
A Parallel Intermediate Representation
— Draft —

Johannes Doerfert Simon Moll Kevin Streit
Sebastian Hack

September 29, 2016

Contents

1 Introduction 3
1.1 Goals . 3
1.2 Common Problems . 3

2 IR Extensions 5
2.1 The fork Terminator . 5
2.2 The join Instruction . 6
2.3 The halt Terminator . 6
2.4 Common intrinsics . 7

3 Parallel Regions 8

4 High-Level-Lowering 10
4.1 OpenMP . 10

4.1.1 #pragma omp parallel . 10
4.1.2 #pragma omp parallel for 11
4.1.3 #pragma omp simd . 12

4.2 Cilk+ . 12
4.2.1 cilk_for loops . 12
4.2.2 cilk_spawn & cilk_sync 12

4.3 CUDA . 13
4.3.1 CUDA Thrust . 13
4.3.2 Fusing CUDA Thrust transformations 13

4.4 OpenCL . 17
4.5 General Thread Level Parallelism 18

5 Transformations (notes only) 19
5.1 Parallel Region . 19
5.2 Subregion Merging . 19
5.3 Disjunct Region Merging . 19
5.4 Sequentializing Parallel Regions 19

1

5.5 fork Transformations . 19
5.6 join Transformations . 19

6 Analyses And Optimizations 20
6.1 Dominance . 20

6.1.1 Local Dominance . 20
6.1.2 Global Dominance . 20

7 Runtime Lowering 21
7.1 Loop Outlining . 21
7.2 Task Outlining . 21
7.3 LoweringInfo Pass . 21

7.3.1 Scalar Communication . 21
7.3.2 Privatized Variables . 22
7.3.3 Reduction Detection . 22

8 Roadmap 23
8.1 Milestones . 23

8.1.1 Conceptual Soundness . 23
8.1.2 OpenMP to OpenMP . 24
8.1.3 CUDA to CUDA . 24

8.2 Long term: Full abstraction of parallelism 24

2

1 Introduction

Extending an existing compiler intermediate language with parallel constructs
is a challenging task. While maintainability dictates a minimal extension that
will not disturb to many of the existing analyses and transformations it is also
important to make the parallel constructs powerful enough to express differ-
ent, orthogonal execution scenarios. For C/C++ OpenMP is one of the most
prominent parallelization frameworks, however even OpenMP allows for mul-
tiple parallelization schemes (ref. Section 4.1). Additionally, other language
extensions such as OpenCL might profit from the translation to lower level par-
allel constructs. Finally, automatic parallelizers and new (partially) parallel
languages can be utilized best with general parallel constructs that allow to
express parallel (or better concurrent) execution in a independent and intuitive
way.

1.1 Goals

Minimal
The additions to the IR and especially to the analysis and transformation
passes present (and to be developed) should be minimal.

Robust
The parallel semantics should be robust under current/common and future
optimizations.

Intuitive
The Parallel-IR should be as intuitive as sequential IR.

Expressive
Existing parallel languages or language extensions as well as current and
future parallel paradigms should be expressible.

Independent
The Parallel-IR should not be coupled to a fixed set of parallel languages,
language extensions or paradigms.

1.2 Common Problems

Integration
Overloading of the sequential IR (e.g., instructions become context sen-
sitive) or the CFG (e.g., implicit representation of multiple, concurrent
execution traces).

Specialization
The parallel constructions are suited for one language (e.g., OpenMP) or
parallel paradigm (loop parallelism) but nothing else.

3

Fragility
Optimizations have to be turned off completely or thought to handle the
parallel parts differently (or not at all).

Plain Hacks
Memory operations are marked volatile to prevent optimizations that
currently bail on such instructions.

4

2 IR Extensions

To amend the existing LLVM-IR with parallel semantics we introduce two new
terminator instructions, fork and halt, as well as a landingpad like join in-
struction. The halt terminator will stop the execution of the reaching thread,
thus it has no successor in the Parallel-CFG. The fork terminator has suc-
cessor blocks but it is different to classical terminators like br (branch) and
switch. While classically control is transfered to exactly one successor, fork
will transfer control to all successors. Consequently, Parallel-CFG semantics
are defined with regards to DAG shaped execution traces that can be linearized
(e.g., by the hardware) in various ways. This is a major difference to the CFG
semantics used nowadays and needs to be communicated as such.

