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Abstract. This paper outlines a research and development program to
enhance modern compiler technology, and the LLVM compiler infrastruc-
ture specifically, to directly optimize parallel-programming-model con-
structs. The goal is to produce higher-quality code, and moreover, to re-
move abstraction penalties generally associated with such constructs. We
believe that such abstraction penalties are increasing in importance due
to C++ parallel-algorithms libraries and other performance-portability-
motivated programming methods.

In addition, we will discuss when, and more importantly when not,
explicit parallelism-awareness is necessary within the compiler in order
to enable the desired optimization capabilities.
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1 Introduction

Parallel programming, and often heterogeneous programming, is becoming a
ubiquitous part of writing high-performance applications for modern architec-
tures. This raises the question how compilers have to adapt to this new reality.
To this end, we have to look at several important trends that are intersecting at
the present time:

– Parallel processing, and heterogeneous architectures, have become a com-
mon reality across much of modern computing technology. Everything from
mobile devices to supercomputers offer multiple cores and heterogeneous
accelerators.

– Parallel programming models are nowadays commonly used. This includes
source-language directives, e.g., OpenMP [6], and OpenACC, and data-
parallel languages, e.g., CUDA, and OpenCL [17]. While this additional
semantic information should tend to the compiler, the low-level encoding
of parallelism in the otherwise sequential compiler intermediate languages
generally prevent analyses and optimizations to cross the barrier between
sequential and parallel code.

– The use of parallel libraries, including the new parallel C++ STL, but also
libraries such as Thrust [4], Kokkos [8], and RAJA [10], is increasing. These
libraries provide a way to cleanly integrate parallel and heterogeneous pro-
gramming constructs into software-engineering practices and, in addition,
provides performance-portability benefits.
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The result of these trends is that parallel, and heterogeneous, programming is
becoming important for a larger class of applications, and moreover, the po-
tential for compiler optimizations in this space increases as well. Because of
directives and other language constructs, the compiler can understand the par-
allel/heterogeneous semantics. At the same time, the level of abstraction is ris-
ing thanks to high-level parallel-programming libraries and other performance-
portability techniques. To write modular and clean code, a key aspect in modern
software-engineering efforts, the description of parallelism is often separated from
the actual algorithm. This separation, and other aspects of the aforementioned
abstraction, add penalties to the overall performance of the application. It is
therefore clear what needs to be done: The compiler should exploit available in-
formation to perform optimizations that mitigate common abstraction penalties
and aid the programmer’s effort to write maintainable, high-performance code.

The work we present here takes place in the context of the LLVM com-
piler infrastructure [13]. Currently, there are various research groups and com-
panies exploring options to enhance the existing LLVM intermediate representa-
tion (LLVM-IR) with parallelism/heterogeneity-aware optimizations. Given that
there are already several proposals that show promising results [7,15,20,12], we
will primarily focus on a different question, namely: For what purposes do we
require parallelism-aware extensions to the existing code base and when are more
general abstractions better suited to enable the desired optimizations?

To answer this question we will first review some of the fundamental con-
structs provided by parallel programming models in Section 2. Our focus will be
on the “default representation” in the LLVM compiler toolchain and the reasons
abstraction penalties occur when these constructs are used. In this context, we
elaborate direct consequences of the internal representation as well as additional
penalties that arise from otherwise-reasonable uses of modularity, e.g., through
parallel libraries. In Section 3 we show how the right abstraction can enable clas-
sical compiler optimizations to mitigate abstraction penalties with only marginal
changes to their implementation. The limits of existing (sequential) optimization
techniques and the need for a specific representation of parallelism in the com-
piler is afterwards discussed in Section 4. We also provide a brief introduction
into related work in Section 5 before we finish with a conclusion and remarks for
future research in Section 6.

2 Compiler Representation of Parallel Constructs

Most compilers for non-explicitly-parallel languages are designed with sequential
program execution in mind. The LLVM compiler toolchain, on which our work
is build, is no exception. When parallelism is present in the input program, e.g.,
through directive-based language extensions like OpenMP or the (transitive) use
of parallel libraries such as pthreads, a layer of indirection in the internal program
representation is used to ensure the separation of parallel and sequential program
parts. Without this separation, existing optimizations which were written with
sequential program execution in mind, and are consequently unaware of the
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parallel semantics, will probably miscompile the code. While there are certainly
differences in the way this code separation is implemented for parallel libraries
and programming models, the general structure is always the same:

– The parallel code is placed into a separate function (or a similar abstraction).

– A runtime-library call is placed at the original location of the parallel code.

– The arguments of the call include the address of the newly-created function
as well as a way to access captured variables, e.g., through pointers.

