Sambamba: A Runtime System
for Online Adaptive Parallelization

Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack

Saarland University, Saarbriicken, Germany
{streit, hammacher, zeller, hackl}@cs.uni-saarland.de

Abstract. How can we exploit a microprocessor as efficiently as possi-
ble? The ‘“classic” approach is static optimization at compile-time, op-
timizing a program for all possible uses. Further optimization can only
be achieved by anticipating the actual usage profile: If we know, for in-
stance, that two computations will be independent, we can run them in
parallel. In the Sambamba project, we replace anticipation by adapta-
tion. Our runtime system provides the infrastructure for implementing
runtime adaptive and speculative transformations. We demonstrate our
framework in the context of adaptive parallelization. We show the fully
automatic parallelization of a small irregular C program in combination
with our adaptive runtime system. The result is a parallel execution
which adapts to the availability of idle system resources. In our exam-
ple, this enables a 1.92 fold speedup on two cores while still preventing
oversubscription of the system.

Keywords: program transformation, just-in-time compilation, adapta-
tion, optimistic optimization, automatic parallelization

1 Introduction

A central challenge of multi-core architectures is how to leverage their computing
power for programs that were not built with parallelism in mind—that is, the
vast majority of programs as we know them. Recent years have seen considerable
efforts in automatic parallelization, mostly relying on static program analysis to
identify sections amenable for parallel execution (often restricted to small code
parts, such as nested loops). There also have been speculative approaches that
execute certain code parts (identified by static analyses) in parallel and repair
semantics-violating effects, if any.

While these efforts have shown impressive advances, we believe that they will
face important scalability issues. The larger a program becomes, the harder it
gets to precisely identify dependences between code parts statically, resulting in
conservative approximations producing non-parallel and overly general code. The
problem is that the actual environment and usage profile cannot be sufficiently
anticipated [2]. Of course, one could resort to dynamic runtime techniques to de-
termine dependences, but the initial overhead of dynamic analysis so far would
not be offset by later performance gains. All of this changes, though, as soon

as one moves the analysis and code generation from compile-time to runtime.
Rather than analyzing and compiling a program just once for all anticipated runs,
we can now reanalyze and recompile programs in specific contexts, as set by the
input and the environment. Interestingly, it is the additional power of multi-core
architectures that makes such a continuous adaptation possible: While one core
runs the (still sequential) programs, the other cores can be used for monitoring,
learning, optimization, and speculation. Moving from anticipation to adaptation
enables a number of software optimizations that are only possible in such dy-
namic settings. First and foremost comes adaptive parallelization—that is, the
execution of the program in parallel depending on the current environment.

2 The Sambamba Framework

The Sambamba' project aims to pro- [Al C:::fl’;ﬁ's“me

vide a reusable and extendable framework

for online adaptive program optimization

with a special focus on parallelization.

With Sambamba7 one will be able to in- [S] Specialization [P] Parallelization

troduce run-time adaptive parallelization

to existing large-scale applications simply

by recompiling; no annotation or other hu-

man input is required. Indeed, we aim to

make parallelization an optimization as [C] Calibration

transparent and ubiquitous as, say, con-

stant propagation or loop unrolling.
Sambamba is based on the LLVM com-

piler framework [3] and consists of a static (compiler) part and a runtime system.

The framework is organized in a completely modular way and can easily be ex-

tended. Modules consist of two parts: Compile-time parts handle costly analyses

such as inter-procedural points-to and shape analysis as used by our paralleliza-

tion module. These results are fed into the runtime parts—analyses conducted

at runtime which adapt the program to runtime conditions and program inputs.

Obviously, it is crucial for the runtime analyses to be as lightweight as possible.
The flow of execution in the Sambamba framework is depicted in Figure 1:

|X] Speculative
Execution

Fig. 1. Sambamba execution steps

[A] We use static whole-program analyses to examine the program for potential
optimizations and propose a first set of parallelization and specialization
candidates that are deemed beneficial. For long-running programs it might
be a viable alternative to also run these analyses at runtime.

[P] The runtime system provides means for speculatively parallelizing parts of
the program based on the initial static analysis and calibration information.

