
Compiler Optimizations For OpenMP

Johannes Doerfert [0000−0001−7870−8963] and Hal Finkel [0000−0002−7551−7122]

Argonne Leadership Computing Facility,
Argonne National Laboratory, Argonne IL 60439, USA

jdoerfert@anl.gov, hfinkel@anl.gov

Abstract. Modern compilers support OpenMP as a convenient way to
introduce parallelism into sequential languages like C/C++ and For-
tran, however, its use also introduces immediate drawbacks. In many
implementations, due to early outlining and the indirection though the
OpenMP runtime, the front-end creates optimization barriers that are
impossible to overcome by standard middle-end compiler passes. As a
consequence, the OpenMP-annotated program constructs prevent vari-
ous classic compiler transformations like constant propagation and loop
invariant code motion. In addition, analysis results, especially alias in-
formation, is severely degraded in the presence of OpenMP constructs
which can severely hurt performance.
In this work we investigate to what degree OpenMP runtime aware com-
piler optimizations can mitigate these problems. We discuss several trans-
formations that explicitly change the OpenMP enriched compiler inter-
mediate representation. They act as stand-alone optimizations but also
enable existing optimizations that were not applicable before. This is all
done in the existing LLVM/Clang compiler toolchain without introduc-
ing a new parallel representation. Our optimizations do not only improve
the execution time of OpenMP annotated programs but also help to de-
termine the caveats for transformations on the current representation of
OpenMP.

Keywords: OpenMP · Compiler Optimizations · Alias Analysis · Vari-
able Privatization · Barrier Elimination · Communication Optimization.

1 Introduction

In the LLVM/Clang compiler toolchain [9] the use of OpenMP allows for par-
allel execution but also introduces immediate drawbacks. Due to early outlin-
ing and the indirection though the OpenMP runtime, the Clang front-end in-
troduces an optimization barrier that is impossible to overcome by common
middle-end optimizations. As a consequence, the OpenMP-annotated program
parts do not benefit from classic compiler transformations like constant prop-
agation or loop invariant code motion. Analysis results, especially alias infor-
mation, is severely degraded in the parallelized program parts. For these and
similar reasons, researchers, industry as well as the general LLVM community
are currently looking into alternative representations of parallelism in a modern
compiler toolchain [11,14].

2 J. Doerfert and H. Finkel.

In order to provide immediate benefit, and to create a meaningful baseline
for these efforts, we investigated the feasibility and limitations of program op-
timizations based on the current representation of OpenMP programs. In the
following we present five distinct program transformations that required rea-
sonable implementation, and thereby maintainability effort. They do however
enable some of the most important compiler optimizations. In the process, we
were able to determine the caveats for transformations on the current represen-
tation of OpenMP programs, which use explicit calls to the OpenMP runtime
and early outlined parallel program parts.

The rest of this report is organized as follows. We first present necessary
background for our work in Section 2. Afterwards, Section 3 through Section 7
describe the new parallel centric optimizations we introduced in the LLVM
pipeline. In Section 8 we show preliminary evaluation results of some of these
optimizations on different OpenMP benchmarks taken from the Rodinia bench-
mark suite [4] as well as the LULESH v1.0 benchmark [7]. Finally, we discuss
related work in Section 9 and conclude in Section 10.

2 Background

Clang, the C/C++ front-end of the LLVM compiler framework, immediately
lowers OpenMP constructs to runtime library calls. The code in parallel regions
(#pragma omp parallel and similar) is outlined into separate functions. Their
addresses as well as all communicated values (shared and firstprivate clauses)
are then passed to a runtime library call. Inside this library function the outlined
parallel region is invoke by each thread in the OpenMP thread team. Due to this
opaque indirection, passes that work on LLVM’s low-level intermediate represen-
tation (LLVM-IR) do not need to be aware of any parallel, or OpenMP specific,
semantic. For an example consider the code in Figure 1a which is lowered by
Clang to LLVM-IR similar to the pseudo C code shown in Figure 1b.

This early outlining approach allows rapid integration of new features and
bears little risk of miscompilations due to the function level abstraction and the
indirection through the runtime library. Though, this approach will inevitably
prevent any optimization to cross the boundary between sequential and parallel
code as long as the semantics of the runtime library are not explicitly encoded.

