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Abstract

In this thesis I present a demand-driven pointer analysis for Java that aims
at applications which require memory and time efficiency of the pointer
analysis, such as tools for IDEs or JIT compilers. It furthermore allows clients
to specify the precision needed and is context-sensitive and flow-sensitive.
The demand-driven aspect of my approach allows the analysis to ignore

irrelevant parts of the program. It is also client-driven via an iterative re-
finement method that allows the client to terminate the analysis early in
case sufficient precision is achieved.
The experimental evaluation of the approachhowever shows that the pointer

analysis cannot be precise while terminating within a time budget. 66% of
the analyzed queries exceeded even large budgets on average. I show that
the flow-sensitive analysis of load statements requires too much compu-
tation without careful restriction of analyzed statements. Furthermore, I
demonstrate that the refinement idea cannot be used easily in a flow-sensitive
demand-driven pointer analysis.
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Chapter 1. Introduction

One of the fundamental problems of software development is the ever in-
creasing complexity. Controlling the complexity in software development
is a major focus of research in computer science and software engineering.
Within the many fields that aim at increasing developer and software effi-
ciency program analysis has received much attention in recent years.
Researchers have developed many tools based on program analysis to aid

the programmer in the various stages of development. These range from
tools that help in code understanding such as call graph visualization[BD07]
over automatic refactoring tools such as class hierarchy reengineering [ST00],
to type state verification [FYD+06] and defect detection tools [WZL07].
An important aspect in the implementation of such tools is the integration

into the development process. This usually means making them part of an
integrated development environments (IDE) and allowing the developer to get
immediate feedback while working on the code that is analyzed. This how-
ever poses practical constraints on the execution time andmemory usage of
a tools implementation.
Similar requirements occur in the context of just-in-time (JIT) compilers.

To enable such optimizations asmethod inlining, these compilersmustmake
use of program analysis. Any time and memory needed for such optimiza-
tions however directly count towards the execution time andmemory usage
of the application.
A major obstacle in achieving efficiency and precision for program anal-

ysis is the pervasive use of pointers in modern object oriented languages.
Pointers add one or multiple levels of indirection to the flow of data and
control, making program analysis much harder. Resolving the targets of
pointer variables is the goal of pointer analysis.
While much work has been done to create efficient pointer analyses in re-

cent years [WL04, HL07, HL09], these still cannot be easily applied in the ar-
eas of IDE tools and optimizing JIT compilers due to the time and memory
constraints.
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1.1. Overview
In this thesis I extend the precision of the demand-driven [HT01] approach
to pointer analysis, that tries to tackle the time and memory constraints.
Instead of exhaustively computing the possible values of all pointer variables
in the whole program, demand-driven pointer analyses answer queries for
individual variables.
This allows other program analysis, also called clients, that make use of

the pointer analysis to specify only relevant variables. The pointer analysis
can then disregard unimportant program statements, effectively decreasing
time and memory usage.
I basemywork on the refinement approach described in 2005 by Sridharan

et al. [SGSB05] and extended in 2006 by Sridharan and Bodík [SB06]. The
refinement idea allows for early termination in cases where less precision is
required. This is controlled by the client by accepting a coarse result from
an intermediate stage of the analysis.
I increase precision of the demand-driven pointer analysis by adding in-

formation gained from analyzing the control flow. To this effect I adapt the
approach of Sridharan and Bodík to an intermediate representation of Java
programs called jFirm.
jFirm is an explicit dependence graph that includes both control flow and

data dependencies between program statements. This allows the pointer
analysis to be sensitive to the control flow, an aspect of precision stillmissing
from previous demand-driven pointer analyses [HT01, SB06, SR05].
Evaluating the implementation with a client that tries to minimize the

number of call targets proves the approach to lack practical usefulness. Al-
though fast on average, two thirds of the queries can not be answered with
necessary precision. The portion of the program that needs to be analyzed
for loads is too large in these cases. The results also show that the refinement
idea does not translate to a control flow sensitive analysis easily.

1.2. Thesis structure
The remainder of the thesis is organized as follows. Background in pointer
analysis and jFirm is provided in Chapter 2. The full algorithm is described
in Chapter 3. The implementation details, the method of evaluation and dis-
cussion of benchmark results can be found in Chapter 4. Conclusions and an
outlook on extending this work are provided in Chapter 5.
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Chapter 2. Background

In this chapter I describe the body ofwork that this thesis builds on. The first
section gives background in pointer analysis. The second section explains
the program representation that I use in this thesis.

2.1. Pointer Analysis
The aim of pointer analysis is to determine the values of pointer variables
at compile time. Pointer variables reference other variables or objects, in
the case of Java and other object-oriented languages. Thus the result of a
pointer analysis for a given variable is a set of possible variables or objects,
the points-to set, that is valid for any run of the analyzed program.
Computing points-to information in general has been shown to be unde-

cidable [Lan92]. Any pointer analysis can thus only compute approxima-
tions. Although they are necessary, it is still desirable that the resulting
points-to sets are sound, meaning that the points-to set for a variable is an
over-approximation of the real set of pointer values that holds for all pro-
gram runs.
In the following sections I describe the basics of pointer analysis and give

an overview of several important approaches.

2.1.1. Abstract Objects

What exactly are the objects in a points-to set? We do not always know how
many objects are allocated at runtime as it often depends on the input. We
must thus distinguish between abstract objects, those that are used in the
analysis, and the concrete objects that exist at runtime.
The common way to choose abstract objects for pointer analysis is by allo-

cation site or statement. In this way, each allocation statement corresponds
to an abstract object.
An abstract object however can represent multiple concrete objects. One

example of this is an allocation site in a loop. If we do not (or cannot) analyze
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the loop conditions, we do not know how many objects are allocated at this
allocation site. The same holds for allocation statements inmethods: If mul-
tiple invocations are analyzed at the same time, there are multiple concrete
objects, but we do not know which invocation corresponds to which object.
See Section 2.1.5 for an approach that separates method invocations.