2.1 The fork Terminator

fork [force] [width <%w>] [lockstep] [label <master>]
\[label <d1>, ... \]

fork interior \[<type> <%v1>, ... \] [label <master>]
\[label <d1>, ... \]

Figure 1. fork syntax

The fork instruction is only valid if it has at least one successor block. As indi-
cated in the syntax, one can specify a special successor block that is guaranteed
to be executed by the “master” thread, hence the thread that reached the fork
instruction. All other successors can be executed by any thread. One extreme
would be to sequentialize the parallel region completely, hence to execute all
successors with only one thread in a statically fixed order. However, this is only
valid if the force attribute is not set. If it is, optimizations are not allowed to
limit the possible execution traces statically, e.g., through sequentialization.

The value following the width attribute defines an upper bound on the
number of threads, or more generally, concurrently executed parts in the parallel
region. It allows to express dependence distances for loops (e.g., for the SIMD
case) but can also restrict the amount of parallelism the compiler is supposed
to exploit.

The lockstep attribute indicates that the successors of fork instructions
in this parallel region have to be executed in lockstep fashion. This attribute is
solely used to represent exact SIMD semantics.

An attribute that is present at at least one fork instruction in a parallel
region causes the same semantics as if it was present at all fork instructions
in the parallel region.

Interior fork instructions have the same semantics as regular fork in-
structions, except that they do not start a new parallel region but are part
of the enclosing one. The program is not valid if no parallel region surrounds
the fork interior instructions. The main (but not onliest) purpose of the

5

fork interior instruction is to allow parallel loop constructs. As each par-
allel region has to contain at least one regular fork instruction it suffices to
allow attributes only for them. However, fork interior instructions can
alternatively reference values to make them users of these values. This is a
“hack’ to prevent hoisting of e.g., private memory allocated in a parallel loop
(see Figure 6 or Figure 8) and does not bear any other semantics.

Lastly, metadata attached to the fork instructions indicates the parallel
backends that can be used to implement the fork. In contrast to most metadata
this bears semantics. An example annotation could look like

%0 = !{ !"sequential", !"openmp"}

and it would force the backend to either sequentialize the parallel region or use
OpenMP runtime calls to implement it. Similar to code backends, the compiler
is informed at its own compile time of the parallel backends supported on the
target machine. If no annotations are given for a parallel regions it is free
to choose from this set. As a fall-back a built-in parallel runtime should be
provided.

2.2 The join Instruction

join

Figure 2. join syntax

The join instruction is a landingpad style instruction, thus has to be placed
at the beginning of a basic block. Furthermore, such basic blocks should not
contain any phi nodes. The semantics of a join is twofold. First, it defines
the end of a parallel region and second, the join instructions of a region form
an implicit barrier for all concurrently running threads spanned in this region.

2.3 The halt Terminator

halt

Figure 3. halt syntax

The halt instruction will terminate the executing thread gracefully, thus it
does not have any successor blocks in the Parallel-CFG. In contrast to the
join instruction it does not perform any syncronization. It is also not possi-
ble to communicate scalars out of a thread that executed a halt instruction.
Nevertheless, memory allows for communication and syncronization.

6

2.4 Common intrinsics

While most parallel languages and frameworks are defined from scratch and
with different concepts in mind, most share a common core of built-in or library
functions. While we do not try to replace every last library call present in lan-
guage extensions like OpenMP or OpenCL in the IR, we represent the common
core shared between all of them. To this end, the front-end lowers such calls to
llvm.parallel.XXX intrinsic calls that are understood by the analysis and
optimization passes. Other built-in function or library calls will be translated
to regular calls with unknown side-effects, thus implicitly block optimizations.

Candidates for llvm.parallel intrinsics are shown in Figure 4. The first
intrinsic returns the number of threads executing concurrently while the second
returns a unique id for the calling thread.

declare i32 @llvm.parallel.num threads()
declare i32 @llvm.parallel.thread id()

Figure 4. llvm.parallel instrinsics

7

3 Parallel Regions

Parallel Regions are the abstract construct that specify both, validity and se-
mantic of a Parallel-CFG. A parallel region θ is comprised of entry fork in-
structions FE, fork interior instructions FI, join instructions J and halt
instructions H. The well-formedness criterion for Parallel-CFGs is given in
Definition 3 and parallel region are formally introduced in Definition 4. As a
consequence we can show the Perfect-Nesting Theorem 3.