In this work we present several compiler transformations which are aware
of the semantics of runtime library calls that implement OpenMP parallel con-
structs. These transformations are designed to be also applicable to OpenMP
tasks runtime calls as well as other parallel language (extensions) expressed in
LLVM-IR.

Compiler Optimizations For OpenMP 3

3 Optimization I: Attribute Propagation

Programmers employ attributes, e.g., const or restrict, to encode domain
knowledge in the source code. This is an explicit contract between the program-
mer and the compiler that limits the set of defined execution traces in the hope
of better transformations. Similarly, the compiler might employ attributes to
manifest knowledge that was inferred by analyses passes.

The arguably most important use case for attributes are caller-callee bound-
aries, especially for intra-procedural analyses. Attributes for function parameters
provide information about the otherwise unknown inputs while the potential ef-
fects of function calls are limited through attributes at the call-site arguments
and at the called function.

To improve attributes at the caller-callee boundary of indirectly called paral-
lel program parts, we created an LLVM propagation pass. It communicates the
following attributes between pointer arguments in the sequential context and
parameter declarations of the parallel work function:

– The absence of pointer capturing1.
– The access behaviour, thus read-only or write-only.
– The absence of aliasing pointers that are accessible by the callee.
– Alignment, non-nullness and dereferencability information of the pointer.

While all but aliasing information can be simply propagated from the (indirect)
call site to the parameter declaration and vice versa, the coarse grained nature
of the no-alias attributes, e.g., restrict in C/C++ and noalias in LLVM’s IR,
complicates propagation. Even if pointers are known to be alias free in the (se-
quential) code preceding the parallel region, the restrict or noalias attribute
cannot be simply placed at the parameter declaration to convey this informa-
tion. First, other arguments could be derived from the alias free pointer which
would introduce aliasing opportunities in the parallel work function. Second,
the attributes will break dependences that cross barriers thereby allowing code
motion across these sequencing constructs. An example to showcase the second
problem is given in Figure 1. The OpenMP annotated C source code in Figure 1a
is translated by the front-end to LLVM’s IR corresponding to the pseudo code
shown in Figure 1b. Since the parameter int* p is known to be alias free in
the (sequential) context of foo we want to restrict qualify it in the parallel
work function as shown in Figure 1c and 1d. This qualification will break the
dependence between the accesses to p and the call to bar, allowing the store-load
forwarding performed in Figure 1c. However, bar could contain a barrier which
would require all increments to be performed prior to any multiplication.

To enable optimizations in the outlined parallel work function we still want to
propagate alias information. However, existing analysis and optimization passes
might change the semantics if we propagate restrict/noalias attributes to
non-read-only argument pointers. For such alias-free pointer arguments, we have
to ensure that their dependences with potential barriers are not eliminated. Since
the semantics of both restrict and noalias are defined based on accesses

1A pointer is captured if a copy of it is made inside the callee that might outlive it.

4 J. Doerfert and H. Finkel.

through the syntactic pointer expression, we can prevent any unsound trans-
formation by providing potential barriers access to this syntactic expression.
This representation is illustrated in Figure 1d. All existing compiler analyses and
transformations have then to assume the memory pointed to can be inspected
and modified by the potential barrier, ensuring the original memory state when
a (potential) barrier is executed.

int foo() {

int a = 0;

#pragma omp parallel shared(a)

{

#pragma omp critical

{ a += 1; }

bar();

#pragma omp critical

{ a *= 2; }

}

return a;

}

(a) OpenMP annotated C source input
featuring a call to an unknown function
bar inside the parallel region.

int foo() {

int a = 0;

int *restrict p = &a;

omp_parallel(pwork, p);

return a;

}

void pwork(int tid, int *p) {

if (omp_critical_start(tid)) {

*p = *p + 1;

omp_critical_end(tid);

}

bar();

if (omp_critical_start(tid)) {

*p = *p * 2;

omp_critical_end(tid);

}

}

(b) Pseudo C-style representation of the
lowered LLVM-IR produced by Clang for
the input in Figure 1a.

void pwork(int tid,

int *restrict p) {

if (omp_critical_start(tid)) {

omp_critical_end(tid);

}

bar();

if (omp_critical_start(tid)) {

*p = 2 * (*p + 1);

omp_critical_end(tid);

}

}

(c) Unsoundly transformed work func-
tion after alias information propagation
if the call to bar contains a barrier.

void pwork(int tid,

int *restrict p) {

if (omp_critical_start(tid)) {

*p += 1;

omp_critical_end(tid);

}

bar()[p]; // May "use" pointer p.

if (omp_critical_start(tid)) {

*p *= 2;

omp_critical_end(tid);

}

}

(d) Sound representation after alias in-
formation propagation with a pretended
use by the potential barrier call bar.