2.1.2. Approaches to Pointer Analysis

The most common ways to do pointer analysis are to use data flow analysis or
solve a set constraint problem generated from the analyzed program.
For data flow analysis each node in the control flow graph is associated

with a transfer function that transforms incoming points-to information
into outgoing information. This is usually a set containing pairs of pointer
variables and abstract objects that they point to.
The transfer function of an assignment node a = b for example updates

the points-to information for a by possibly discarding previous information
for that variable (see Section 2.1.4 and adding points-to pairs (a,o) for each
abstract object o pointed to by b.
Data flow analysis computes a fixed point solution where incoming and

outgoing points-to sets have stabilized for all variables. For an in-depth
treatment of data flow analysis see the book ondata flow analysis byKhedker
et al. from 2009 [KSK09].
Another traditional approach is to consider pointer analysis as a constraint

problem inwhich each statement generates a subset-constraint on the points-
to sets of the variables contained in the statement. For example an assign-
ment statement a = b would generate the constraint a ⊇ b, meaning that a
points to all that is pointed to by b.
The resulting set of constraints is then solved by computing the transitive

closure of a graphwith one node for each variable and edges generated from
the constraints.
For a more detailed discussion of general constraint-based analysis refer

to the book on program analysis of Nielson et al.[NNH99]. For recent work in
constraint-based pointer analysis see the improvementsmade by Hardekopf
and Lin in 2007 [HL07].
A third approach is the use of logic programs to implement pointer anal-

ysis. Languages such as Prolog or Datalog can directly express the facts and
rules that govern how points-to information flows from one variable to an-
other. Whaley and Lam in 2004 implemented a pointer analysis [WL04] on
the basis of bddbddb [WACL05], a Datalog engine that uses Binary Decision
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Diagrams (BDDs) to efficiently encode and compute the relations in a pro-
gram analysis.
Most precise analyses that make use of these approaches are exhaustive.

This means that they compute the points-to sets of all variables in the in-
put program. Recent precise and exhaustive pointer analyses however often
take several minutes and consume hundreds of megabytes of memory while
analyzing medium sized programs [WL04, HL09] and are thus not applicable
in the context of IDE tools and JIT compilers without further optimization.

2.1.3. Demand-driven Analysis

An alternative option is to work in a demand-driven fashion. This means
that the pointer analysis answers queries from a client program. These have
the form “What may variable x point to?”. The analysis can then avoid un-
necessary computation by considering only statements relevant to the given
query. The analysis may also reduce memory usage, as less points-to sets
need to be stored.
Demand-driven techniques were first used for pointer analysis by Heintze

and Tardieu in 2001 [HT01]. They consider a subset of C and derive a control
flow insensitive, demand-driven pointer analysis.
Listing 2.1 shows an example program in C. Given the query “What may

p point to?” their algorithm in essence proceeds as follows: First we derive
that p points to all variables whose address is directly assigned to p, in this
case y via the assignment in line 3. For each simple assignment p = q, as in
line 4, we raise the query “What may q point to?” and find that p points to
all variables that q points to, the variable y in this case.
Load assignments like p = *r in line 7 are handled by finding the points-to

set S of r and then raising a query for each variable vi in S yielding points-to
sets Si. Variable p may then point to all variables in the union of all Si. In
this example this assignment adds the variable z to the points-to set of p.
To find out whether *u = &w might modify what variable p points to, we

need to find the points-to set of variable u and check whether it contains the
variable p. Alternatively we find the set of variables that may point to p and
check whether it contains the variable u.
To be practical many demand-driven analyses allow for early termination

and return less precise results when a set time limit has been reached. An-
other approach is to offer the client the option of specifying the degree of
precision the analysis should try to achieve. Sridharan et al. [SGSB05] imple-
mented this in a flow-insensitive, client-driven algorithm which iteratively
refines the points-to set until it satisfies the needs of the client.
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1 int w, x, y, z, *p, *q, **r, **u;

2 q = &x;

3 p = &y;

4 p = q;

5 r = &q;

6 *r = &z;

7 p = *r;

8 u = &q;

9 *u = &w;

Listing 2.1: Example for the approach of Heintze and Tardieu

The example in listing 2.2 illustrates their approach. Given the query “What
does x point to?,” their algorithm first analyzes the statements in lines 1
and 6. The statement Obj x = new Obj() adds the abstract object o1 to the
points-to set of x.
For the load from the field f in the statement x = v.f the algorithm takes

stores with the same field name and assumes in a first iteration that the
variables which contain the fields alias. Two variables alias if theymay point
to the same object. If these variables alias, points-to information may flow
through these fields. In the example the variable y is assigned to the field
and points to the abstract object o2. The first iteration thus reports {o1, o2}
as the points-to set of x to the client.
If the client answers that the precision is not sufficient, the algorithm pro-

ceeds with another iteration. The next iteration checks whether variables
in loads and stores that were assumed to alias in the previous iteration ac-
tually do alias. This is again done using the same approximation for newly
encountered loads and stores. In this example v and w do not alias and thus
the second and last iteration returns {o1} as the points-to set of x.

1 Obj x = new Obj(); // Abstract object o1

2 Obj y = new Obj(); // Abstract object o2

3 Obj v = new Obj(); // Abstract object o3

4 Obj w = new Obj(); // Abstract object o4

5 w.f = y;

6 x = v.f;

Listing 2.2: Example for the approach of Sridharan et al.
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In essence, the refinement works by beginning with a field-based pointer
analysis, that is each field, independent of the actual instance that contains
it, is considered as one global variable. Thus all points-to information from
stores to this field merge and propagate to all loads.
In further refinement iterations each previously encountered field is han-

dled field-sensitive, meaning that fields of different abstract objects are dis-
tinguished. Fields that are newly encountered in that iteration are handled
field-based again. Thus in each iteration the points-to set might become
smaller and thus more precise. The refinement stops when the client is sat-
isfied with the result or no further refinement is possible as no new fields
were encountered.