Definition 1 (Parallel Nesting Depth).
The parallel nesting depth τ is an inductive predicate over all finite trace prefixes.
It defines how many parallel regions surround a basic block.

τ(p0) = 0

τ(p0, . . . , pn) = τ(p0, . . . , pn−1) + #(term(pn))

Where the term-function yields the terminator of a basic block. The #-function
is used to increase the nesting depth for entry fork instructions and to decrease
it for join and halt instructions.

#(t) =

1 if t ∈ FE

−1 if t ∈ J ∪H
0 otherwise

Definition 2 (Parallel-CFG Consistency).
A Parallel-CFG is consistent, if the parallel nesting depth τ of each block is the
same for all paths reaching the block.

Definition 3 (Parallel-CFG Well-formedness).
A Parallel-CFG is well-formed, if (1) it is consistent, (2) the parallel nesting
depth τ is always non-negative, and (3) τ is positive for each block terminated
by an fork interior instruction.

Definition 4 (Parallel Region).
Each maximal, weakly connected subgraph of a Parallel-CFG is a parallel region
θl if the parallel nesting depth τ of each block is at least l ∈ N+.

Theorem 1 (Perfect Depth Nesting).
For each parallel region θl with minimal parallel nesting depth l > 1 there exists
a parallel region θl−1 with minimal parallel nesting depth l − 1 that is a strict
superset of θl.

Theorem 2 (Perfect Global Nesting).
The set of blocks in parallel regions with minimal parallel nesting depth l is a
strict subset of the set of the set of blocks in parallel regions with minimal parallel
nesting depth l′ for l > l′ > 0.

8

Theorem 3 (Perfect Region Nesting).
Parallel regions are perfectly nested, hence for every two parallel regions θ1 and
θ2 either they are independent or one is a subregion of the other:

θ1 ∩ θ2 ∈ {θ1, θ2, ∅}

Theorem 4 (Parallel Region Forest).
The parallel regions of a function form a forest. If an auxiliary root node is
introduced that spans the whole function, the parallel regions and this auxiliary
root form a tree.

9

4 High-Level-Lowering

4.1 OpenMP

4.1.1 #pragma omp parallel

#pragma omp parallel private(p) shared(s)
{
int id = omp_get_thread_num();
S(id, p, s)

}

Figure 5. Generic OpenMP parallel clause

%nt = call @llvm.parallel.num threads ()
fork

%wid = phi (0, %wid + 1)
br %wid < %nt

%p = alloca

fork interior [%p]

%id = call @llvm.parallel.thread id ()

S(%id,%p,%s)

join

(a) Parallel-CFG for Figure 5

fork

%p0 = alloca %p1 = alloca %p2 = alloca

%p = phi(%p0, %p1, %p2)
%id = call @llvm.parallel.thread id ()

S(%id,%p,%s)

join

(b) Parallel-CFG for Figure 5 assuming an ad-
ditional num_threads(3) attribute

Figure 6. Parallel-CFG for OpenMP parallel clause

10

4.1.2 #pragma omp parallel for

#pragma omp parallel for firstprivate(p) shared(s)
for (int i = 0; i < N; i++)

S(i, p, s)

Figure 7. Simple OpenMP parallel for loop

%nt = call @llvm.parallel.num threads ()
fork width %nt

%i = phi(0, %i + 1)

%i < %N

%p’ = alloca
store %p, %p’

fork interior [%p’]

S(%i,%p’,%s)

join

(a) Parallel-CFG for Figure 7

%nt = call @llvm.parallel.num threads ()
fork width %nt

%i = phi(0, %i + 1)

%i < %N

%p’ = alloca
store %p, %p’

fork interior [%p’]

S(%i,%p’,%s)

halt

join

(b) Parallel-CFG for Figure 7 as-
suming an additional nowait at-
tribute

Figure 8. OpenMP Parallel For Loop

11

4.1.3 #pragma omp simd

#pragma omp simd private(p), safelen(n)
for (int i = 0; i < N; i++)

S(i, p)

Figure 9. Simple OpenMP SIMD loop

fork width %n lockstep

%i = phi(0, %i + 1)

%i < %N

%p = alloca

fork interior [%p]

S(%i, %p)

join

Figure 10. OpenMP SIMD Loop

4.2 Cilk+

4.2.1 cilk_for loops

These can be translated similar to parallel OpenMP loops (ref. Section 4.1.2)
without other annotations.