Fig. 1: Example illustrating the problematic propagation of restrict or noalias
information from the parallel region context to the parallel work function.

Compiler Optimizations For OpenMP 5

4 Optimization II: Variable Privatization

Writing OpenMP code involves the tedious and error-prone classification of all
variables declared outside and used inside the parallel region. Since this classifi-
cation can have a crucial performance impact we provide a transformation that
reclassifies the variables based on their actual usage. Our optimization is per-
formed on low-level LLVM IR and aims to improve both the sequential code as
well as the parallel work function. In part, the transformation can be interpreted
as strengthening of the OpenMP clauses described below from top to bottom:

– Shared, which indicates any modification might be visible to other threads
as well as after the parallel region.

– Firstprivate, which is a private variable but initialized with the value the
variable had prior to the parallel region.

– Private, which is a thread-local uninitialized copy of the variable, thus similar
to a shadowing re-declaration in the parallel region.

Note that the clause strengthening from shared or firstprivate to private

allows the use of separate variables for the sequential and parallel program parts,
which enables additional optimizations in both parts. This kind of variable pri-
vatization is legal if all of the below stated legality conditions hold:

– The variable is (re-)assigned on all paths from the end of the parallel region
that might reach a use,

– Each use of the variable inside the parallel region is preceded by an assign-
ment that is also part of the parallel region.

– There is no potential barrier between the use of a variable and its last pre-
ceding assignment.

In addition, we try to communicate variables by-value instead of by-reference.
This is sound if they are live-in (firstprivate or shared) but not live-out
nor used for inter-thread communication. Thus, if only the first and last of the
above conditions holds we pass the value of the variable instead of the variable
container, e.g., the stack allocation.

Finally, non-live-out variables that might be used for communication inside
the parallel region can be privatized prior to the parallel region. Hence, if the first
of the above conditions holds we replace the variable in the parallel region with
a new one declared in the sequential code. This new one is initialized with the
value of the original variable just prior to the parallel region. This transformation
decouples the variable uses in the two code region and thereby allows for further
optimization of the original one in the sequential part.

Note that all transformations have to be aware of potential aliases that could
disguise a user variable. In addition, by-value privatization requires the involved
type changes to be legal and potentially even a register file transfer2.

2The kmpc OpenMP library used by LLVM/Clang communicates variables via variadic
functions that require the arguments to be in integer registers. When a floating point
variable is communicated by-value instead of by-reference we have to insert code that
moves the value from a floating point register into an integer register prior to the
runtime library call and back inside the parallel function.

6 J. Doerfert and H. Finkel.

5 Optimization III: Parallel Region Expansion

Parallel regions introduce an optimization barrier at their boundary. In addition,
the start and end of parallel execution can, depending on the hardware, add
significant cost. As an example consider the code shown in Figure 2a.

In each iteration of the sequential outer loop two new OpenMP thread teams
are started to work on the current value of ptr, first in forward and then in
backward direction. Due to the early outlining, there is no analysis information
transfer between the outer loop and the parallel regions nor between the two
parallel loops. Furthermore, starting and ending the task teams will eventually
accumulate non-trivial cost on the critical path. To decrease this cost and to
improve intra-procedural analyses we extend adjacent parallel regions as shown
in Figure 2b.

To eliminate the task spawning overhead further, the parallel section can
be expanded around sequential constructs as well. This is only possible if the
sequential constructs can be guarded appropriately and they do not interfere
with the parallel semantics, i.a., they do not throw exceptions. The final code
after parallel region expansion is illustrated in Figure 2c.

