Introduction

WCET Analysis
- Timing-critical applications
- Strict deadlines on the response times
- WCET bound of a program
- Upper bound on the execution times
- Depends on behavior at microarch. level
- Obtained by WCET analysis
- Modern processors are complex
- Designed for average-case performance
- Too many behaviors at microarch. level
- Exhaustive simulation not possible
- Need for approximation
- Hide some microarchitectural details

Multi-Core Processors
- Resources shared between the cores
- Data buses
- Caches
- Advantages
 - Reduced weight
 - Reduced energy consumption
 - Reduced production costs
- Shared resource interference
 - Performance can drop
- Challenge for WCET analysis
 - Consider all access interleavings
 - Need for approximation

Existing Approaches
- Limited to particular...
- Classes of processors
- Ways of approximation
- Formalisms and algorithms differ
- Yet, they follow a common methodology
- Coarse approximation as baseline
- Exclude some spurious behavior

Our Contribution
- A meta approach
- Formalizes common methodology

Meta Approach

- For simplicity
 - One program per core
 - Each program is run at most once
- Concrete execution behavior of given system
 \[\text{Traces} \subseteq \text{Universe} \]
- WCET of program on core \(C \)
 \[WCET_C = \max_{t \in \text{Traces}} et_C(t) \]
- Approximation by abstract traces
 - Abstract model \((\text{Traces}, \gamma_{\text{trunc}}) \)
 - Overapproximates concrete behavior
 \[\bigcup_{t \in \text{Traces}} \gamma_{\text{trace}}(\hat{t}) \supseteq \text{Traces} \]
- Provides WCET bound
 \[\max_{t \in \text{Traces}} \text{UB}et_C(\hat{t}) \geq WCET_C \]
- Infeasible abstract traces
 \[\text{Infeas} = \{ \hat{t} | \hat{t} \in \text{Traces} \land \gamma_{\text{trace}}(\hat{t}) \cap \text{Traces} = \emptyset \} \]
 - Only describe spurious behavior
 - May dominate WCET bound calculation
- System properties
 \[\text{Prop} = \{ P_1, \ldots, P_{\#\text{Prop}} \} \]
 - Hold for each system behavior
 \[\forall t \in \text{Traces} : \forall P_i \in \text{Prop} : P_i(t) \]
- Lifting properties to abstract traces
- Soundness criterion for lifted version \(\hat{P}_i \) of \(P_i \)
 \[\exists t \in \gamma_{\text{trace}}(\hat{t}) : P_i(t) \Rightarrow \hat{P}_i(\hat{t}) \]
- Detecting infeasible abstract trace \(\hat{t} \)
 \[\exists P_i \in \text{Prop} : \neg \hat{P}_i(\hat{t}) \Rightarrow \hat{t} \in \text{Infeas} \]
- Remove some infeasible abstract traces
 \[\text{LessTraces} = \{ \hat{t} | \hat{t} \in \text{Traces} \land \forall P_i \in \text{Prop} : \hat{P}_i(\hat{t}) \} \]
- Potentially improved WCET bound
 \[\max_{t \in \text{Traces}} \text{UB}et_C(\hat{t}) \geq \max_{t \in \text{LessTraces}} \text{UB}et_C(\hat{t}) \geq WCET_C \]

Property Lifting Example

- Round-robin bus arbitration
 - Before a requested bus access is granted, at most one bus access per concurrent core is granted.
 \[\leq \#\text{Cores} - 1 \]
 \[\text{Concurrent accesses granted} \]

- Blocked cycles for a single bus access
 - No access takes longer than \(l_a \) cycles
 \[\leq \#\text{Cores} - 1 \]

- A round-robin property
 - Shall hold for all \(t \in \text{Traces} \)
 \[P_{rr}(t) \iff [\# \text{blockedCycles}_C(t)] \leq \#\text{accesses}_C(t) \cdot (\#\text{Cores} - 1) \cdot l_a \]
 - Lifting \(P_{rr} \) to abstract traces
 \[\exists t \in \gamma_{\text{trace}}(\hat{t}) : P_{rr}(t) \]
 \[\exists t \in \gamma_{\text{trace}}(\hat{t}) : \# \text{blockedCycles}_C(t) \leq \#\text{accesses}_C(t) \cdot (\#\text{Cores} - 1) \cdot l_a \]
 \[\Rightarrow \text{UB} \# \text{blockedCycles}_C(\hat{t}) \leq \text{UB} \#\text{accesses}_C(\hat{t}) \cdot (\#\text{Cores} - 1) \cdot l_a \]
 \[\Rightarrow: P_{rr}(\hat{t}) \]

Acknowledgement

AVACS

http://www.uni-saarland.de http://www.avacs.org