# pragma omp parallel for

for (int i = 0; i < N; i++)

{/* Use i, read In, write Out */ }

(a) Generic parallel loop.

int v = ...

# pragma omp task

{/* Use v, read In, write Out */ }

(b) Generic parallel task.

static void body_fn(int i,

float** In, float** Out);

omp_parallel_for(0, N, &body_fn,

&In, &Out);

(c) The loop in part 1a after lowering.

static void task_fn(int *v,

float** In, float** Out);

task = omp_alloc_task(&task_fn, &v,

&In, &Out);

omp_add_task(task);

(d) The task in part 1b after lowering.

Fig. 1: OpenMP constructs (top) and their representation in LLVM (bottom).

In Figure 1 we illustrate this process through examples that depict the lower-
ing of OpenMP constructs1 as performed by LLVM’s C/C++ front-end Clang.
The example in Figure 1a features a generic parallel loop. During the lower-
ing to the LLVM intermediate representation (LLVM-IR) its body is outlined
into the function body_fn and the loop is replaced by a runtime library call as
shown in Figure 1c. Depending on the capture declarations, the variables used in
the parallel function are either passed “by-value” (for firstprivate) or as shown,
“by-reference” (if unspecified or explicitly declared as shared). Depending on
the runtime, variables might be passed directly (as shown) or in a compound
object. The latter, which is commonly known from the pthread_create method
but also employed by various parallel libraries, is similar to the way OpenMP
tasks are handled. The lowered version of the generic task shown in Figure 1b is
illustrated in 1d. The most important conceptual difference between these two
examples is the point at which the parallel code is invoked. In the first example
the parallel function was directly called, while in the second example a closure
is built and execution is potentially delayed.

Confronted only with a low-level encoding of parallelism through runtime-
library calls, a compiler can generally not conclude anything about the interac-
tion of the sequential code in the caller with the parallel code in the outlined
function. This includes alias information on the pointer values available at the

1It is important to note that we use OpenMP only to improve readability. The same
situation arises for various other parallel programming models and library solutions.
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call site and also argument usage information that can be derived from the par-
allel function. As an example, for the latter we could assume that the compiler
determines both the In pointer and its address, which might be captured by the
runtime calls or the parallel functions (body_fn and task_fn) are only read.
However, even if that is determined for these parallel functions, the information
could not be used at the call sites, e.g., to pass the value of the In pointer di-
rectly. From a compiler perspective, the problem with the current encoding of
parallelism is less related to the actual parallel execution but stems mainly from
the indirection through a function pointer and the runtime-library call. While
the uncertainty that is induced by this separation is also the reason we can ac-
tually compile parallel programs with compilers that are generally unaware of
parallel semantics, the information that is lost will often prevent optimizations
in both the caller as well as the parallel function [7].

3 Reuse of Parallelism-Unaware Optimizations

To allow classical, parallelism-unaware optimizations to transform parallel code
we need to describe the semantics of the low-level parallelism encoding from a
sequential standpoint. To this end, we could state that the omp_parallel_for

function in Figure 1c will invoke its third argument exactly N times, with some
value between 0 and N-1 passed as i, and the addresses of the pointers In and
Out. Similarly, omp_add_task would eventually result in the invocation of the
“task function” stored in the closure. Even if we omit the number of invocations
and the value ranges for varying arguments like i, this description already suffices
to perform important transformations using only existing optimization passes.

As an example we can consider function argument promotion, an optimiza-
tion that tries to communicate an argument that is only read and not captured
“by-value” instead of “by-reference”. In the context of OpenMP this transfor-
mation would correspond to a declaration change for that variable from shared

to firstprivate. As LLVM already has an implementation for argument pro-
motion, it would be optimal if we could reuse it in this context. Similarly, we
want to reuse the analyses that propagate information derived for the arguments
of a function to the call site and vise versa. The latter allows for example trans-
formations based on the fact that a pointer argument is only passed through to
the transitively invoked parallel function and there only read and not captured.

To perform these kind of optimizations with the existing code base, we intro-
duce transitive call sites to LLVM. Similar to the already available, and ubiq-
uitously used, direct call site abstraction, transitive call sites allow the user to
query information on the callee, caller, arguments, and parameters of a call, with-
out explicitly dealing with the underlying instruction. We currently use manual
annotations to identify transitive call sites, thus we mark functions that might
invoke one of their function pointer arguments later on. The annotation also de-
scribes which arguments to the initial callee are only forwarded to the transitive
callee, hence not captured or otherwise inspected. Given this information, which
we plan to automatically derive in the future, we can create the transitive call
abstractions that relate the initial caller with the transitively called function.
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While we are still in the development stage we already have two analyses
passes that act on transitive call site information. The first propagates informa-
tion on the parameters to transitive call sites. If all call sites are known, the
second analysis will propagate globally veritable information from arguments to
the corresponding parameters in the callee. In addition, we also enabled argu-
ment promotion to work with transitive call sites. This change required us to
modify less than 50 lines of code, thus less than 5% of the total size. Even with
this minimal investment we already achieve speedups similar to the ones pre-
sented by Doerfert and Finkel [7], thus more than 10% improvement for the cfd
and srad benchmark from the Rodinia suite [5].