If a new expanded parallel region is created the contained existing parallel
regions are flattened. Thus, the original #pragma omp parallel annotations, or
alternatively the indirection through the corresponding runtime calls, contained
in the extended region are removed. Since there is an implicit barrier at the
end of a parallel region, we insert an explicit #pragma omp barrier , or an
appropriate runtime call, when parallel regions are flattened. This allows later
passes to remove the former implicit, and thereby irremovable, barriers. However,
it is important to note that the expanded parallel region will introduce a new
implicit barrier at its end.

Accounting for the two implicit barriers after the parallel for loops, the num-
ber of barriers in this example increased by one compared to the original code.
However, there is now only one parallel region that starts a thread team and
there is far more context in the parallel region to enable further optimizations.

6 Optimization IV: Barrier Elimination

Barriers are synchronization points that can be placed manually by the pro-
grammer or occur implicitly due to the use of certain OpenMP annotations, i.e.,
#pragma omp parallel for without the nowait clause. Since synchronization
can significantly increase the runtime it should always be used with caution.
However, the minimal placement of barriers is an inherently hard and error-
prone task even for expert programmers. Since precise dependency information
is required to argue about the need for a barrier, and program transformations
might be necessary to obtain such information, compilers are well suited to per-
form this task. To this end, we implemented an OpenMP barrier elimination
pass that uses alias information to remove redundant barriers. A barrier is con-
sidered redundant if there is no dependence crossing it, thus from the code after

Compiler Optimizations For OpenMP 7

while (ptr != end) {

#pragma omp parallel for firstprivate(ptr)

for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pragma omp parallel for firstprivate(ptr, a)

for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

ptr = ptr->next;

}

(a) Example featuring two adjacent parallel regions each containing a parallel for loop.

while (ptr != end) {

#pragma omp parallel for firstprivate(ptr, a)

{

#pragma omp for firstprivate(ptr) nowait

for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pramga omp barrier // explicit loop end barrier

#pragma omp for firstprivate(ptr, a) nowait

for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

#pramga omp barrier // explicit loop end barrier

}

ptr = ptr->next;

}

(b) Expanded version of the code shown in Figure 2a with a parallel region containing
two adjacent parallel for loops.

#pragma omp parallel shared(ptr) firstprivate(a)

{

while (ptr != end) {

#pragma omp for firstprivate(ptr) nowait

for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pramga omp barrier // explicit loop end barrier

#pragma omp for firstprivate(ptr, a) nowait

for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

#pramga omp barrier // explicit loop end barrier

#pragma omp master

{ ptr = ptr->next; }

#pramga omp barrier // barrier for the guarded access

}

}

(c) Final code after parallel region expansion. The two adjacent parallel for loops as
well as the sequential pointer chasing loop are now contained in the parallel region.

Fig. 2: Example to showcase parallel region expansion.

8 J. Doerfert and H. Finkel.

to the code prior. Note that our transformation is intra-procedural and there-
fore relies on parallel region expansion (ref. Section 5) to create large parallel
regions with explicit barriers. In the example shown in Figure 2c it is possible
to the eliminate the barrier between the two work sharing loops if there is no
dependence between the forward_work and backward_work functions, thus if
they work on separate parts of the data pointed to by ptr. If this can be shown,
the example is transformed to the code shown in Figure 3. Note that the explicit
barrier prior to the #pragma omp master clause can always be eliminated as
there is no inter-thread dependence crossing it.

#pragma omp parallel shared(ptr) firstprivate(a)

{

while (ptr != end) {

#pragma omp for firstprivate(ptr) nowait

for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pragma omp for firstprivate(ptr, a) nowait

for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

#pragma omp master

ptr = ptr->next;

#pramga omp barrier // synchronize the guarded access

}

}

Fig. 3: Example code from Figure 2 after parallel region expansion (ref. Figure 2c)
and consequent barrier removal.