2.1.4. Flow-sensitivity

An important choice that affects precision is whether to observe control
flow or disregard the order of statements. A flow-sensitive pointer analy-
sis computes points-to information for every program point, while a flow-
insensitive analysis would return points-to sets that hold during the entire
program run.
Listing 2.3 shows a simple example. Three objects are assigned to variable

a, in lines 1, 3 and 5. The points-to set computed by a flow-insensitive anal-
ysis would contain all three objects, while a flow-sensitive analysis would
compute points-to sets for each program point where a is accessed. This
would result in four points-to sets of variable a: one for each assignment to
a, containing the assigned object, and one for the read in line 7, which would
contain the abstract objects o2 and o3.

1 Obj a = new Obj(); // Abstract object o1

2 if(...) {

3 a = new Obj(); // Abstract object o2

4 } else {

5 a = new Obj(); // Abstract object o3

6 }

7 ... = a;

Listing 2.3: Example for flow-sensitivity

This example shows an important property of flow-sensitive pointer anal-
yses: strong updates. If a flow-sensitive pointer analysis encounters an as-
signment statement that overrides points-to information resulting fromstate-
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ments executed before the current one, it can discard that information and
thus perform a strong update of the variables points-to set at this program
point. A flow-insensitive analysis would have to include all previous infor-
mation and would return larger points-to sets.
Tomake a strong update however, the target of the assignmentmust refer

to exactly one variable. If we do not know which variable the assignment
may affect, we cannot safely discard previous information.
In the case of Listing 2.3 variable a is a local variable. In Java the assigned

location is thus uniquely defined and a strong update is possible. Thus the
assignments in lines 3 and 5 remove the abstract object o1 from the points-to
set of variable a in line 7.
Listing 2.4 shows the same example, except that a is a field of an object.

Whether we can do a strong update now depends on what o points to. If
it points to multiple abstract objects or one that corresponds to multiple
concrete objects, we do not know which object’s field really receives the as-
signment. We then cannot know which points-to information to keep and
which we should discard. If it only points to a single concrete object, we can
perform a strong update. Thus the abstract object o1 must be kept in the
points-to set of o.a in line 7.

1 o.a = new Obj(); // Abstract object o1

2 if(...) {

3 o.a = new Obj();

4 } else {

5 o.a = new Obj();

6 }

7 ... = o.a;

Listing 2.4: Example for strong updates on a field

The use of an intermediate program representation based on static single
assignment (SSA) form has become standard in flow-sensitive pointer anal-
ysis. In SSA form each variable has only one static definition. A program
is thus transformed to SSA form by introducing versions of the variables to
make each definition unique.
For fields however this cannot be done without pointer analysis, as the

definition and use of a field depends on the points-to set of the dereferenced
variable. Most intermediate representations thus use a partial SSA form in
which only local variables are transformed.
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The advantage of using SSA form for flow-sensitive analysis is that for local
variables a flow-insensitive analysis becomes automatically flow-sensitive
due to the versioning of the variables.
Hardekopf and Lin [HL09] show how an exhaustive flow-sensitive pointer

analysis can be scaled by improving a partial SSA form of the program with
points-to information fromapreliminary fast flow-insensitive points-to anal-
ysis and using Binary Decision Diagrams for points-to sets.
In a flow-sensitive demand-driven analysis queries of the form “Whatmay

variable x in line i point to?” can be answered. To my knowledge however
no demand-driven pointer analysis so far has included flow-sensitivity to
improve precision since Hind [Hin01] observed in 2001 that “all demand-
driven analyses are flow-insensitive”.
He states that it “remains an open question as to whether the precise flow-

sensitive analyses, such as those that use context-sensitivity or performshape
analysis, can be performed in a demand-driven manner.”

2.1.5. Context-sensitivity

A pointer analysis is called context-sensitive if it analyzes each method sepa-
rately for each call. Consider Listing 2.5: If we ignore calling context, vari-
ables a and bwould both point to the abstract object o from the allocation in
line 7 and thus have the same points-to set. In a context-sensitive analysis
however, we would need to distinguish abstract objects and calls by the con-
text in which they occur. This is done by associating a context, a stack of call
statements, with each abstract object and note the context when analyzing
each call. Thus a and b point to different abstract objects, each a pair of a
context and the allocating statement, as each is allocated during different
calls of the factory() method.

1 method () {

2 Object a = factory ();

3 Object b = factory ();

4 }

5
6 Object factory () {

7 return new Object (); // Abstract object o

8 }

Listing 2.5: Example for context-sensitivity
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A context-sensitive analysis thus matches calls and returns in a program,
essentially inlining all method calls. In recursive programs unbounded con-
texts occur and thus termination is not guaranteed. Several approximations
have been used: One approach is to limit the number of calls in a context to
some number k, handling all calls after that in a context-insensitive way. A
better approximation is to ignore contexts for calls after the first level of re-
cursion [EGH94]. Another option is to treat calls inside strongly connected
components of the call graph as belonging to the same context.
The last option is used by Whaley and Lam [WL04] and by Sridharan and

Bodík [SB06]. Whaley and Lam are able to allow their exhaustive approach
to scale by using BDDs to efficiently reduce the amount of memory that the
large number of contexts need. However they do not use a context-sensitive
construction of the call graph and context-sensitive abstract objects.
Queries for a demand-driven context-sensitive pointer analysis may be

made more precise by providing the context in which to analyze the vari-
able. Sridharan and Bodík extend the demand-driven algorithm of Sridha-
ran et al., explained in Section 2.1.3, to include context-sensitivity. They
use context-sensitivity for calls and abstract objects, as well as on-the-fly
context-sensitive call graph construction. They claim that their approach
scales for programswith circa 8800methods and 164000 relevant statements.