4.2.2 cilk_spawn & cilk_sync

Translate (almost) directly into plain fork and join instructions with addi-
tional join insturctions prior to return statements.

12

__global__ void ChildKernel(void* data) {
// Operate on data

}
__global__ void ParentKernel(void *data) {
if (...)
ChildKernel<<<16, 1>>>(data);

// Operate on data
}

ParentKernel<<<256, 64>>(data);

Figure 11. CUDA snippet with dynamic parallelism

4.3 CUDA

The translation of CUDA to Parallel-IR is very similar to the translation of
OpenCL to Parallel-IR. We therefore refer the reader to Section 4.4 for more
examples. However, in contrast to OpenCL, CUDA allows for dynamic par-
allelism. That means a kernel can dynamically spawn another kernel or itself
recursively. A simple example for dynamic parallelism is illustrated in Figure 11
and the corresponding Parallel-CFG is shown in Figure 12. It is important to
note the similarities between the Parallel-IR representation of these two 1D
CUDA kernels and the the 2D OpenCL example shown in Figure 17 and 18.
The main difference is the arbitrary code and control in the outer parallel region
that may or may not lead to the execution of the inner parallel region.

4.3.1 CUDA Thrust

CUDA Thrust is a library for transforming data structures in parallel on GPUs.
In the code snippet Figure 13, the element-wise negation of one device array is
stored in another one. This transformation can be lowered to Parallel-IR as in
Figure 14. Note how Parallel-IR completely captures the parallel execution and
data transformation on the arrays. Except for memory allocations, no calls to
the CUDA library are necessary.

4.3.2 Fusing CUDA Thrust transformations

Parallel-IR completely captures the semantics of Thrust transformations in par-
allel loops. This enables the compiler to fuse sequences of Thrust transforma-
tions without special knowledge about Thrust but only arguing about (parallel)
loops. The simplest example with a sequence of two parallel transformations
(sequence and transform) is shown in Figure 15. In Figure 16, the Parallel-
CFG for this code snippet is shown together with the optimized, fused version.

13

fork

Header

%t < 256

fork interior

Main Kernel

fork

Header

%t < 16

fork interior

Spawned Subkernel

join

join

Figure 12. Parallel-CFG for the CUDA kernel with dynamic parallelism
shown in Figure 11.

thrust::device_vector<int> X(10);
thrust::device_vector<int> Y(10);
thrust::transform(Y.begin(), Y.end(), X.begin(),

thrust::negate<int>());

Figure 13. CUDA Thrust library calls

14

cudaMalloc(&X, 10 * sizeof(int));
cudaMalloc(&Y, 10 * sizeof(int));

fork

Header

%t < 10

fork interior

Y[t] = -X[t];

join

Figure 14. Parallel-CFG for the CUDA thrust snippet in Figure 13

thrust::device_vector<int> X(10);
thrust::device_vector<int> Y(10);
thrust::sequence(Y.begin(), Y.end(), 1); // {1, 2, ..}
thrust::transform(Y.begin(), Y.end(), X.begin(),

thrust::negate<int>()); // {-1, -2, ..}

Figure 15. A sequence of Thrust library calls

15

cudaMalloc(&X, 10 * sizeof(int));
cudaMalloc(&Y, 10 * sizeof(int));

fork

Header

%t < 10

fork interior

Y[t] = t;

join

fork

Header

%t < 10

fork interior

X[t] = -Y[t];

join

(a) Parallel-CFG for Figure 15.

cudaMalloc(&X, 10 * sizeof(int));
cudaMalloc(&Y, 10 * sizeof(int));

fork

Header

%t < 10

fork interior

Y[t] = t;

X[t] = -Y[t];

join

(b) Parallel-CFG after parallel loop
fusion was applied to Figure 16a.