7 Optimization V: Communication Optimization

The runtime library indirection between the sequential and parallel code parts
does not only prohibit information transfer but also code motion. The arguments
of the runtime calls are the variables communicated between the sequential and
parallel part. These variables are determined by the front-end based on the code
placement and capture semantics, prior to the exhaustive program canonicaliza-
tion and analyses applied in the middle-end. The code in Figure 5a could, for
example, be the product of some genuine input after inlining and alias analy-
sis exposed code motion opportunities between the parallel and sequential part.
Classically we would expect K and M to be hoisted out of the parallel loop and
the variable N to be replaced by 512 everywhere. While the hoisting will be per-
formed if the alias information for Y has been propagated to the parallel function
(ref. Section 3), the computation would not be moved into the sequential code
part and N would still be used in the parallel part. Similarly, the beneficial3

recompute of A inside the parallel function (not the parallel loop) will not hap-
pen as no classic transformation is aware of the “pass-through” semantic of the
parallel runtime library call.

3Communication through the runtime library involves multiple memory operations per
variable and it is thereby easily more expensive than one addition for each thread.

Compiler Optimizations For OpenMP 9

__attribute__((const)) double norm(const double *A, int n);

void norm(double *restrict out, const double *restrict in, int n) {

#pragma omp parallel for shared(out, in) firstprivate(n)

for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);

}

Fig. 4: Parallel loop containing an invariant call to norm that can be hoisted.

The code motion problem for parallel programs is already well known since
the example shown in Figure 4 is almost the motivating example for the Tapir
parallel intermediate language [11]. Note that the programmer provided (al-
most4) all information necessary to hoist the linear cost call to norm out of the
parallel loop into the sequential part. Even after we propagate alias information
to the parallel function (see Section 3), existing transformations can only move
the call out of the parallel loop but not out of the parallel function. Our spe-
cialized communication optimization pass reorganizes the code placement and
thereby the communication between the sequential and parallel code. The goal
is to minimize the cost of explicit communication, thus variables passed to and
from the parallel region, but also the total number of computations performed.

Our communication optimization pass will generate a weighted flow graph
in which all variables are encoded that are executable in both the parallel and
sequential part of the program. For our example in Figure 5a the flow graph
is shown in Figure 5c5. Each variable is split into two nodes, an incoming one
(upper part) and an outgoing one (lower part). The data dependences are rep-
resented as infinite capacity/cost (c∞) edges between the outgoing node of the
data producer and the incoming node of the data consumer. The two nodes per
variable are connected from in to out with an edge that has the capacity equal
to the minimum of the recomputation and communication (cω) cost. Since re-
computation requires the operands to be present in the parallel region, its cost is
defined as the sum of operand costs plus the operation cost, e.g., c ld for memory
loads. We also add edges from the source to represent this operation cost flow. If
an expression is not movable but used by movable expression it will have infinite
cost flowing in from the source. Globally available expressions, thus constants
and global variables, have zero communication cost and are consequently omit-
ted. Though, loads of global variables are included as they can be moved. Finally,
all values required in the immovable part of the parallel region are connected to
a sink node with infinite capacity edges.

The minimum cut of this graph defines an optimal set of values that should be
communicated between the sequential and parallel code. For the example code
in Figure 5a, the communication graph, sample weights and the minimal cut
are shown in Figure 5c. After the cut was performed, all variables for which the

4We need to ensure that norm is only executed under the condition n > 0.
5 The nodes for X are omitted for space reasons. They would look similar to the ones
for L, though not only allow cω flow to the sink but also into the incoming node of L.

10 J. Doerfert and H. Finkel.

void f(int *X, int *restrict Y) {

int N = 512; // movable

int L = *X; // immovable

int A = N + L; // movable

#pragma omp parallel for \

firstprivate(X, Y, N, L, A)

for (int i = 0; i < N; i++) {

int K = *Y; // movable

int M = N * K; // movable

X[i] = M+A*L*i; // immovable

}

}

(a) Function that exposes multiple code
movement opportunities between the se-
quential and parallel part.

void g(int *X, int *restrict Y) {

int L = *X; // immovable

int K = *Y; // c ld > cω
int M = 512 * K; // cmul + cK > cω
pragma omp parallel \

firstprivate(X, M, L)

{

int A = 512 + L; // cadd < cω
pragma omp for \

firstprivate(X, M, A, L)

for (int i = 0; i < 512; i++)

X[i] = M+A*L*i; // immovable

}

}

(b) Function shown in Figure 5a after
communication optimization.