2.2. Explicit Dependence Graphs
An explicit dependency graph is an intermediate representation (IR) of a
program in which definition and use dependencies as well as control flow
and memory dependencies are made explicit by edges between statements.
In this thesis, I will use the jFirm intermediate representation which is

based on Firm [LBBG05]. The goal of both, Firm and jFirm, is to provide a
common IR for compiler, optimization, and program analysis research. Firm
aims to offer a common IR to many languages, is implemented in C and cur-
rently offers mainly C and Java 1.4 frontends. In contrast jFirm is imple-
mented in Java and provides a Java frontend that also works with current
versions of Java. Additionally, jFirm provides a more direct mapping of Java
bytecode operations to IR operations than the Firm IR.
Firm and jFirm make use of a partial SSA form (see Section 2.1.4). jFirm

thus only resolves definitions and uses of local variables and abstracts them
away in the final graph structure by directly connecting operations that de-
fine some value with operations that use the value.
Operations that modify or read memory such as PUTFIELD and GETFIELD
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aremadememory-dependent. Thismeans that each operationdepends upon
the memory generated by the operation before it and produces a new mem-
ory. The chain of memory dependencies also implies the order in which the
statements must be executed and represents the order of statements in the
original code as long as no optimization was made.
Figure 2.1 shows an example graph generated from the remove method in

Listing 2.6. The basic structure is that of a control flow graphwith basic blocks
as nodes. Each basic block contains the nodes of a section of code that is not
interrupted by jumps or jump targets. Basic blocks are connected by dashed
control flow edges. Each control flow edge starts at the block that follows
after executing the target of the edge, a jump or branching statement.
Other edges represent either data flow of any primitive or reference type,

or memory dependencies between operations. Edges are directed in the way
that they point from the node that uses the value to the defining node. The
numbers at the edges correspond to the input of the source node. A PUT-
FIELD node for example has three inputs: a memory value on input 0, the
reference (DATA) to the instance containing the field on input 1, and the
reference or value to be stored on input 2. PROJ nodes extract produced
values from nodes with multiple output values. Notice that the local vari-
ables listNode, previous and next are replaced by edges that directly link
the defining and using operations.

1 void remove(Node listNode) {

2 if(listNode == null) return;

3 Node previous = listNode.previous;

4 Node next = listNode.next;

5 previous.next = next;

6 next.previous = previous;

7 }

Listing 2.6: Example for jFirm

Table 2.1 shows an overview of the operations relevant to pointer analysis.
For each operation their input and output values are listed.
Another derivative IR of Firm has been used to construct a flow-sensitive

pointer analysis [LL07], a flow-sensitive analysis using information frombranch
conditions [GLL07] and a context- and flow-sensitive analysis [LGL08]. They
use an exhaustive approach that simulates the execution of the program.
Hardekopf and Lin [HL09] use the LLVM IR [Lat02] to design a flow-sensitive

pointer analysis for C. LLVMuses a partial SSA formwith annotated low level
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operations. Hardekopf and Lin improve their analysis by first using a flow-
insensitive pointer analysis to compute def-use information for pointer vari-
ables. This allows their flow-sensitive analysis to scale up to 1.9 million lines
of code and 1 million statements by their account.
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Figure 2.1.: Example method graph for jFirm
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Opcodes #In Inputs in order #Val Produced Values
END 0 * 0
BLOCK 0 to n control-flow 0
PHI 2 to n either DATA or MEM 1 **
PROJ 1 DATA or MEM 1 same as input
PARAM 0 1 parameter/memory
CONST 0 1 constant value
ALOAD 3 MEM, array, index 2 MEM, loaded value
ASTORE 4 MEM, array, index, value 1 MEM
RETURN 1/2 MEM, value 1 control-flow
NEW 1 MEM 2 MEM, new value
NEWARRAY 2 MEM, size 2 MEM, new value
GETFIELD 2 MEM, instance 2 MEM, loaded value
PUTFIELD 3 MEM, instance, value 1 MEM
GETSTATIC 1 MEM 2 MEM, loaded value
PUTSTATIC 2 MEM, value 1 MEM
CALL 1 to n MEM, this, parameters 1/2 MEM, return value
CAST 2 MEM, value 2 MEM, value
SWITCH 1 value n control-flow
IF 2 value, value 2 true, false
GOTO 0 1 control-flow
* The block containing END is control-flow successor to all RETURNs.
** Returns the input corresponding to the current control-flow to block.

Table 2.1.: jFirm Opcodes relevant to pointer analysis. Operations that use
only primitive types have been left out.
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Chapter 3. Algorithm

In my approach I combine several of the ideas outlined in the previous chap-
ter to develop a flow- and context-sensitive, demand- and client-drivenpointer
analysis. I extend and modify the refinement algorithm of Sridharan et al.
[SGSB05] and Sridharan and Bodík [SB06] to compute flow-sensitive results.
To this effect I use the jFirm intermediate representation which has been
described in Section 2.2.
In the following section I show the outer refinement loop. In Section 3.2 I

describe and explain the algorithm for a single refinement iteration.

3.1. Refinement
Queries for the pointer analysis contain a context and a node that produces
a reference value. The core idea is to begin searching at this node and follow
all dependencies that determine the points-to set. This is a simple depth-
first search as long as no values returned by loads from arrays, static fields
or instance fields are encountered.
Sridharan et al. [SGSB05] observe that a load from a field can only be af-

fected by a matching store to that same field and that this can be used to
implement a refinement strategy. In the first refinement iteration the al-
gorithm assumes that all stores and loads on fields with the same name and
containing class match. Thus the value stored into the field directly flows to
the load. This enables the analysis to skip computing whether the base vari-
ables whose fields are accessed really alias but produces a possibly imprecise
result.
In the algorithm an approximating match between a store and a load is a

pair ((loadContext, loadNode), (storeContext, storeNode)). The algorithm keeps
track of the following sets:

• removedMatchesThe set of allmatches that should be checked for aliases
in further iterations.
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• usedMatches The set of matches that have been used to approximate
the result in the last iteration.

• invalidMatches The set of matches whose base references do not alias.
This is used during the whole lifetime of the pointer analysis.

• visitedNodes The set of nodes that have been visited during the depth-
first search for points-to information.

Figure 3.1 shows the refinement loop. In each iteration the usedMatches are
added to the set of matches to be refined in later iterations. Two conditions
can make the refinement stop: Either we have found no more matches dur-
ing the last refinement iteration and thus maximum precision is achieved.
Or the client decides that the precision is sufficient for its needs by returning
true from the call to QueryAnswered.