Figure 16. Parallel loop fusion applied to two CUDA Thrust library calls
that were lowered to Parallel-IR.

16

4.4 OpenCL

OpenCL kernels can be represented with part of the driver code in the Parallel-
IR to allow various loop transformations. One possible lowering of the OpenCL
kernel shown in Figure 17 is illustrated in Figure 18. Except the actual kernel
it also contains a parallel loop over the work groups in dimension 0 and another
parallel loop over the elements of each work group. This way local and global
memory can be represented in the IR too.

__kernel void simpleKernel(__global float * A) {
int g = get_group_id(0);
int t = get_local_id(0);
__local int p[128];
/* kernel */ S(A, g, t, p);

}

Figure 17. Generic OpenCL kernel

fork

Header

%g < %num_groups

%p = alloca [128]

fork interior [%p]

fork

Header

%t < %local_size

fork interior

S(%A, %g, %t, %p)

halt

join

Figure 18. Parallel-CFG for OpenCL kernel in Figure 17

17

4.5 General Thread Level Parallelism

While general thread-level parallelism (std::thread or pthreads) is not in
the scope of this parallel IR, some common patterns can be represented and
optimized. However, if the creation or termination of threads is guarded by
different control conditions, distributed over multiple functions or not perfectly
nested, we avoid low level IR representation and stick with library calls.

The example in Figure 19 can be translated into the Parallel-CFG shown in
Figure 20 while the example in Figure 21 is not ammendable to our representa-
tion.

pthread_create(&tid, nullptr, f, (void *)&v);
S(); /* Code without return or exceptions */
pthread_join(&tid);

Figure 19. Representable pthreads calls

fork

S() call f(%v)

join

Figure 20. Parallel-CFG for pthreads calls in Figure 19

for (i = 0; i < N; i++)
pthread_create(&tids[i], nullptr, f, (void *)&v[i]);

/* some code */

for (i = 0; i < N; i++)
pthread_join(&tids[i]);

Figure 21. Non-representable pthreads calls

18

5 Transformations (notes only)

5.1 Parallel Region

Theorem 5. Empty Parallel Regions An empty parallel region contains only
fork and join instructions. Empty parallel regions can be removed.

5.2 Subregion Merging

If all entry forks of a parallel region θ are in starting blocks of the parent
parallel region θ’ and all joins of θ are in the exit blocks of θ’, θ can be merged
into θ’.

5.3 Disjunct Region Merging

5.4 Sequentializing Parallel Regions

Theorem 6 (Sequential Parallel Region).
A parallel region is actually sequential if there is no fork that has more than
one successor.

5.5 fork Transformations

Theorem 7 (Trivial Interior forks).
An interior fork fi with exactly one predecessor can be replaced by a uncondi-
tional branch to that predecessor. The other direction is also valid, however the
parallel region that is associated with the new interior fork needs to contain the
original unconditional branch.

5.6 join Transformations

19

6 Analyses And Optimizations

6.1 Dominance

%pre = ... %preop ...

fork

S

/* some code */

P

/* some code */

join

%post = ...
%postuser = ... %post ...

Figure 22. Sample Parallel-CFG with scalar computations prior and after
the parallel region.

6.1.1 Local Dominance

A node n in the Parallel-CFG is locally dominated by a node m, iff n is dom-
inated by m under CFG semantics. Additionally, the parallel nesting depth τ
(Definition 1) of n has to be at least as high as the one of m, thus τ(n) ≥ τ(m)
and the smallest parallel region containing m has to contain n too.

Local dominance ensures that a dominated point/value was reached/com-
puted by the current thread, thus is locally available. It can be used for systems
with high communication costs between concurrently running parts (e.g., dis-
tributed machines) as it will prevent optimizations from introducing additional
“scalar-communication”. In the example in Figure 22 neither %pre nor %post
can be moved into the parallel region blocks S or P if local dominance is used.

6.1.2 Global Dominance

A node n in the Parallel-CFG is globally dominated by a node m, iff n is is
dominated by m under CFG semantics or, alternatively, ... TODO: find a short
wording.

