Design of an SSA Register Allocator
SSA ’09

Sebastian Hack
Part I

Foundations
Non-SSA Interference Graphs

An inconvenient property

Program

- $a \leftarrow 1$
- $d \leftarrow 1$
- $e \leftarrow a + 1$
- $\leftarrow d$
- $b \leftarrow a + a$
- $c \leftarrow a + 1$
- $e \leftarrow b + 1$
- $\leftarrow c$
- ...

Interference Graph

The number of live variables at each instruction (register pressure) is 2

However, we need 3 registers for a correct register allocation

This gap can be arbitrarily large
Every undirected graph can occur as an interference graph
\implies Finding a k-coloring is NP-complete

- Color using heuristic
 \implies Iteration necessary

- Might introduce spills although IG is k-colorable

- Rebuilding the IG each iteration is costly
Graph-Coloring Register Allocation
[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04]

- Spill-code insertion is **crucial** for the program’s performance
- Hence, it should be very sensitive to the structure of the program
 - Place load and stores carefully
 - Avoid spilling in loops!
- Here, it is merely a fail-safe for coloring
Coloring

- Subsequently remove the nodes from the graph

\[a \quad b \quad c \]

\[d \quad e \]

elimination order

But... this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack
SSA Register Allocator
5 / 35
Subsequently remove the nodes from the graph.
Coloring

- Subsequently remove the nodes from the graph

But... this graph is 3-colorable. We obviously picked a wrong order.

Elimination order: d, e,
Subsequently remove the nodes from the graph

elimination order

\[\text{d, e, c,} \]
Subsequently remove the nodes from the graph

Elimination order: d, e, c, a,
Coloring

- Subsequently remove the nodes from the graph

![Graph diagram with nodes a, b, c, d, e and elimination order d, e, c, a, b]

```
elimination order
```

But...

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack
SSA Register Allocator
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

elimination order
d, e, c, a, b
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

![Graph with vertices labeled a, b, c, d, e and edges connecting them.]

elimination order

d, e, c, a,
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

The elimination order is d, e, c.

This graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

```
d, e, elimination order
```

But... this graph is 3-colorable. We obviously picked a wrong order.
Subsequently remove the nodes from the graph.

Re-insert the nodes in reverse order.

Assign each node the next possible color.

This graph is 3-colorable. We obviously picked a wrong order.

Elimination order: d, e, a, b, c.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

```
\begin{itemize}
  \item \textbf{elimination order}
\end{itemize}
```

But... this graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But...

this graph is 3-colorable. We obviously picked a wrong order.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

From Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72]

The number of colors is bound by the size of the largest clique.

Elimination order:

a,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a, c,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

 elimination order
a, c, d, e,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

```
 elimination order
 a, c, d, e, b
```

From Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72]
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Diagram showing a graph with nodes labeled a, b, c, d, e, and an elimination order of a, c, d, e.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

```
elimination order
a, c, d,
```
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

a,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

- A PEO allows for an optimal coloring in $k \times |V|$
- The number of colors is bound by the size of the largest clique
Coloring
PEOs

- Graphs with holes larger than 3 have no PEO, e.g.

- Graphs with PEOs are called chordal
Coloring

PEOs

- Graphs with holes larger than 3 have no PEO, e.g.

- Graphs with PEOs are called *chordal*

Core Theorem of SSA Register Allocation
[Brisk; Bouchez, Darte, Rastello; Hack, around 2005]

- The dominance relation in SSA programs induces a PEO in the IG
- Thus, SSA IGs are chordal
Properties of SSA Register Allocation

- Before a value v is added to a PEO, add all values whose definitions are dominated by v
- A post order walk of the dominance tree defines a PEO
- A pre order walk of the dominance tree yields a coloring sequence
- IGs of SSA-form programs can be colored optimally in $O(k \cdot |V|)$
- Without constructing the interference graph itself
- Number of needed registers is exactly determined by register pressure
- After lowering the pressure, no additional spills will be introduced
Properties of SSA Register Allocation

- Before a value v is added to a PEO, add all values whose definitions are dominated by v

- A post order walk of the dominance tree defines a PEO

- A pre order walk of the dominance tree yields a coloring sequence

- IGs of SSA-form programs can be colored \textit{optimally} in $O(k \cdot |V|)$

- Without constructing the interference graph itself

- Number of needed registers is exactly determined by register pressure

- After lowering the pressure, no additional spills will be introduced

But \ldots

What about the ϕ-functions?
Φ-Functions

- Consider following example

\[
\begin{align*}
 z_1 & \leftarrow \phi(x_1, y_1) \\
 z_2 & \leftarrow \phi(x_2, y_2) \\
 z_3 & \leftarrow \phi(x_3, y_3)
\end{align*}
\]
Φ-Functions