PointsTo(context, node)
1 Clear(removedMatches)
2 repeat
3 Clear(visitedNodes)
4 Clear(usedMatches)
5 pointsTo = FindPointsTo(context, node)
6 AddAllTo(removedMatches, usedMatches)
7 until usedMatches == ∅

∨ QueryAnswered((context, node), pointsTo)
8 return pointsTo

Figure 3.1.: Refinement algorithm

3.2. Single iteration
During a single refinement iteration the analysis searches along the data de-
pendencies in a depth-first manner for allocation sites. If the points-to set
contains information from the return value of a load operation the method
FindLoadPointsTo is called. The full pseudo code for FindPointsTo and Find-
LoadPointsTo can be found in the appendix in Figures A.2 and A.3.
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To implement the refinement idea, FindLoadPointsTo uses another depth-
first search along the chain ofmemory dependencies to find stores. If a call is
encountered we inline each possible target method by entering the method
at the return statement and exiting via the memory parameter. See Sec-
tion 3.2.2 for context sensitivity and interprocedural details. The stores are
handled by the methods PutStatic, ArrayStore and PutField. They each take
the corresponding load and the store, the points-to set that will be returned
from the load and the stack for the depth first search.
PutStatic in Figure 3.2 can easily check whether the PUTSTATIC and GET-

STATIC operations reallymatch by comparing equality between the accessed
fields. Each static field is uniquely identified by the class that owns it and its
name. If the fields are equal we can thus always perform a strong update.
The strong update discards all points-to information generated by opera-
tions before the store. This means we simply stop the depth-first search at
the store and do not add the node that produced the previous memory value
to the stack. The relevant part of thememory value, that is the part that con-
tains this field, was overwritten by the strong update. The use of refinement
for static stores is thus not necessary.

PutStatic((c, load), (context, store), pointsTo, stack)
1 if store.field == load.field
2 AddAllTo(pointsTo, FindPointsTo(context, store.value))
3 return
4 Push(stack, (context, store.memoryIn)
5 return

Figure 3.2.: Method for handling PUTSTATIC nodes

Precise handling of arrays is very difficult as we would need to differen-
tiate between the different indices and compute array boundaries. This re-
quires analysis of primitive values and is often dependent upon input values
and loop conditions. The most common approach is to merge all positions
of the array into a single field and not analyze indices and boundaries at all.
This precludes strong updates on all array stores as the field possibly corre-
sponds to different array positions.
Figure 3.3 shows the ArrayStore method. Using the refinement idea for

arrays assumes that arrays of compatible static types are the same in the
first iteration (lines 5-11) and later refines this by checking whether the ar-
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ray reference nodes alias. If the match has been proven invalid we can skip
analyzing this store further.
Lines 9-11 are used in the first iteration that encounters this store. If the

match has not been used to approximate in previous iterations it is added to
usedMatches. Then the points-to set of the stored value is found and added
to the points-to set returned by FindPointsTo.

ArrayStore((c, load), (context, store), pointsTo, stack)
1 match = ((c, load), (context, store))
2 if match ∈ invalidMatches
3 Push(stack, (context, store.memoryIn))
4 return
5 if IncompatibleTypes(store.array, load.array)
6 Push(stack, (context, store.memoryIn))
7 AddTo(invalidMatches,match)
8 return
9 if match /∈ removedMatches

10 AddAllTo(pointsTo, FindPointsTo(context, store.value)
11 AddTo(usedMatches,match)
12 else
13 alias = ((c, load.array), (context, store.array))
14 if alias /∈ checkingAlias
15 AddTo(checkingAlias, alias)
16 sPointsTo = FindPointsTo(context, store.array)
17 lPointsTo = FindPointsTo(c, load.array)
18 RemoveFrom(checkingAlias, alias)
19 if sPointsTo ∩ lPointsTo == ∅
20 AddTo(invalidMatches,match)
21 else
22 AddAllTo(pointsTo, FindPointsTo(context, store.value))
23 Push(stack, (context, store.memoryIn))

Figure 3.3.: Method for handling ASTORE nodes

In later iterations we need to prove that the array references may refer to
the same array. Itmay be possible that a cyclic dependency leads back to this
combination of load and store. As observed by Sridharan and Bodík [SB06] if
the existence of the alias between the two base reference variables depends
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only on itself, then the two references cannot refer to the same object. To
ensure termination we must thus keep track of the aliases being checked in
lines 13-18.
We check for the alias by computing the points-to set of both array ref-

erences. If the intersection is the empty set this store can never affect this
load and we add the match to removedMatches. In the other case we find the
points-to set of the stored value and add it to the points-to set of the analyzed
ALOAD.
Matches between PUTFIELD and GETFIELD nodes are handled in much the

same way. Figure 3.4 shows only the differences. As fields are determined
by the static type of the base reference and their name, we can improve our
approximation by checking for equality and possibly add the match to the
invalidMatches. Lines 2-5 replace lines 5-8 in ArrayStore. Themain difference
to handling matches between array load and stores is in lines 7-9 which re-
place line 22. If the points-to sets of the base references not only alias but
also refer to a single concrete object, we can perform a strong update and do
not visit the previous node on the memory chain.