[X] We detect conflicts caused by speculative executions violating the pro-
gram’s sequential semantics and recover using a software transactional mem-
ory system.

b Sambamba is Swahili for parallel, simultaneously or side by side.

[C] We gather information about the execution profile and misspeculations to
calibrate future automatic optimization steps.

[S] Based on the calibration results, Sambamba supports generating different
function variants that are specialized for specific environmental parameters
and input profiles. These can then again be individually parallelized in the
next step.

3 Adaptive Parallelization

3.1 Data Dependence Analysis

The main obstacle for parallel execution of program parts is data dependences
over the heap. Parallel computation cannot start before all input data has been
computed. In large irregular programs, the interprocedural data flow is hard to
determine statically, so all known analyses only provide overapproximations.

In order to get a sound over-approximation of the existing data dependences,
we use a state of the art context-sensitive alias analysis called Data Structure
Analysis [4]. This information allows us to statically prove the absence of certain
dependences.

3.2 Parallel CFG Construction

Given a regular control flow graph in SSA form, Sambamba creates the so-called
parallel control flow graph (ParCFG). Unnecessary structural dependences defin-
ing an execution order are removed and replaced by real dependences caused by
possible side effects.

We use an integer linear programming (ILP) approach to graph partitioning
to form so-called parallel sections (ParSecs). Each ParSec defines at least one
fork point 75 and exactly one join point 7. for later parallel execution. Side-
effect-free instructions might be duplicated in this step in order to facilitate
parallelization.

We do not put special emphasis on loop parallelization and deal with general
control flow instead. Very strong approaches of loop parallelization have been
proposed and implemented during the last 30 years. Enriching some of these
methods, like for example polyhedral loop optimization [1], with speculation is
one of our ongoing projects.

3.3 Scheduling and Parallel Execution

In this step, Sambamba generates executable code from the ParCFG. This task
includes the creation of an execution plan for concurrently executed parts as well
as the generation of LLVM bitcode, which is translated into machine code by a
just-in-time compiler.

In this demonstration, we only partition a region into parallel tasks if we
could prove the absence of data dependences between them. Thus, the execution

order of these tasks is not relevant. This will change as soon as we allow to
speculate on the absence of dependences. Then it may be beneficial to delay the
execution of a task T until all tasks that T might depend on complete.

The assignment of tasks to processors is done dynamically by using a global
thread pool initialized during load time of the program.

4 State of the Project

The demonstrated tool is a working prototype. Not every planned feature is fully
implemented yet. Especially the features of the runtime-system are implemented
on demand as we work on the modules for automatic parallelization.

At the time of writing, the following module independent parts are examples
of implemented features:

e Method versioning and a general method dispatch mechanism
e A software transactional memory system supporting speculative execution
e Integration of the LLVM just-in-time compiler.

Concerning automatic parallelization, the demonstrated implementation is
able to statically find sound candidates for parallelization. It identifies and rates
data dependences which could not be statically proven to exist (may depen-
dences) but prevent further parallelization. Execution adapts to the available
system resources by dispatching between the sequential and a sound parallel
version of parallelized methods.

For further details and news on the Sambamba framework please refer to the
project webpage: http://www.sambamba.org/.

Acknowledgments. The work presented in this paper was performed in the
context of the Software-Cluster project EMERGENT (www.software-cluster.org).
It was funded by the German Federal Ministry of Education and Research
(BMBF) under grant no. “011C10S01”. The authors assume responsibility for
the content.

References

1. Grosser, T., Zheng, H., Aloor, R., Simbiirger, A., Groklinger, A., Louis-Noél, P.:
Polly—Polyhedral optimization in LLVM. In: First International Workshop on Poly-
hedral Compilation Techniques (IMPACT 2011). pp. 1-6 (Mar 2011)

2. Hammacher, C., Streit, K., Hack, S., Zeller, A.: Profiling Java programs for par-
allelism. In: Proceedings of the 2009 ICSE Workshop on Multicore Software Engi-
neering. pp. 49-55. IEEE Computer Society (2009)

3. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In: Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization. p. 75.
IEEE Computer Society, Palo Alto, California (2004)