Source (sequential)

L = *X

A = N+L

K = *Y

M = N*K

Sink (parallel)

c∞ c ld

c∞c∞

min(cω,
cN + cL
+cadd

) min(cω,
cN + cK
+cmul

)

cL = min (cω, c∞) cK = min (cω, c ld)

c∞ c∞

cadd cmul

c∞

c∞ =∞ cω = 15 cadd = 5 cmul = 10

c ld = 20 ccst = 0 cN = ccst cut

(c) Communication flow graph5 for the code
shown in Figure 5a. Variable nodes that are
partially reachable from the source after the
minimal cut are hatched and placed in the
sequential part of the result (see Figure 5b).

Fig. 5: Communication optimization example with the original code in part 5a,
the constructed min-cut graph in part 5c and the optimized code in part 5b.

incoming node is reachable from the source will be placed in the sequential part
of the program. If an edge between the incoming and outgoing node of a variable
was cut, it will be communicated through the runtime library. Otherwise, it is
only used in one part of the program and also placed in that part. For the example
shown in Figure 4 the set of immobile variables would necessarily include out,
in and n as they are required in the parallel region and cannot be recomputed.
However, the result of the norm function will be hoisted out of the parallel
function if the recomputation cost is greater than the communication cost, thus
if cω > ccall.

In summary, this construction will perform constant propagation, communi-
cate arguments by-value instead of by-reference, minimize the number of commu-
nicated variables, recompute values per thread if necessary, and hoist variables
not only out of parallel loops but parallel functions to ensure less executions.

Compiler Optimizations For OpenMP 11

8 Evaluation

To evaluate our prototype implementation we choose appropriate Rodinia 3.1
OpenMP benchmarks [4] and the LULESH v1.0 kernel [7]. Note that not all
Rodinia benchmarks communicate through the runtime library but some only use
shared global memory which we cannot yet optimize. The Rodinia benchmarks
were modified to measure only the time spent in OpenMP regions but the original
measurement units were kept. All benchmarks were executed 51 times and the
plots show the distribution as well as the median of the observed values. We
evaluated different combinations of our optimizations to show their individual
effect but also their interplay. However, to simplify our plots we only show the
optimizations that actually changes the benchmarks and omit those that did
not. The versions are denoted by a combination of abbreviation as described in
Table 1. Note that due to the prototype stage and the lack of a cost heuristics
we did not evaluate our communication optimization.

Table 1: The abbreviations used in the plots for the evaluated optimizations as
well as the list of plots that feature them.

Version Description Plots

base plain “-O3”, thus no parallel optimizations Figure 6 - 8
ap attribute propagation (ref. Section 3) Figure 6 - 8
vp variable privatization (ref. Section 4) Figure 6 - 8
re parallel region expansion (ref. Section 5) Figure 7
be barrier elimination (ref. Section 6) Figure 8

When we look at the impact of the different optimizations we can clearly distin-
guish two groups. First, there is ap and vp which have a positive effect on every
benchmark. If applied in isolation, attribute propagation (ap) is often slightly
better but the most benefit is achieved if they are combined (ap vp versions).
This is mostly caused by additional alias information which allows privatization
of a variable. The second group contains parallel region expansion (re) and bar-
rier elimination (be). The requirements for these optimizations are only given
in some of the benchmarks (see Figure 7 and respectively Figure 8). In addi-
tion, parallel region expansion is on its own not always beneficial. While it is
triggered for cfd, srad, and pathfinder it will only improve the last one and
slightly decrease the performance for the other two. The reason is that only for
pathfinder the overhead of spawning thread teams is significant enough to im-
prove performance, especially since barrier elimination was not able to remove
the now explicit barriers in any of the expanded regions. These results motivate
more work on a better cost heuristic and inter-pass communication. It is however
worth to note that the LULESH v1.0 kernel [7] already contained expanded par-
allel regions without intermediate barriers. This manual transformation could
now also be achieved automatically with the presented optimizations.

12 J. Doerfert and H. Finkel.

base ap vp ap_vp
0.46
0.48
0.50
0.52
0.54
0.56

tim
e
in
 se

co
nd

s
0.5451 0.5002 0.5057 0.4901

10.08%

./myocyte 100 100 0 8

base ap vp ap_vp
versions

0.15

0.20

0.25

0.30

0.35

tim
e
in
 se

co
nd

s

0.31 0.164 0.165 0.163
47.42%

./hotspot3D 512 8 100 power_512x8 temp_512x8 output.dat

Fig. 6: Performance improvements due to attribute propagation (ref. Section 3)
and variable privatization (ref. Section 4).