While our initial results are already promising and we strongly believe other
existing interprocedural optimizations can be similarly easy generalized to tran-
sitive call sites, there still is the closure abstraction that has to be overcome.
In fact, most parallel runtimes employ at least argument aggregation, e.g., as
known from pthread_create function. For lowered OpenMP tasks (ref. Fig-
ure 1d) the closure even contains the parallel function pointer. To cope with
these additional complications we are looking into different possible extensions
of our work, including interprocedural memory tracking.

4 The Need for Parallelism-Awareness

Classically, compilers are written with a sequential execution model in mind. If
we want to reuse existing analysis and optimization capabilities for parallel pro-
grams, we therefore have to rephrase our problems to match the original sequen-
tial mindset. While this is certainly possible for many low-level optimizations,
this approach is infeasible for transformations that have to explicitly deal with
the parallel semantic. Thus, if we want the compiler to optimize parallel task
granularity, eliminate explicit and implicit barriers, or determine cutoff values for
parallel execution, we will need to introduce new analyses and transformations.

Most of the currently ongoing work in this area (that we are aware of) is in
part considering new optimizations to explicitly alter parallel program execution.
However, this effort is often mixed with concerns about the reuse of existing
scalar analyses and transformations through the embedding of parallel code into
the sequential CFG [12,15,20]. While this is can certainly lead to good solutions,
they might be more complex and less focused on their main task, namely to
perform explicit parallelism-aware transformations. Especially if we assume we
can continue to introduce abstractions that allow the reuse of existing scalar
optimizations for parallel programs, it seems non-essential to keep such “reuse”
as a requirement in the design of a parallelism-aware compiler extension.

Going forward, we will explore how these ideas can be employed in the het-
erogeneous setting. Currently, for example, when Clang targets GPUs using
OpenMP offloading, the frontend itself decides on the code-generation strategy
and generates multiple LLVM modules at this early stage in the pipeline (a mod-
ule for the host code and modules for each accelerator target). So-called “late
outlining” approaches have been discussed that will delay this module splitting
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and allow for compiler optimizations to take place across the host/accelerator
boundary prior to that point. These may be important because, for example,
deciding how to map OpenMP code onto a GPU kernel might depend on what
OpenMP features are actually used in that kernel (and that may not be known
until after inlining and/or other inter-procedural analyses, plus analysis-enabling
optimizations, are employed). How to best adapt the compiler’s internal repre-
sentation to enable this kind of functionality is yet unknown.

5 Related Work

Various techniques have been proposed to enable compiler optimizations for par-
allel programs. Most of them involve some native embedding of parallelism that
allows or simplifies the use of existing transformations [11,12,21,20,15,18,19,16].
In addition, there is a vast body of research on explicitly parallelism-aware op-
timizations [1,2,3,9,7,14].

In contrast to these efforts, we put our focus on simple abstractions that
facilitate the reuse of existing analyses and optimizations. We believe that such
abstractions are, when applicable, superior to most parallelism-representation
schemes. We base this assessment on the required implementation effort for the
already proposed approaches, but also the fact that any change to the com-
piler’s internal program representation induces a non-trivial cost as potential
interactions with existing analysis and transformation have to be checked.

6 Conclusion And Future Work

We believe our initial result show that certain optimizations for parallel pro-
grams are well within reach of a parallelism-unaware compiler. We will continue
to explore the use of transitive call sites and we also plan to investigate new
abstractions to facilitate the optimization of scalar and parallel programs alike.

Since our work is still in a prototype state, we refrained from a dedicated
evaluation. However, our initial results for the cfd and srad benchmark are al-
ready on a par with the improvements reported by Doerfert and Finkel [7]. We
consequently believe that new abstractions, and increased use of the existing
one, will eventually lead to similar results on various benchmarks.

To facilitate the adaption of this work, and to create an incentive for further
refinement, we already proposed parts of our implementation to the LLVM com-
munity. While a verdict on the integration was not yet reached, we hope that
our minimal intrusive proposal will foster the development of optimizations that
cross the current optimization barrier between sequential and parallel code.
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