4. Lattner, C., Lenharth, A., Adve, V.. Making context-sensitive points-to analysis
with heap cloning practical for the real world. SIGPLAN Not. 42(6) (2007)

A Description of the Planned Demonstration:
Adaptive Parallel Execution

In our demonstration we will show the automatic parallelization and adaptive
execution of a small irregular C program. The program source is given in List-
ing 1.1. Although a human developer may easily spot parallelization opportuni-
ties, the program contains two main challenges for automatic parallelization:

1. It does not contain any loops. Most parallelization approaches do only focus
on parallelizing loops. This is reasonable since most often the biggest speedup
can be educed out of loops. Nevertheless, this simple application can be
accelerated by a factor of two which is missed by most existing approaches.
Since Sambamba is not limited to loop parallelization, it is able to exploit
this potential.

2. The more daunting challenge is the application’s irregularity. It makes use
of linked lists and iterates over them during execution. By making use of a
state of the art interprocedural points-to analysis [4] Sambamba is able to
deal with this irregularity.

A.1 Setup

Our demonstration is planned to consist of two parts: A short introduction of
the sample application and what is going to be shown (two to three slides)
followed by a live demonstration of Sambamba in comparison to gee (see the next
section). Afterwards an explanation is given of what is done in the background
by Sambamba.

A.2 Execution

In order to demonstrate how to use Sambamba we prepared a short execution.
The screenshot in Figure 2 shows all the steps which are described in more detail
in the following sections.

Sequential Execution For reasons of comparability we first compile the sam-
ple application using a current version of gcc with optimizations enabled. The
resulting binary is executed: The result of the computations can be seen, as well
as the execution time of roughly 2.4 seconds.

Compilation Using Sambamba Afterwards, we compile the application us-
ing Sambamba: First, the LLVM bitcode is produced using llvm-gcc without
any optimizations applied. Afterwards, Sambamba is invoked with the produced
bitcode. Optimization is enabled and two Sambamba modules are mingled in:
ParA, which is the parallelization analysis finding parallelization candidates
and producing an execution plan. And the Parallelizer which is responsible for
generating the parallel code. In the case of speculative execution, the Parallelizer
additionally performs transactification of the code.

typedef struct list {
struct list *Next;
int Data;

} list;

/*
* Definitions for methods makelist, hashList and freelist
* omitted. Please refer to http://www.sambamba.org/ for
* the full sources.

*/

long performTask(int size) {
list *X = makelList(size);
list *Y = makelList(size);

long hash_X = hashList (X);
long hash_Y hashList (Y);

freelList (X);
freeList (Y);

return hash_X * hash_Y;

struct timeval start, end;

int main() {
while (1) {
gettimeofday (&start, 0);
long res = performTask (1l << 10);
gettimeofday (&end, 0);

double secs = (end.tv_sec - start.tv_sec) +
le-6 * (end.tv_usec - start.tv_usec);

printf ("result after%5.2f ,seconds:%1ld\n", secs, res);

return O;

}

Listing 1.1. Irregular sample application written in C.

0600 [demo o

%ol

demo.c

% goc -02 demo.c -0 demo_goc Compiling using gcc for comparison
4 .Ademo_goc Executing the produced binary

result after 2.41 seconds: -72741648595365516840

result after 2.45 zeconds: -727416486963A351048

result after 2.42 zeconds: -7Z274164869530351048

result after 2.42 seconds: -7274164859536551640

a0

$ Llvm-goo —emit-Llvm —¢ -0 demo.be demo.c Creating the LLVM bitcode using llvm-gcc
4 =ambamba -01 -native —o demo_sambamba demo.bc Linking the native binary using Sambamba

Hingling in runtime poss Pord

Mingling in runtime poss Porallelizer

Lirking the native binary

& . /demo_sambanba Executing the produced binary
Parallelizer is actiwve.