PutField((c, load), (context, store), pointsTo, stack)
1 ...
2 if ¬(store.field == load.field)
3 AddTo(invalidMatches,match)
4 Push(stack, (context, store.memoryIn))
5 return
6 ...
7 AddAllTo(pointsTo, FindPointsTo(context, store.value)
8 if IsSingleConcrete(sPointsTo)

∧ IsSingleConcrete(lPointsTo)
9 return

Figure 3.4.: Method for handling PUTFIELD nodes

3.2.1. Single concrete objects

Determining whether an abstract object refers to a single concrete object is
often difficult in pointer analysis. As said in Section 2.1.1 the allocation site
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might be inside a loop or the context of the method invocation might not be
unique.
For method invocations the solution is to use context sensitivity and asso-

ciate the calling context with each abstract object. In recursive invocations
however abstract objectsmay still correspond tomultiple concrete ones. See
the next section for context sensitivity and recursion.
In loops the usual approximation is to just assume that all allocation sites

do not correspond to single concrete objects. If we know however that a
abstract object in a loop must be the most recently allocated object in that
loop we can improve upon that approximation. This allows us to use that
abstract object as a single concrete object inside the loop.
In our analysis there are only three cases in which a points-to set of only

one abstract objectmaynot refer to themost recently allocated object at that
site. The trivial case is that the points-to set contains a special abstract object
that corresponds to the null reference. A single abstract object might also
flow through an array. In that case we do not know whether it is the most
recent object, as the indices allow access to objects thatmight be allocated in
previous loop iterations. If an array load thus affects the computed points-
to set, we set a flag on it which is propagated to other points-to sets that
include it. The third case occurs if the context of that abstract object is not
unique and contains multiple invocations of a method. We check this by
marking contexts that represent more than one method invocation. See the
next section for details.
In all other situations the points-to set either includes only one most re-

cently allocated object or it must include multiple abstract objects. This re-
sults from the way in which the analysis searches for abstract objects and
the properties of the program representation.
Assume that we have a query for the points-to set of a local variable x after

a loop which is defined inside the loop by an allocation x = new .... As it is
accessible after the loop it must be declared before the loop. Java however
does not compile this if x is not also defined before the loop. In static single
assignment form the variable must then have a PHI definition inside the ba-
sic block. The PHI either corresponds to the definition before or inside the
loop, depending on which control flow path has been taken by the program.
The analysis however is not path-sensitive and must merge the incoming
points-to information and thus includes at least two abstract objects.
For loads from fields the same argument can be applied, except that we

search for definitions along the memory dependencies. There must be a PHI
node for the memory value, as both control flow predecessors produce a
differentmemory value. The analysis also explores bothmemory chains and
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merges incoming points-to information. If one store and allocation site is
found inside the loop we must still analyze the other memory dependency.
Either we find another abstract object or no definition is found and we must
either assume that it may return all possible objects or that it may be null.
We can only assume the latter if we trace the memory dependencies back to
the program entry.

3.2.2. Context sensitivity

For a context sensitive pointer analysis wemust keep a stack of calls or a con-
text that led to the currently analyzed method. The analysis proceeds from
the use of a variable to the definition and thus in reverse direction of con-
trol and data flow. Accordingly it enters a method via all return statements
and exits it via the parameters. On entering a method the call statement
is pushed on the call stack and all nodes within that method are associated
with that context.
This however is unbounded in the case of recursion. To solve this we

test if a new call pushed on the stack is already present and would thus
be a recursive call. All methods called in that recursive cycle are part of
a strongly connected component in the call graph. We collapse this strongly
connected component by associating further calls within that cycle with the
same context. This context is also associated with all nodes and abstract
objects within any contained method. These abstract objects may refer to
multiple concrete objects and not only to the most recently allocated one as
described in the previous section.
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Chapter 4. Evaluation

4.1. Implementation
The analysis is implemented on the jFirm framework which is still in devel-
opment. It currently does not support exceptionhandling, reflection andna-
tive methods. It also does not handle MULTIANEWARRAY bytecode instruc-
tions. My implementation currently handles methods for which no jFirm
graph can be constructed unsoundly by ignoring them as targets of calls.

4.1.1. Call graph

To determine call targets I implemented a coarse call graph. Possible targets
are determined by considering the possible types of the receiving objects
only based on the static type of the receiving variable. This is called a call
graph based on class hierarchy analysis [DGC95].
This call graph is computed on initialization and is used to build a context

sensitive call graph during analysis. In a context sensitive call graph the pos-
sible targets for each call statement are analyzed for each context in which
the call statement can occur.
On encountering a call we compute the points-to set of the receiving object

in the current context. We then filter the possible targets from the coarse
call graph with the types of the objects in the points-to set.

4.1.2. Optimization

As there are repeated calls to PointsTo and FindPointsTowith the same para-
maters, we cache the results returned by these methods. The cache for
FindPointsTo is cleared for each refinement pass of the query. Otherwise,
matches that should be refined are not be visited again and the possibly less
precise cached points-to sets are used.
Another optimization skips call targets entirely when searching for stores

on static or instance fields. On initialization we compute the sets of static
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and instance fields modified by a method and all called methods. We first
compute the fields modified within each method. We then compute a re-
verse topological order of the strongly connected components (SCCs) of the
coarse call graph. In a last step we propagate the sets of written fields from
called SCCs to their callers. Every method within a SCC has the same sets of
written static and instance fields.
When we would normally descend to the called methods of a CALL node

during FindLoadPointsTo we filter the target methods. A method whose re-
spective set of written fields does not include the field of the analyzed load
operation is not analyzed.

4.2. Setup
I evaluated the pointer analysis with a client that asks for the points-to sets
of the receiving objects of virtual calls. I exclude calls that already have a
single target in the type based coarse call graph. The analysis begins at the
main method and recursively analyzes all found target methods belonging
to the benchmark program.
The client stops the refinement when there is only one type of objects in

the points-to set. This represents the goal of finding the lowest number of
possible targets while stopping the pointer analysis as early as possible.
Information about the possible targets is important for method inlining in

compilers as well as for many IDE tools such as call graph visualization in
program understanding. The points-to sets of receiving objects are also of
interest to typestate verification which usually tracks state as a sequence of
calls on an object.
I configured the analysis to stop and return a coarse resultwhenmore than

a budget of relevant nodes is visited during the analysis. Either the points-
to set computed during the last refinement iteration or the set that contains
all possible abstract objects is returned. This simplifies the implementation
and use of the pointer analysis in contrast to using actual time constraints.