Consider following example

\[(z_1, z_2, z_3) \leftarrow (x_1, x_2, x_3)\]

\[(z_1, z_2, z_3) \leftarrow (y_1, y_2, y_3)\]

\[
\begin{align*}
 z_1 &\leftarrow \phi(x_1, y_1) \\
 z_2 &\leftarrow \phi(x_2, y_2) \\
 z_3 &\leftarrow \phi(x_3, y_3)
\end{align*}
\]

Φ-functions are parallel copies on control flow edges
Φ-Functions

Consider following example

\[(z_1, z_2, z_3) \leftarrow (x_1, x_2, x_3)\]

\[(z_1, z_2, z_3) \leftarrow (y_1, y_2, y_3)\]

Φ-functions are \textit{parallel copies} on control flow edges

Considering assigned registers ...
Φ-Functions

- Consider following example

\[
\begin{align*}
z_1 & \leftarrow \phi(x_1, y_1) \\
z_2 & \leftarrow \phi(x_2, y_2) \\
z_3 & \leftarrow \phi(x_3, y_3)
\end{align*}
\]

- Φ-functions are **parallel copies** on control flow edges

- Considering assigned registers . . .

- . . . Φs represent register permutations
Intuition: Why are SSA IGs chordal?

Straight-line code

<table>
<thead>
<tr>
<th>Program</th>
<th>Live Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow \cdots$</td>
<td>a</td>
</tr>
<tr>
<td>$b \leftarrow \cdots$</td>
<td>b</td>
</tr>
<tr>
<td>$c \leftarrow \cdots$</td>
<td>c</td>
</tr>
<tr>
<td>$d \leftarrow a + b$</td>
<td>d</td>
</tr>
<tr>
<td>$e \leftarrow c + 1$</td>
<td>e</td>
</tr>
</tbody>
</table>

How can we create a 4-cycle $\{a, c, d, e\}$?
Intuition: Why are SSA IGs chordal?

Straight-line code

<table>
<thead>
<tr>
<th>Program</th>
<th>Live Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow \cdots$</td>
<td>a</td>
</tr>
<tr>
<td>$b \leftarrow \cdots$</td>
<td>b</td>
</tr>
<tr>
<td>$c \leftarrow \cdots$</td>
<td>c</td>
</tr>
<tr>
<td>$d \leftarrow a + b$</td>
<td>d</td>
</tr>
<tr>
<td>$e \leftarrow c + 1$</td>
<td>e</td>
</tr>
<tr>
<td>$a \leftarrow \cdots$</td>
<td>a</td>
</tr>
</tbody>
</table>

How can we create a 4-cycle \(\{a, c, d, e\} \)?

- Redefine $a \implies $ SSA violated!
Intuition: ϕ-functions break cycles in the IG

Program and live ranges

Interference Graph
Intuition: ϕ-functions break cycles in the IG

Program and live ranges

$\begin{align*}
ad & \leftarrow \cdots \\
e_1 & \leftarrow a + \cdots \\
& \leftarrow d \\
e_3 & \leftarrow \phi(e_1, e_2) \\
b & \leftarrow \cdots \\
c & \leftarrow a + \cdots \\
e_2 & \leftarrow b \\
& \leftarrow c
\end{align*}$

Interference Graph

$\begin{align*}
a & \rightarrow d \\
& \leftarrow e_1 \\
& \leftarrow e_3 \\
b & \rightarrow c \\
& \leftarrow e_2
\end{align*}$
Intuition: Why Parallel Copies are Good

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[
\begin{align*}
d' & \leftarrow d \\
c' & \leftarrow c \\
b' & \leftarrow b \\
a' & \leftarrow a
\end{align*}
\]
Intuition: Why Parallel Copies are Good

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[d' \leftarrow d\]
\[c' \leftarrow c\]
\[b' \leftarrow b\]
\[a' \leftarrow a\]
Intuition: Why Parallel Copies are Good

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[
\begin{align*}
 d' & \leftarrow d \\
 c' & \leftarrow c \\
 b' & \leftarrow b \\
 a' & \leftarrow a
\end{align*}
\]
Summary so far

