
A Framework for the Optimization of the WCET of Programs on
Multi-Core Processors

Max John, Michael Jacobs
Saarland University, Saarbrücken computer science

saarland
university

Introduction

Scenario

I Embedded systems

I Timing-critical applications
I Strict deadlines, e.g. in automotive

applications

I Need of tight WCET bounds

Implementation (HW & SW)

I Multi-core processor with shared bus
I Exploit task parallelism

I However: cores interfere

I Usage of a TDMA bus
I Cores no longer interfere

I Use static task scheduling

Challenge

I Find static system schedule and bus
schedule

I However: Optimal schedule hard to
obtain

I Approximation framework needed

System Model

I Tasks
I Single execution behavior

I Determined by length and bus accesses

τ1

τ2

τ3

I System schedule
I Assigns tasks to processor cores

I Determines the tasks’ execution order

I Bus schedule
I If a bus request is denied
⇒ Processor core blocked until access is granted

P1 : τ1

P2 : τ2 τ3 ⇒ overall WCET: 7 time units

bus P1P1P2P2P1P1P1

Optimization Framework

I Goal: Reduce the overall WCET

I By integrated construction of
I System schedule

I Bus schedule

Data: tasks: set of tasks,
n: number of processor cores,
th: task selection heuristic,
bh: bus schedule heuristic

(sys, bus)← empty schedules for n processor cores;
while tasks 6= ∅ do
task← th(tasks, sys, bus);
p idle← find first idle core in (sys, bus);
sys← add task in sys to p idle;
bus← bh(sys, bus, ”partial”);
tasks← tasks \ {task};
end
bus← bh(sys, bus, ”complete”);
return (sys, bus);

I Modularity: plug in heuristics
I Task selection heuristic (th)

I Bus schedule heuristic (bh)

Acknowledgement

computer science

saarland
university AVACS

http://www.uni-saarland.de http://www.avacs.org

Real-World Programs in our System Model

I Real-world programs have multiple behaviors

I Soundly over-approximate them by a single one
I Simple overlay

τ :


τ ′ :

I Access-aligned overlay

τ :


σ1

σ1 σ2

σ1 σ2

τ ′ : σ1 σ2

Steps towards more General Systems

I Task dependencies
I Constraint task selection accordingly

I Side effect: sometimes none of the remaining tasks selectable

I Solution: return dummy task τd in those cases: τd

I Task priorities
I Constraint task selection and bus schedule heuristic accordingly

I Restrict the granularity of the bus schedule
I Many systems have a bus processor ratio K, i.e.

∀n ∈ N. n 6≡ 0 mod K ⇒ bus(n) = bus(n− 1)

I Thus some bus schedules are no longer legal

bus : P1P1P1P1P2P2P2P2

⇒ Legal bus schedule for K = 4

bus : P1P1P1P2P2P2P2P2

⇒ Illegal bus schedule for K = 4

I Constraint bus heuristic to produce legal schedules only

Future Work

I Develop access-aware task selection heuristics
I Only non-access-aware heuristics exist

I Experiments
I Extract traces from real-world programs

I Evaluate effectiveness of heuristics

I Soundly combine several traces to one
→ Determine degree of over-approximation

Created with LATEX beamerposter http://www.ctan.org/tex-archive/macros/latex/contrib/beamerposter

http://www.cdl.uni-saarland.de/people/jacobs mjohn@mpi-inf.mpg.de, jacobs@cs.uni-saarland.de

http://www.uni-saarland.de
http://www.avacs.org
http://www.ctan.org/tex-archive/macros/latex/contrib/beamerposter

