A Framework for the Optimization of the WCET of Programs on SAARLAND
Multi-Core Processors UNIVERSITY

Max John, Michael Jacobs NS S
Saarland University, Saarbricken COMPUTER SCIENCE

Introduction

Implementation (HW & SW) Challenge

» Embedded systems » Multi-core processor with shared bus » Find static system schedule and bus
» Timing-critical applications > Exploit task parallelism schedule
> Strict deadlines, e.g. in automotive > However: cores interfere » However: Optimal schedule hard to
applications » Usage of a TDMA bus sl
» Need of tight WCET bounds » Cores no longer interfere

» Approximation framework needed

» Use static task scheduling

System Model

Real-World Programs in our System Model

> Tasks 7-1

» Single execution behavior

» Real-world programs have multiple behaviors

~ » Soundly over-approximate them by a single one

» Determined by length and bus accesses

» Simple overlay
T3
» System schedule
. T
» Assigns tasks to processor cores
» Determines the tasks execution order
» Bus schedule .
> ' ' :
It a bus request is denied | | » Access-aligned overlay
—> Processor core blocked until access is granted
01
P1 .]
. . T 01 g2
P : T2 T3 —> overall WCET: 7 time units
01 02
bus P1 P1 P2P2P1 P1 Pl
T/ o1 02

Optimization Framework

Steps towards more General Systems

» Goal: Reduce the overall WCET
» By integrated construction of

» Task dependencies

» System schedule » Constraint task selection accordingly
» Bus schedule » Side effect: sometimes none of the remaining tasks selectable
Data: tasks: set of tasks, » Solution: return dummy task 74 in those cases: [7d

n: number of processor cores, > Task priOritieS

th: task selection heuristic, » Constraint task selection and bus schedule heuristic accordingly
bh: bus schedule heuristic

> Restrict the granularity of the bus schedule
(sys, bus) <— empty schedules for n processor cores; 5 y _ _
while tasks # 0 do » Many systems have a bus processor ratio K, i.e.

task <— th(tasks, sys, bus); Vn € N. n 20 mod K = bus(n) = bus(n — 1)
p_idle < find first idle core in (sys, bus);

» Thus some bus schedules are no longer legal
sys <— add task in sys to p_ idle;

bus <— bh(sys, bus," partial); bus: |Py Py Py PP, Py Py Py
tasks <— tasks \ {task}; = Legal bus schedule for K = 4
end
bus <— bh(sys, bus,” complete”); bus: P PP, P, P, P, P, P,
return (sys, bus); => lllegal bus schedule for K = 4

» Constraint bus heuristic to produce legal schedules only

» Modularity: plug in heuristics

> Task selection heuristic (th)

» Bus schedule heuristic (bh)

» Develop access-aware task selection heuristics

Acknowledgement > Only non-access-aware heuristics exist

» Experiments

DA » Extract traces from real-world programs
it i . -
|| ey » Evaluate effectiveness of heuristics

uuuuuuu

» Soundly combine several traces to one
— Determine degree of over-approximation

http://www.uni-saarland.de http://www.avacs.org

Created with IATEX beamerposter http://www.ctan.org/tex-archive/macros/latex/contrib/beamerposter
http://www.cdl.uni-saarland.de/people/jacobs

mjohn@mpi-inf .mpg.de, jacobs@cs.uni-saarland.de

http://www.uni-saarland.de
http://www.avacs.org
http://www.ctan.org/tex-archive/macros/latex/contrib/beamerposter