- IGs of SSA-form programs are chordal
- The dominance relation induces a PEO
- Architecture without iteration

- Register assignment optimal in linear time
- Do not need to construct interference graph
Part II

Register Constraints
Handling of Register Constraints

- Certain instructions require operand to reside in special register
- Instruction set architecture (ISA), e.g.:
 Shift count must be in cl on x86
- Calling conventions, e.g.:
 First integer argument of function in R3 on PPC/Linux
- Caller-/Callee-save registers within a function
Usual way of handling constraints

IR:

\[\cdots \leftarrow \text{call foo } t_1, t_2, t_3 \]

Lower IR:

\[\cdots \]
\[\text{mov R3, } t_1 \]
\[\text{mov R4, } t_2 \]
\[\text{mov R5, } t_3 \]
\[\text{call foo} \]
\[\cdots \]

- Registers are like variables in the lower IR
- Multiple assignments possible (breaks SSA!)

Has poor engineering properties:

- Always special case in the code
- Does R3 interfere with \(t_1 \)?
- How long can a reg live range be?
Even worse

Theorem [Marx ’05]

If a chordal graph contains two nodes precolored to the same color, coloring is NP-complete

Solution:

- Split all live ranges in front of the constrained instruction
- Separates graph into two components
- Annotate the constraints at the instruction
- Let the coloring algorithm fulfill the constraints
- Basically pushes the problem to the coalescer
Example

Before:

\[a \leftarrow \cdots \]
\[\vdots \]
\[\leftarrow \text{call } \text{foo} (b, c, d) \]
\[\vdots \]
\[\leftarrow a \]

After:

\[a \leftarrow \cdots \]
\[\vdots \]
\[(a', b', c', d') \leftarrow (a, b, c, d) \]
\[\leftarrow \text{call } \text{foo} (b', c', d') \]
\[\vdots \]
\[\leftarrow a' \]
Caller-/Callee-Save

- Can be modelled by normal register constraints
- Callee-Save registers are implicit parameters to a function
- Caller-Save registers are implicit results of a function
- Insert dummy SSA variables for these parameters
- The spiller will (transparently) do the rest

\[(c_1, c_2) \leftarrow \text{start}\]
\[\vdots\]
\[(r_1, r_2) \leftarrow \text{call foo}(b, c, d)\]
\[\text{dummy use}(r_1, r_2)\]
\[\vdots\]
\[\leftarrow \text{end}(c_1, c_2)\]
Part III

Spilling
Spilling

SSA-Form Register Allocation

- Spilling is **not** dependent on the coloring algorithm
- Do not spill nodes in an interference graph
- To color optimally:
 - Reduce register pressure to number of available registers
- Can insert store and load instructions sensitively to the program’s structure
- Most important:
 - Pull reloads in front loops
 - Push stores behind loops
- Revisit Belady’s algorithm
Linear Scan
Linearizations

Example CFG

- x spilled
- Bad: Reload in loop

- y spilled
- Good: No reload in loop
Linear Scan
Linearizations

Example CFG

\[y \leftarrow x \leftarrow z \]
\[S \]
\[L \]
\[H \]
\[E \]

Linearization

\[y \leftarrow x \leftarrow z \]
\[S \]
\[L \]
\[H \]
\[E \]

- Register occupation at entry of \(H \) is given by exit of \(L \)!
- However, there is no control-flow between both
- Example last slide:
 - Linearization dictates reloads
 - Might unnecessarily reload in loops!
- Why do we linearize at all?
Belady on CFGs

- Belady evicts the variable whose next use is farthest in the future
- Good because frees register for the longest possible time
- On straight-line code minimum number of replacements

Our goals:

- Extend Belady to CFGs
- Try to emulate Belady on each trace as good as possible
- Keep it simple: Apply Belady to each basic block once
- Where can we tweak?
 - Next-use distance
 - Occupation of the registers at entry of each block
Belady on Traces

One of x, y has to be spilled at the end of S

Use of y is farther away

We cannot know this by only looking at S

Conclusion:
Need global next-uses distances!
Consider E

- x is in a register on both incoming branches

- We can assume it to be in registers on the entry of E

Conclusion:
Processing predecessors first makes register occupation available
Belady on Traces

- Neither x nor y can “survive” B
- x is reloaded in first execution of H
- Can be used from a register ever after
- Conclusion: Provide “loop workset” at loop entrances
Our Approach
[Braun & Hack, CC'09]