4.2.1. Benchmarks

To evaluate the performance of the analysis I used programs from the Da-
Capo [BGH+06] benchmark suite version 2006-10-MR2. The same programs,
although from a slightly older version of the suite, were used by Sridharan
and Bodík [SB06] and the same version was used by Gutzmann et al. [GLL07].
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I use the distribution provided on the DaCapowebsite that separates the pro-
gram and its dependencies into two archives.
The analysis was run on these benchmarks using Java 1.6.0 10 and a In-

tel Core Duo processor with 1.8 GHz and 2 GB of memory running Kubuntu
8.10. The Java virtual machine was configured to use a maximum of 1.5 GB
of memory.
The tables 4.1, 4.2 and 4.3 show various statistics about the programs that

were used.
In table 4.1 only those classes were considered that belong to the program

itself. I restrict the client to only query variables within these classes for
their points-to set. The points-to analysis however needs to consider meth-
ods inside the dependencies. Table 4.2 lists statistics that include all classes
and methods that the pointer analysis may ever encounter.
Note that in both tables the Nodes column also includes nodes not relevant

for pointer analysis such as arithmetic operations.

Benchmark Classes Methods Calls Nodes Loads Stores
antlr 228 2483 23355 195010 8941 3544
bloat 360 3836 25127 224322 10559 4701
chart 515 6090 26227 276483 11770 5287
jython 919 8547 31584 374341 17320 8805

Table 4.1.: Benchmark statistics including only classes, methods and nodes
within the analyzed benchmark programs.

Benchmark Classes Methods Calls Nodes Loads Stores
antlr 5482 46356 181175 3218024 104063 56571
bloat 2519 22072 88426 1454481 42522 23321
chart 6181 54077 203206 3696396 118588 73058
jython 6436 54106 196131 3535677 114730 63082

Table 4.2.: Benchmark statistics including classes, methods and nodes in de-
pendencies of the analyzed benchmark.

Table 4.3 shows the memory usage of all jFirm method representations in
the first column. The second column shows the amount of memory needed
to keep the coarse call graph and the last column shows how much memory
was occupied by the optimization described in 4.1.2.
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An average total of 598 MB is likely too much to use this analysis for our
target applications. For JIT compilers this effectively reduces the amount of
memory available to the executed program by that amount. Assuming that
2 GB of main memory is a common amount available to developers this also
subtracts a significant part of thememory available to the IDE, the client and
other programs. jFirm however can also be used by the IDE and the client
programs as it includes a full intermediate representation.
The current implementations of jFirm and the pointer analysis however

are not optimized much with respect to memory usage. Set and map im-
plementations are mostly taken from the Java standard library and only re-
placed by more space efficient versions in critical cases.
One of these is the optimization for side effect field storesmade bymethod

calls. As table 4.3 shows this still requires 151 MB of memory on average.
Without the optimization however evaluation was all but impossible as field
loads would require analyzing calls to large irrelevant parts of the code.

Benchmark jFirm IR CHA call graph field optimization
antlr 377 87 165
bloat 172 45 41
chart 438 105 187
jython 421 93 182
average 363 84 151

Table 4.3.: Memory usage in MB for unchanging parts of the analysis.

4.3. Results
The tables 4.4 and 4.5 show the results of running the call target client with
a pointer analysis that is limited to 1000 and 5000 nodes. The second column
gives the total number of queries and the third column the number of those
that were not cached. Caching reduces the number of analyzed queries by
30.3% on average.
The “Budget” column shows the number of queries that resulted in the

analysis visiting too many nodes and returning a coarse result. This number
does not change if we increase the limit to 5000 or 10000 nodes.
The reason for this can be found in table 4.6. It displays the number of load

nodes analyzed per query on average. It also shows the difference between a
query that did not complete within the limit of 1000 nodes and queries that
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did. We can see that the number of encountered loads is a major factor in
whether a query exceeds the budget.
The time taken on average for a non-cached query is quite fast with an av-

erage of 6.3 milliseconds with a budget of 1000 nodes. For 5000 nodes how-
ever this increases to 334.7ms. Tests with a budget of 10000 nodes show that
the time needed explodes quickly to over one second without any precision
gain.
The precision is given as the percentage of queries which resulted in a

single target method for the virtual call or a single concrete object for the
receiver points to set. In the second case the pointer analysis cannot re-
turn amore precise result. The precision comesmostly from the non-cached
queries that did not run out of budget, since nearly all budget-exceeding
queries returned the set of all possible abstract objects. These cannot prove
that a call has a single target because the call has multiple targets in the
coarse call graph.
The fact that the regularly terminating queries only analyzed 0.6 loads on

average means that the algorithm cannot analyze most field loads. The im-
plementation needs the optimization from Section 4.1.2 to reduce the num-
ber of calls analyzed during loads and thus reduce the number of nodes.
However, it still does not succeed as the underlying algorithm needs to look
at too many nodes while searching for stores.
The maximal amount of memory required during a query is shown in the

last column of tables 4.4 and 4.5. This adds to the memory requirements
displayed in table 4.3 and results in an average total of 264 MB for the anal-
ysis with a limit of 1000 nodes. Using a budget of five times as many nodes
increases the memory usage by a factor of 14.5.
I also analyzed the averagenumber of refinement passes per query. Budget-

exceeding queries always terminated within the first refinement pass while
for other queries the average was 1.004 passes. This reflects that the former
are more complex as more loads need to be analyzed.
It also shows that the refinement idea is not directly applicable to a flow-

sensitive demand-driven analysis. As no strong updates are performed on
the first encounter of a store to the field, the analysis must search for other
stores and needs to visit many more nodes. However, checking whether it
is possible to perform a strong update on the first encounter would make
further refinement passes superfluous.
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Queries Not Cached Budget Time Precision Memory
antlr 4899 1237 614 4.6 ms 10.4 % 10 MB
bloat 2669 1851 1201 3.8 ms 21.4 % 13 MB
chart 4096 2300 1448 5.6 ms 17.2 % 7 MB
jython 3014 2742 2150 11.3 ms 4.5 % 12 MB
average 2916 2033 1353 6.3 ms 13.4 % 11 MB

Table 4.4.: Results of the call targets client with a limit of 1000 nodes.

Time Precision Memory
antlr 271.6 ms 10.4 % 139 MB
bloat 188.0 ms 21.4 % 166 MB
chart 381.9 ms 17.2 % 166 MB
jython 497.2 ms 4.5 % 167 MB
average 334.7 ms 6.3 % 159.5 MB

Table 4.5.: Results of the call targets client with a limit of 5000 nodes.