Parallelizing in 18 seconds...

result after 2.31 seconds: -72741648695383516840

result after 2.29 zeconds: -7Z274164869630351048

result after 2.29 seconds: -7274164859536551640

result after 2.29 seconds: -72741648595365516840

[Porallelizer RT] Parallelizing 'performTozk ' Dynamically creating and registering a paral-
result ofter 2.38 seconds: -72741f4B59536351046 lel version of method ‘performTask’
P result after 1.34 seconds: -7274164869538351646
P result after 1.31 seconds: -7274164869536351646
P result after 1.16 seconds: -7274164869538351648
P result after 1.16 seconds: -7274164B60R3A351A40
P result after 1.48 seconds: -7274164869538351646
P result after 1.33 seconds: -7274164869530351646
P result after 1.41 seconds: -7274164869536351848 External compute intensive process started
1 result after 2.69 seconds: -TZ2V4164B60R3A351A48
5 result after 2.60 seconds: -7274164869538351646
5 result after =2.69 seconds: -7274164B69536351646
S result after 2.9 seconds: -7274164869530351648
5 result after 2.36 seconds: -7274164PE9536351848 External process finished
P result after 1.24 seconds: -7274164869538351646
P result after 1.34 seconds: -7274164869536351646
P result after 1.17 seconds: -7274164869530351648
P result after 1.21 seconds: -7274164B60R3A351A48
[result after 1.28 seconds: -T2Y41640869530551048
oL
3 |

Fig. 2. Execution of a Sambamba-enabled program. First, the sample program (List-
ing 1.1) is compiled and executed using gcc. In the second step a binary is created and
executed using Sambamba. The depicted execution was recorded on an Intel Core 2
Duo machine with a clock rate of 2.4 GHz.

Execution and Dynamic Parallelization The binary produced in the previ-
ous step is executed. For demonstration purposes parallelization is delayed and
regular sequential execution starts. The same result as with the gcc compiled
version and roughly the same execution time can be observed. After 10 seconds,
the most profitable method, performTask, is parallelized and parallel execution
immediately starts. Again for reasons of demonstration, the dispatcher mecha-
nism is instrumented to print a P to console when choosing the parallel version
of a method, and an S when choosing the sequential version. The execution time
drops from 2.3 seconds to 1.2 seconds.

Adaptation to Available System Resources When running an external
process which occupies at least one of the two available cores, the Sambamba
runtime system falls back to sequential execution. This is demonstrated by run-
ning an arbitrary second process, in our example a simple endless loop. The
fallback to sequential execution is a demonstration of one possible way of adapt-
ability. Though fairly simple it is useful since it prevents oversubscription of the
system. Most parallelization approaches parallelize in a greedy way which might
not be the best solution under all circumstances.

A.3 Explanation

The demonstrated version of the parallelization module works on control flow
graphs in SSA form and produces a so-called ParCFG. This is an extended
version of a regular CFG which for example provides primitives for fork/join
parallelism.

The control flow graph as given by the LLVM framework for the performTask
method is shown and explained. A simplified version of this cfg for sequential
execution is shown in Figure 3.

After a brief description of how the ParA module of Sambamba finds can-
didates for parallelization and produces execution plans using an ILP based
approach, the produced ParCFG of the performTask method is shown. A sim-
plified version abstracting away some technical details is given in Figure 4.

A.4 Ongoing Work

If time is left we will shortly describe our ongoing work. At the time of writing
we are implementing two further modules for parallelization in Sambamba: One
for speculation support for loop parallelization in the polytope model, and one
for PDG based whole program parallelization using integer linear programming.
The first approach will make heavy use of speculative execution. The latter one
will support runtime adaptive parallelization and speculative execution.

____).

call makelList

1
call makelList

call hashList

1
call hashList

1
ﬁ I
call freelist
1
ﬁ !
1

call freelist

1
1
1
1

o

Fig. 3. Regular CFG of the performTask method. Dashed arrows depict structural
dependences of instructions with possible side-effects.

10

call makelList

A~

~
~
~

' call hashList ' ' call hashList '

- N - N
- -
- -
-
-

' call freelist ' ' call freelist '
1
1
1

Fig. 4. ParCFG for parallel version Py of the performTask method as automatically
derived by Sambamba. The outer box depicts a so-called parallel region consisting of
transactions depicted by the inner boxes. Each parallel region is entered via at least
one 7 nodes and left via the one m.. A 75 forks parallel execution and m. joins again
after all contained transactions completed.