- Apply furthest-first algorithm to each block in the CFG once
- Do not flatten the CFG

Algorithm

1. Compute global next uses (entails liveness!)
2. For each block B in reverse post order of the CFG:
 1. Determine initialization of register set sensitive to CF predecessors
 2. Insert coupling code at the block entry
 3. Perform Belady’s algorithm on B
3. Reconstruct SSA
Inserting reloads for variables creates additional definitions

Violates SSA

Thus, SSA has to be reconstructed after spilling

Use algorithm by [Sastry & Ju PLDI’97]
Results

- Implemented in our x86 research compiler libFirm
- Features SSA-based register allocator
- Ran CINT2000 benchmark
- Compare against Chaitin/Briggs graph-coloring allocator (GC)
 LLVM’s linear scan (LS)

Quality

Reduction of executed spills and reloads against:

<table>
<thead>
<tr>
<th></th>
<th>GC</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reloads</td>
<td>58.2%</td>
<td>54.5%</td>
</tr>
<tr>
<td>Spills</td>
<td>41.9%</td>
<td>61.5%</td>
</tr>
</tbody>
</table>

Compilation Speed

Average throughput:
430 insns per msec
(2GHz Core 2 Duo)
Part IV

Coalescing
Coalescing

[Hack & Goos, PLDI’08]

- Do not modify the graph
- Modify the coloring!
- Try to assign copy-related nodes the same color
- Introduce cost function for colorings
 \[\text{Sum of all weights of unfulfilled affinities} \]
Coalescing

[Hack & Goos, PLDI’08]

- Do not modify the graph
- Modify the coloring!
- Try to assign copy-related nodes the same color
- Introduce cost function for colorings
 \[\Rightarrow \text{Sum of all weights of unfulfilled affinities} \]

Initial coloring (cost: 6)
Coalescing

[Hack & Goos, PLDI'08]

- Do not modify the graph
- Modify the coloring!
- Try to assign copy-related nodes the same color
- Introduce cost function for colorings
 \[\Rightarrow \text{Sum of all weights of unfulfilled affinities} \]

Initial coloring (cost: 6)

Better coloring (cost: 1)
Coalescing

[Hack & Goos, PLDI’08]

- Do not modify the graph
- Modify the coloring!
- Try to assign copy-related nodes the same color
- Introduce cost function for colorings
 \[\implies\] Sum of all weights of unfulfilled affinities

- Coalesce after coloring
Recoloring

- Optimistically try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- Optimistically try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- **Optimistically** try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- **Optimistically** try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- **Optimistically** try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- Optimistically try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- Optimistically try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- **Optimistically** try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- Optimistically try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- Optimistically try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Recoloring

- **Optimistically** try to assign move-related nodes the same color
- Resolve color clashes recursively through the graph
Quality of the Results

geomean Heur: 0.084, geomean ILP: 0.067

Sum of weights of unfulfilled affinities after optimization relative to unoptimized
Comparison to existing techniques

- **Conservative Coalescing**
 - Best known conservative coalescing technique
 - Costs left over by IRC were reduced by 22.5%
 - Number of copies left over by IRC reduced by 44.3%

- **Aggressive/Optimistic Coalescing**
 - Did not compare to aggressive coalescing algorithms
 - May spill \implies different problem
Conclusions

- Coloring is easy
- SSA separates spilling from coalescing
 \[\Rightarrow\] Simplifies engineering
- Both remain hard and challenging
- Spilling can be more sensitive to program
 \[\Rightarrow\] no additional spills due to failed coloring
- Coalescing never violates the coloring
- We never insert a spill/reload in favor of a saved copy
Conclusions

- Coloring is easy
- SSA separates spilling from coalescing
 \[\rightarrow \text{Simplifies engineering} \]
- Both remain hard and challenging
- Spilling can be more sensitive to program
 \[\rightarrow \text{no additional spills due to failed coloring} \]
- Coalescing never violates the coloring
- We never insert a spill/reload in favor of a saved copy
- Everything implemented within
 \[\text{http://www.libfirm.org} \]
 and is more than a proof of concept:
 Our Quake server is compiled with libFirm ;)
- Michael Beck will present libFirm on Thursday
Runtime of the Algorithm

- Runtime (ms) vs. #Nodes
- Data points showing linear and quadratic relationships
- Approximation lines: $c_1 \cdot x$, $c_2 \cdot x^2$, $c \cdot x^{1.2}$

Graphical representation of performance with increasing complexity.