9 Related Work

To enable compiler optimizations of parallel programs, various techniques have
been proposed. They often involve different representations of parallelism to
enable or simplify transformations [6,8,15].

In addition, there is a vast amount of research on explicit optimizations
for parallel programs [1,2,3,5,10]. In contrast to these efforts we introduce rel-
atively simple transformations, both in terms of implementation and analysis
complexity. These transformations are intended to perform optimizations only
meaningful for parallel programs, but in doing so, also unblock existing compiler
optimizations that are unaware of the semantics of the runtime library calls
currently used as parallel program representation.

The Intel compiler toolchain introduces “OpenMP-like” annotations in the
intermediate representation IL0 [12,13]. While effective, this approach require
various parts of the compiler to be adapted in order to create, handle, and
lower these new constructs. In addition, each new OpenMP construct, as well as
any other parallel language that should be supported, will require a non-trivial
amount of integration effort. Partially for these reasons, Intel proposed a more
native embedding [14] of parallel constructions (especially OpenMP) into the
intermediate representation of LLVM. Similarly, Tapir [11] is an alternative to
integrate task parallelism natively in LLVM. In contrast to most other solutions,
it only introduces three new instructions, thus requiring less adaption of the code
base. However, it is not possible to express communicating/synchronizing tasks
or parallel annotations distributed over multiple functions.

Compiler Optimizations For OpenMP 13

Fig. 7: Performance results for three of our parallel optimizations (ap, vp, re).

Fig. 8: Performance results for three of our parallel optimizations (ap, vp, be).

14 J. Doerfert and H. Finkel.

10 Conclusion

In this work we present several transformations for explicitly parallel programs
that enable and emulate classical compiler optimizations which are not applica-
ble in the current program representation. Our results show that these transfor-
mations can have significant impact on the runtime of parallel codes while our
implementation does not require substantive implementation or maintainability
efforts. While further studies and the development of more robust and cost aware
optimizations are underway, we believe our initial results suffice as an argument
for increased compiler driven optimizations of parallel programs.

It is worthwhile to note that we are currently proposing to include the pre-
sented optimizations into LLVM. To this end we generalized them to allow op-
timization not only of OpenMP programs lowered to runtime library calls but a
more general set of parallel representations.

11 Acknowledgments

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed plat-
forms, in support of the nation’s exascale computing imperative.

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: Proceedings of the 12th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP 2007, San Jose,
California, USA, March 14-17, 2007. pp. 183–193 (2007), http://doi.acm.org/10.
1145/1229428.1229471

2. Barik, R., Sarkar, V.: Interprocedural Load Elimination for Dynamic Optimization
of Parallel Programs. In: PACT 2009, Proceedings of the 18th International Con-
ference on Parallel Architectures and Compilation Techniques, 12-16 September
2009, Raleigh, North Carolina, USA. pp. 41–52 (2009), https://doi.org/10.1109/
PACT.2009.32

3. Barik, R., Zhao, J., Sarkar, V.: Interprocedural strength reduction of critical sec-
tions in explicitly-parallel programs. In: Proceedings of the 22nd International Con-
ference on Parallel Architectures and Compilation Techniques, Edinburgh, United
Kingdom, September 7-11, 2013. pp. 29–40 (2013), https://doi.org/10.1109/PACT.
2013.6618801

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Proceedings of the
2009 IEEE International Symposium on Workload Characterization, IISWC 2009,
October 4-6, 2009, Austin, TX, USA. pp. 44–54 (2009), https://doi.org/10.1109/
IISWC.2009.5306797

http://doi.acm.org/10.1145/1229428.1229471
http://doi.acm.org/10.1145/1229428.1229471
https://doi.org/10.1109/PACT.2009.32
https://doi.org/10.1109/PACT.2009.32
https://doi.org/10.1109/PACT.2013.6618801
https://doi.org/10.1109/PACT.2013.6618801
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797

