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Abstract

Specification inference aims to alleviate the problems in writing specifica-
tions and missing specifications for legacy code. A common approach is to
infer finite typestate automata that model legal call sequences. This yields
intuitive specifications.

I present a new approach that enhances the expressiveness of typestate
automata by adding conditions on the parameters of each call. In addition
each state is identified by a condition on the fields of the modelled class. The
approach makes use of an over-approximate weakest precondition analy-
sis. It explores the state space of the class from the error state with a new
algorithm and repeatedly adds states and transitions by analysing precon-
ditions.

With an implementation of the fully automatic inference algorithm I show
that the algorithm is practical for real world examples taken from the Java
library without modification. Where previous approaches are restricted to
a small set of assertions as the specification of the error state, my approach
handles all assertions and exceptions of a class in a single automaton. The
evaluation of a prototype verifier shows that the generated specifications
can be used to find defects in code using the target class.
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1 Introduction

The field of automated program verification has come a long way since the
original introduction of the concepts by Floyd, Hoare, Dijkstra and others.
Many approaches such as model checking, theorem proving and abstract
interpretation have spawned tools for formal verification of software prop-
erties which are increasingly employed in industry.

However all of these techniques require a specification of the properties
which should be checked for. Missing specifications are a major reason why
software verification and advanced testing methods are not used more often
[DKM*10, WMLO02].

Writing a specification which can be used for verification is a labour in-
tensive process. The required effort should be reduced for verification to
gain more widespread acceptance.

As modern software development also extensively builds upon previously
written components for which no specification may exist, the difficulty of
creating and maintaining formal specification increases. The effort is thus
often avoided in new projects or is abandoned during the process in favour
of more traditional testing techniques.

To support legacy components in verification and ease specification writ-
ing a number of Specification inference or mining algorithms [BHS07, HIMOS5,
NGCO05, WML02, ACMNO5,RGJ07, SYFPO7] were developed in recent years.

These compute a part of the specification that is often not documented:
In which order can one call methods of the component without violating
some implicit constraint? A Stream object, for example, must be connected
to a Sink by a call to connect (Sink) before the method write(byte[]) may be
called on it.

write(byte[])

Q connect(Sink)
do 4

Figure 1.1: Typestate automaton for a Stream object




The specification is modelled as a finite state automaton or regular lan-
guage that represents call sequences which do not lead to an error state.
In Figure 1.1 the automaton for a Stream object is shown. Each transition
not in the automaton is assumed to be erroneous. This example is a re-
duced version of automata for java.io.PipedOutputStream from previous
work [BHSO07, ACMNOS5] in which I omitted some methods of the class for
clarity:.

1.1 Contributions

In this master thesis I make the following contributions towards verification
of modular software components and specification inference in Java.

I implemented and designed a static precondition analysis that computes
an approximation of the weakest precondition of a method call with regard
to a postcondition. The precondition analysis operates on the implementa-
tion of a logic modelling all features of the Java language. For satisfiability
and validity checks on formulas of the logic, I added a translation to the
CVC3[BTO7] theorem prover.

I present a new automaton inference algorithm which automatically ex-
tracts a finite state specification of a class. This algorithm takes the asser-
tions as specification of an error state. From this state it repeatedly uses the
precondition analysis on the methods of the class to find additional relevant
states and illegal call sequences.

The main advantage of the new approach is that each transition in the au-
tomaton includes a condition on the parameters that guards the transition.
This allows the automaton to model all details of call sequences leading to
any assertion violation in a single automaton and in a readable manner. In
addition each state represents a set of runtime program states with a for-
mula over the fields of the class. Unlike previous static approaches, the al-
gorithm also handles the special properties of constructor methods to pro-
vide an initial state and model conditions on constructor parameters.

The automaton for the Stream class is shown in Figure 1.2. Each state is
labelled with a predicate on the state of the object and each transition in-
cludes a condition on the parameters or none if the condition is true. The
error state is made explicit and labelled with the ExceptionThrown predi-
cate.

In the evaluation I show that the implementation of the precondition anal-
ysis and the automaton inference can handle classes from the Java standard
library without modification and works completely automatic.



b # null: write(byte[])

<init>()

sink # null: connect(Sink

sink :—w

sink = null: connect(Sink)
write(byte[])

sink # null

connect(Sink)

ExceptionThrown b = null: write(byte[])

Figure 1.2: Stream automaton

To show the applicability of these automata in verification I implemented
a prototype verifier that checks code using the library class against the au-

tomata. It finds defects in the code by tracking field values and automata
states.