Global dominance ensures that a dominated point/value was reached/com-
puted by any thread, thus it is generally available. It can be used for sys-
tems with low communication costs between concurrently running parts (e.g.,
a multi-core chip) as it will allow optimizations to introduce additional “scalar-
communication”, e.g., in order to increase parallelism. In the example in Fig-
ure 22 both %pre and %post can be moved into the parallel region blocks S or
P if global dominance is used.

20

7 Runtime Lowering

To implement parallel execution, the parallel regions need to be lowered to
runtime library calls. For this process it is common to extract parallel loops and
tasks into their own functions. Additionally, it might be needed to communicate
features like privatization and reductions to the runtime library. While the
implementation is library specific, the identification of common features can be
done in a general way by a runtime independent “LoweringInfo” pass.

7.1 Loop Outlining

Parallel loops are, depending on their shape, amenable to special loop outlining
that utilizes dedicated runtime library calls. We believe this process to be suit-
able for pattern matching, e.g., checking for one fork interior instruction
on the single loop latch block. While parallel loops can have any form, it is
unlikely that more than a few occur in practice. Thus, we propose to match
common loop structures and default to task outlining as a general alternative.

7.2 Task Outlining

A non-trivial fork instruction in a parallel region θ will spawn one task for each
successors. To implement parallel execution of these tasks they will be outlined,
possibly keeping one task in the original Parallel-CFG to be executed natively
by the master thread (see also the master annotation of the fork instruction
in Section 2.1). The part of the Parallel-CFG that needs to be outlined for a
task is the maximal connected sub graph that starts at the successor blocks of
the fork and does not contain a join instruction of θ. These sub graphs can
be determined in a single scan of the parallel region.

7.3 LoweringInfo Pass

The LoweringInfo pass offers runtime independent information that is commonly
needed to implement parallel regions using parallel runtime libraries. Some but
certainly not all use cases are described here. To ease reading we will omit
parallel loops but only argue about general parallel tasks. However, for the
actual implementation one might want to distinguish them.

7.3.1 Scalar Communication

If a scalar is used and defined, inside as well as outside of a parallel task it
has to be communicated. To determine the set of all scalars that need to be
communicated for a given parallel region, a single scan of the region is sufficient.
If the definition of a scalar is outside a task but a use is inside, the scalar is
communicated into the task. If the use is outside but the definition is inside a
task, the scalar is communicated out of the task. Both communication directions
are commonly realized using memory e.g., a “struct” that contains a field for

21

each communicated scalar. It is the responsibility of the runtime dependent
lowering pass to create the communication code as it might include special
memory transfer calls. However, the LoweringInfo pass can identify all scalars
that are communicated into and respectively out of a parallel region.

7.3.2 Privatized Variables

Several languages (OpenMP, OpenCL, . . .) have a concept of private memory
locations for each thread executing in parallel. In Parallel-IR these locations
are made explicit using alloca instructions as shown i.e. in Figure 6. For
task parallelism no additional steps are required in the presence of privatized
variables. After task outlining there is no difference between a privatization
alloca and any other alloca inside the task, regardless if it was introduced
before or after the runtime lowering. For loop outlining and the consequent
use of dedicated runtime library calls for parallel loops the situation is differ-
ent. It is necessary to at least identify such privatized variables. To do so, it
suffices to check the parallel loop for alloca instructions that are used by an
fork interior but also another instruction contained in the to be outlined
sub graph of the Parallel-CFG. To implement the privatization, the lowering
pass can “ignore” the fork interior use of the alloca and move it to a
new block that will become the new entry of the to be outlined sub graph. This
is only legal just prior to the outlining as otherwise the alloca could be moved
again which thereby could introduce sharing and data races not present before.

7.3.3 Reduction Detection

22

8 Roadmap

The development of Parallel-IR is about finding a trade-off between a future-
proof design and practical short-term considerations. On the conceptual side,
Parallel-IR shall be generic, simple and expressive. We should make an effort
to show theoretical soundness and keep long-term requirements in mind. Even-
tually, Parallel-IR should abstract fully from concrete parallel APIs, just like
LLVM-IR makes language front-ends independent of back-ends in LLVM today.

However, there is a demand for optimizing concrete parallel programming
APIs such as OpenMP, CUDA kernels and Thrust right now. Even if theoret-
ical work addresses these APIs, Parallel-IR will only be adopted if we provide
working prototypes early on in the process.