Compiler Optimizations For OpenMP 15

5. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel programs.
In: Proceedings of the Fourth ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming (PPOPP), San Diego, California, USA, May 19-22, 1993.
pp. 159–168 (1993), http://doi.acm.org/10.1145/155332.155349

6. Jordan, H., Pellegrini, S., Thoman, P., Kofler, K., Fahringer, T.: INSPIRE: the
insieme parallel intermediate representation. In: Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, Edin-
burgh, United Kingdom, September 7-11, 2013. pp. 7–17 (2013), https://doi.org/
10.1109/PACT.2013.6618799

7. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw, J.,
Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: LULESH Pro-
gramming Model and Performance Ports Overview. Tech. Rep. LLNL-TR-608824

8. Khaldi, D., Jouvelot, P., Irigoin, F., Ancourt, C., Chapman, B.M.: LLVM parallel
intermediate representation: design and evaluation using openshmem communica-
tions. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastruc-
ture in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015. pp. 2:1–2:8
(2015), http://doi.acm.org/10.1145/2833157.2833158

9. Lattner, C., Adve, V.S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: 2nd IEEE / ACM International Symposium on
Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA. pp. 75–88 (2004), https://doi.org/10.1109/CGO.2004.1281665

10. Moll, S., Doerfert, J., Hack, S.: Input Space Splitting for OpenCL. In: Proceed-
ings of the 25th International Conference on Compiler Construction, CC 2016,
Barcelona, Spain, March 12-18, 2016. pp. 251–260 (2016), http://doi.acm.org/10.
1145/2892208.2892217

11. Schardl, T.B., Moses, W.S., Leiserson, C.E.: Tapir: Embedding Fork-Join Paral-
lelism into LLVM’s Intermediate Representation. In: Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Austin,
TX, USA, February 4-8, 2017. pp. 249–265 (2017), http://dl.acm.org/citation.cfm?
id=3018758

12. Tian, X., Girkar, M., Bik, A.J.C., Saito, H.: Practical Compiler Techniques on Ef-
ficient Multithreaded Code Generation for OpenMP Programs. Comput. J. 48(5),
588–601 (2005), https://doi.org/10.1093/comjnl/bxh109

13. Tian, X., Girkar, M., Shah, S., Armstrong, D., Su, E., Petersen, P.: Compiler
and Runtime Support for Running OpenMP Programs on Pentium-and Itanium-
Architectures. In: Eighth International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS’03), April 22-22, 2003, Nice,
France. pp. 47–55 (2003), https://doi.org/10.1109/HIPS.2003.1196494

14. Tian, X., Saito, H., Su, E., Gaba, A., Masten, M., Garcia, E.N., Zaks, A.: LLVM
Framework and IR Extensions for Parallelization, SIMD Vectorization and Offload-
ing. In: Third Workshop on the LLVM Compiler Infrastructure in HPC, LLVM-
HPC@SC 2016, Salt Lake City, UT, USA, November 14, 2016. pp. 21–31 (2016),
https://doi.org/10.1109/LLVM-HPC.2016.008

15. Zhao, J., Sarkar, V.: Intermediate language extensions for parallelism. In: Con-
ference on Systems, Programming, and Applications: Software for Humanity,
SPLASH ’11, Proceedings of the compilation of the co-located workshops, DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, and VMIL’11, Portland, OR, USA,
October 22 - 27, 2011. pp. 329–340 (2011), http://doi.acm.org/10.1145/2095050.
2095103

http://doi.acm.org/10.1145/155332.155349
https://doi.org/10.1109/PACT.2013.6618799
https://doi.org/10.1109/PACT.2013.6618799
http://doi.acm.org/10.1145/2833157.2833158
https://doi.org/10.1109/CGO.2004.1281665
http://doi.acm.org/10.1145/2892208.2892217
http://doi.acm.org/10.1145/2892208.2892217
http://dl.acm.org/citation.cfm?id=3018758
http://dl.acm.org/citation.cfm?id=3018758
https://doi.org/10.1093/comjnl/bxh109
https://doi.org/10.1109/HIPS.2003.1196494
https://doi.org/10.1109/LLVM-HPC.2016.008
http://doi.acm.org/10.1145/2095050.2095103
http://doi.acm.org/10.1145/2095050.2095103

	Compiler Optimizations For OpenMP

