runtime system to infer permutations
and variant performance at runtime.

In contrast, our approach generates vectorized kernel variants
along with the scoring function automatically and at compile time.
Our scoring function could be made more precise using integer point
counting [3].

A different approach for device specialization of kernels is auto-
tuning [21, 22]. Auto-tuning based approaches profile the kernel
runtime under different configurations of performance parameters,
such as the work group size, the vectorization width, etc. As auto-
tuning specializes the kernel for the entire input space it is as such
orthogonal to input space splitting. If the techniques are combined,
auto-tuning could, for example, find constant work group sizes that
would make the polyhedral kernel representation completely affine.

8. Conclusion & Future Work
In this paper, we have introduced a novel technique to drive code
specialization by architecture-specific optimization constraints. The
technique specializes kernels for less divergent parts of the input

space. To this end, the approach leverages a polyhedral representa-
tion of OpenCL kernels.

We have implemented the technique for the AVX SIMD instruc-
tion set and evaluated it on a set of OpenCL benchmarks. The results
show that our optimization enables effective vectorization where
this is not possible for state of the art vectorizers. In particular im-
age processing applications benefit from the handling of boundary
conditions.

Our current polyhedral OpenCL kernel representation models
a single work group of a barrier-free kernel. Building on these
first results, we are improving the representation to include barrier
statements and model multiple work groups at once. Future work
could investigate applying polyhedral scheduling techniques to
OpenCL.

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and

S. Amarasinghe. Petabricks: A language and compiler for algorithmic
choice. PLDI ’09.

[2] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy,
S. Verdoolaege, J. Absar, S. van Haastregt, A. Kravets, et al. PENCIL:
A Platform-Neutral Compute Intermediate Language for Accelerator
Programming. 2015.

[3] A. Barvinok. Lattice points, polyhedra, and complexity. Geometric
Combinatorics, IAS/Park City Mathematics Series, 13, 2007.

[4] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul.
The polyhedral model is more widely applicable than you think.
CC’10/ETAPS’10.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. PLDI ’08.

9 2016/2/8



[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
IISWC ’09, .

[7] S. Che, J. Sheaffer, M. Boyer, L. Szafaryn, L. Wang, and K. Skadron.
A characterization of the rodinia benchmark suite with comparison to
contemporary cmp workloads. IISWC ’10, .

[8] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. Divergence
analysis and optimizations. PACT ’11.

[9] R. Das, J. Wu, J. Saltz, H. Berryman, and S. Hiranandani. Distributed
memory compiler design for sparse problems. IEEE Trans. Comput.,
44, 1995.

[10] M. Griebl and J.-F. Collard. Generation of synchronous code for
automatic parallelization of while loops. EURO-PAR ’95.

[11] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. Interna-
tional Journal of Parallel Programming, 28, 1999.

[12] T. Grosser, A. Größlinger, and C. Lengauer. Polly - performing
polyhedral optimizations on a low-level intermediate representation.
Parallel Processing Letters, 2012.

[13] T. Grosser, S. Verdoolaege, and A. Cohen. Polyhedral AST generation
is more than scanning polyhedra. ACM Trans. Program. Lang. Syst.,
37, 2015.

[14] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg. pocl: A performance-portable opencl implementation.
International Journal of Parallel Programming, 43, 2015.

[15] R. Karrenberg and S. Hack. Improving performance of OpenCL on
CPUs. CC ’12.

[16] A. Kerr, G. Diamos, and S. Yalamanchili. Dynamic compilation of
data-parallel kernels for vector processors. CGO ’12.

[17] H.-S. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu. Locality-
centric thread scheduling for bulk-synchronous programming models
on CPU architectures. CGO ’15.

[18] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan. When polyhedral transformations meet SIMD code
generation. PLDI ’13.

[19] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. CGO ’04.

[20] S. Moll. Decompilation of LLVM IR, 2011.
[21] N. Moore, M. Leeser, and L. Smith King. Kernel specialization for

improved adaptability and performance on graphics processing units
(GPUs). PDP ’13.

[22] C. Nugteren and V. Codreanu. CLTune: A generic auto-tuner for
OpenCL kernels. MCSoC ’15, 2015.

[23] B. Pradelle, P. Clauss, and V. Loechner. Adaptive runtime selection of
parallel schedules in the polytope model. HPC ’11.

[24] N. Rotem. Intel Opencl Implicit Vectorization Module, 2011.
[25] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu. Performance traps in

OpenCL for CPUs. PDP ’13.
[26] J. Shin, M. W. Hall, and J. Chame. Evaluating compiler technology

for control-flow optimizations for multimedia extension architectures.
Microprocessors and Microsystems, 33, 2009.

[27] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, and
W.-m. W. Hwu. Efficient compilation of fine-grained spmd-threaded
programs for multicore CPUs. CGO ’10.

[28] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu,
and W.-M. W. Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Technical Report IMPACT-12-
01, University of Illinois at Urbana-Champaign, 2012.

[29] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen.
Polyhedral-model guided loop-nest auto-vectorization. Proceedings
of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, 0, 2009.

[30] T. Vajk, Z. Dávid, M. Asztalos, G. Mezei, and T. Levendovszky.
Runtime model validation with parallel object constraint language.
MoDeVV ’11.

[31] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Ten-
llado, and F. Catthoor. Polyhedral parallel code generation for cuda.
ACM Trans. Archit. Code Optim., 9, 2013.

[32] M. J. Voss and R. Eigemann. High-level adaptive program optimization
with adapt. PPoPP ’01.

[33] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly
elimination of dynamic irregularities for gpu computing. ASPLOS
XVI, 2011.

10 2016/2/8