To this end, the roadmap plan is build around vertical prototypes: we will
start with a practical OpenMP-to-OpenMP optimizing compiler. However, ev-
ery design decision in the development shall comply with long-term design goals.

8.1 Milestones

Conceptual Soundness Show/Proof that stock LLVM-optimizations do not
affect parallel semantics in Parallel-IR. Also show that Parallel-IR well-
formdness superseeds parallel loop ids.

OpenMP to OpenMP Implement a proof-of-concept vertical prototype for
an OpenMP-optimizing compiler based on Parallel-IR. This milestone
comprises of a frontend and backend for translating between OpenMP
and Parallel-IR. There must not be any OpenMP runtime calls in the IR
code. Instead, the front-end shall lower every OpenMP idiom to Parallel-
IR including the runtime API. The OpenMP back-end must be able to
translate every Parallel-IR idiom back to the OpenMP runtime library.

Parallelism Optimizations Develop a set of generic parallelism optimiza-
tions for Parallel-IR. While at this point the implementation only supports
OpenMP, the optimizations must not rely on OpenMP artifacts in the IR.

CUDA to CUDA Translate CUDA to Parallel-IR, optimize it and again gen-
erate CUDA kernels and runtime calls (this includes CUDA Thrust be-
cause Thrust itself is build on top of the CUDA runtime).

TBD

Long term: Full abstraction of parallelism

8.1.1 Conceptual Soundness

Parallel-IR needs a well defined parallel semantics. It is crucial that exist-
ing LLVM optimization interact well with Parallel-IR to ease the transition
to Parallel-IR. Standard compiler optimizations that do not ”understand” the
parallel semantics of Parallel-IR should not be able to break it. To this end,

23

Parallel-IR either needs to adhere or re-define generic notions such as domi-
nance, the dependence order and liveness of values. Parallel-IR should replace
all existing extensions in todays LLVM-IR to indicate parallelism, such as LLVM
metadata.

8.1.2 OpenMP to OpenMP

We chose OpenMP as the target for our first prototype for two reasons: Firstly,
we expect that all OpenMP idioms naturally translate to Parallel-IR. Secondly,
The OpenMP runtime library can be inlined completely into the IR. There
will not be any OpenMP artifacts in the Parallel-IR that the first parallelism
optimizations have to account for.

8.1.3 CUDA to CUDA

It shall be possible to optimize kernels in the context of the host program,
including optimizations such as kernel fusion (see Figure Figure 16b). It will
not be possible to fully eliminate the CUDA runtime API from the program.
CUDA supports device selection, which has no generic counterpart in Parallel-
IR.

8.2 Long term: Full abstraction of parallelism

Parallel-IR should become the natural target for fully hardware-agnostic parallel
languages. The front-ends for these languages will not insert any runtime APIs.
At this point, it will be possible to leave the implementation of parallelism
entirely to the compiler. For example, in the same Parallel-IR program a parallel
loop nest could be lowered to CUDA while another parallel region mighty be
a good match for CPU multi-threading. However, the user should have some
level of control over the parallelism back-ends the compiler can use.

24

	Introduction
	Goals
	Common Problems

	IR Extensions
	The fork Terminator
	The join Instruction
	The halt Terminator
	Common intrinsics

	Parallel Regions
	High-Level-Lowering
	OpenMP
	#pragma omp parallel
	#pragma omp parallel for
	#pragma omp simd

	Cilk+
	cilkfor loops
	cilkspawn & cilksync

	CUDA
	CUDA Thrust
	Fusing CUDA Thrust transformations

	OpenCL
	General Thread Level Parallelism

	Transformations (notes only)
	Parallel Region
	Subregion Merging
	Disjunct Region Merging
	Sequentializing Parallel Regions
	fork Transformations
	join Transformations

	Analyses And Optimizations
	Dominance
	Local Dominance
	Global Dominance

	Runtime Lowering
	Loop Outlining
	Task Outlining
	LoweringInfo Pass
	Scalar Communication
	Privatized Variables
	Reduction Detection

	Roadmap
	Milestones
	Conceptual Soundness
	OpenMP to OpenMP
	CUDA to CUDA

	Long term: Full abstraction of parallelism