Loads
antlr budget 12.0

regular 0.4
bloat budget 6.8

regular 0.5
chart budget 9.8

regular 0.5
jython budget 16

regular 0.8
average budget 11.2

regular 0.6

Table 4.6.: Average number of load nodes analyzed during queries.
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Chapter 5. Conclusions

In this thesis I have described a new approach to demand-driven pointer
analysis on Java. The approach extends a context-sensitive demand-driven
pointer analysis [SB06] with flow-sensitivity. To this effect it uses the inter-
mediate representation jFirm (see Section 2.2) that explicitly includes data
and control flow as well as memory dependencies.
The general idea is to make use of refinement and iteratively increase the

precision. In each iteration we use a depth-first search for allocation sites
that make up the points-to set. Load statements are analyzed by performing
a depth-first search for stores along the memory dependencies. The core
idea of refinement is to first assume newly encountered load and store pairs
to access the same location. In the next iterationwe then checkwhether this
really holds. This also yields the possibility to perfom strong updates which
enable the analysis to stop the search for more stores.
I implemented this approach and optimized the implementation by skip-

ping calls during the search for store statements that do not write to the
field. I evaluated the implementation using a client of the pointer analysis
that tries to minimize the number of targets for a context-insensitive call.
The evaluation shows a flaw in the approach itself. The analysis fails when

searching for the points-to set from load statements as the number of nodes
that needs to be visited is too large. Only queries that access very few or no
fields at all are completed successfully.
The implementation does not profit from refinement, and the results from

Section 4.3 show that a flow-sensitive analysis cannot use this idea easily.
One reason is that refinement does not enable strong updates in early passes
and thus leads to possibly more nodes being visited than necessary.

5.1. Future work
It remains an open problem how flow-sensitivity can be used in a context-
sensitive demand-driven pointer analysis. A fundamental issue is the re-
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duction of the search space for the points-to information flowing through
load statements. Achieving this without increasingmemory usage toomuch
must thus be an integral part of future attempts in flow-sensitive demand-
driven analysis.
Client-driven techniques such as refinement add a useful option for early

termination to demand-driven analysis. It is however not clear how this can
be incorporated into a flow-sensitive pointer analysis. The potential benefits
however make this an interesting goal for future research.
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Appendix A. Algorithm

The following pages provide the method listing missing from Chapter 3.
FindPointsTo in Figure A.2 shows the basic depth-first search algorithm

used to search for the points-to set during a single refinement iteration.
FindParamPointsTo and FindCallPointsTo are omitted. Thesemethods query
the call graph for the callers and targets respectively and return the union
over the points-to sets returned by calls to FindPointsTo with the appropri-
ate nodes in the calling or target methods.
Figure A.3 shows the FindLoadPointsTo method. It describes the depth-

first search over the memory edges for stores that affect the analyzed loads.

Call((context, call),workList)
1 targets = GetCallTargets(callGraph, (context, call))
2 for each (method, callContext) ∈ targets
3 AddToWorkList(workList, (callContext,method.end.memoryIn))

Figure A.1.: Algorithm for handling a call during the analysis of a load
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FindPointsTo(c, node)
1 if (c, node) ∈ visitedNodes
2 return ∅
3 AddTo(visited, (c, node))
4 pointsTo = ∅
5 opCode = node.opCode
6 if opCode == PROJ
7 pOpCode = node.producer.opCode
8 if pOpCode ∈ {GETFIELD,GETSTATIC,ALOAD}
9 pointsTo = FindLoadPointsTo(c, node.producer)

10 if pOpCode == ALOAD
11 pointsTo.fromArray = true
12 elseif pOpCode ∈ {NEW,NEWARRAY}
13 pointsTo = {(c, node.producer)}
14 elseif pOpCode == CAST
15 pointsTo = FindPointsTo(c, node.producer.reference)
16 elseif pOpCode == CALL
17 pointsTo = FindCallPointsTo(c, node.producer)
18 elseif opCode == PARAM
19 pointsTo = FindParamPointsTo(c, node.producer)
20 elseif opCode == PHI
21 for i = 0 to n. inCount
22 AddAllTo(pointsTo, FindPointsTo(c, node. in[i]))
23 elseif opCode == CONST
24 pointsTo = {(c, node)}
25 return pointsTo

Figure A.2.: Algorithm for a single refinement iteration
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FindLoadPointsTo(c, load)
1 pointsTo = ∅
2 opCode = load.opCode
3 workList = []
4 AddTo(workList, (c, load))
5 workVisited = ∅
6 while ¬ IsEmpty(workList)
7 (context, node) = RemoveFirst(workList)
8 if (context, node) ∈ workVisited
9 continue

10 AddTo(workVisited, (context, node))
11 workOpCode = node.opCode
12 if workOpCode == PHI
13 for i = 0 to node. inCount
14 AddToWorkList(workList, (context, node. in[i]))
15 elseif workOpCode == CALL
16 Call((context, node),workList)
17 AddToWorkList(workList, (context, node.memoryIn))
18 elseif workOpCode == PUTFIELD ∧ opCode == GETFIELD

∨ PutField((c, load), (context, node), pointsTo,workList)
19 elseif workOpCode == ASTORE ∧ opCode == ALOAD

∨ ArrayStore((c, load), (context, node), pointsTo,workList)
20 AddToWorkList(workList, (context, node.memoryIn))
21 elseif workOpCode == PUTSTATIC ∧ opCode == GETSTATIC

∨ PutStatic((c, load), ((context, node), pointsTo,workList)
22 elseif workOpCode == PARAM
23 callers = GetCallers(callGraph, (context, param))
24 for each (callContext, callNode) ∈ callers
25 AddToWorkList(workList, callContext, callNode.memoryIn))
26 else AddToWorkList(workList, (context, node.memoryIn))
27 return pointsTo

Figure A.3.: Algorithm for finding the points-to set of the reference value
returned by a field load
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