2 Background and Previous Work

In this chapter I describe the concepts behind precondition analysis and
specification inference. I discuss previous work in these areas and provide
background on the intermediate representation the implementation is built
upon.

2.1 Preconditions

This thesis builds on the weakest precondition calculus introduced by Dijk-
stra [Dij68] and extended by Gries [Gri87] and many more.

A precondition pre(S, ¢) with regard to a program statement S and post-
condition ¢ satisfies the following: If the state before the execution of S sat-
isfies pre(S, ¢), then the execution of S terminates in a state which satisfies
the postcondition ¢.

The definition of state in this context depends on the execution environ-
ment. In Java the state refers to the values of local variables and the values
of objects and their fields in the heap.

The weakest precondition wp(S, ¢) is the precondition implied by all other
preconditions. A precondition a is thus weaker than another precondition b
if b = «. This relation is a partial order on the preconditions.

Consider the statement x = x + 1; and the postcondition x > 5. Then
some preconditions are {x = ¢,z > ¢ | ¢ > 4}. The weakest precondition
isz > 4.

The weakest precondition calculus is a set of predicate transformers that
compute the weakest precondition for a statement and a given postcondi-
tion. The weakest precondition of an assignment statement wp(x = e, ¢) for
example, is defined as ¢[e/x] where e is substituted for x in ¢.

In the case of loops the weakest precondition requires a loop invariant
which is maintained by the statements within the loop in each iteration and
a loop variant which is decreased in every iteration to ensure that the loop
terminates. For arbitrary programs loop invariants and variants cannot be
computed, but some approximation of it may be derived.



2.1.1 Precondition analysis

The precondition analysis builds on the theory of abstract interpretation
[CCT7], a theory of approximation of the concrete semantics of a program.
An abstract interpretation makes use of a mapping of the program states
to an abstract domain such that a set of concrete program states is repre-
sented by an element in the abstract domain. This also defines the approx-
imation, as there is no one-to-one mapping from the abstract domain back
to a program state. The abstract interpretation then defines the semantics
of program statements within the abstract domain. The semantic rule as-
sociated with a particular statement is also called a abstract transformer as
it transforms an element in the domain into another. As the limits of loops
and recursion may not be decidable the semantics require the computation
of a greatest fixed point over the transformers.

An abstract interpretation with the goal of inferring preconditions of Java
method calls can be defined using a form of the weakest precondition cal-
culus as the transformers. The values of the abstract domain are formulae
in a logic that can encode the features of the Java program.

In [CCM10] Cousot et al. give background on the use of first-order logical
formulae as domains in abstract interpretation. Abstract domains consist-
ing of first-order formulae are usually not finite. While ¢true is the largest
element in a domain of formulae ordered by =, there are chains of succes-
sively larger formulae suchasz > 10 =2 > 9= ....

To ensure the termination of the analysis, an operator called a widening is
required. When during the iterative computation of the fixed point a widen-
ing, is applied it maps the current and future values of the abstract domain
to one larger than both with the intent of reaching a fixed point. A trivial
example in the case of first-order formulae is the widening which always
returns true.

Previous work by Lev-Ami et al. [LASRGO7], makes use of a special logi-
cal domain of predicates that implement heap structures to compute quan-
tified preconditions, but requires the definition of which heap structures to
analyse.

Another approach by Cousot et al. [CCL11] also uses specialized domains
to infer preconditions from assertions in collections to generate contracts
for runtime checking.

The work closest to this analysis in terms of the abstract domain used and
the practical application of the analysis is the work by Chandra et al. on their
tool Snugglebug [CFS09]. While the logic is inspired by their work and theirs
is also an interprocedural backwards analysis, their goal is not to derive a
precondition guaranteed to be weaker or equal to the weakest precondition,



but a stronger or equal precondition. In particular, they employ a variety
of search heuristics that try to find a stronger precondition such that the
analysis may quickly terminate.

2.2 Specification Inference

Approaches to specification inference can be broadly classified into dynamic
or static and client- or component-side analyses.

Static approaches [ACMNO5, NGC05, BHS07, HIM05, WMLO02, SYFPO?7,
RGJO7] generate specification models from symbolic analysis of code at
compile time. They do not necessarily require executable code.

Dynamic approaches [WML02, DKM *10] observe program executions and
record executed call sequences. This results in a high precision of the gen-
erated models in that only actual usage is presented. However, the models
are likely to be incomplete and especially may not include usage that leads
to errors [DKM*10]. As a component usually cannot be executed on its own
these approaches are also client-side approaches.

Client-side approaches [SYFPO7, RGJO7, DKM*10] make use of existing
client code or test cases or generate additional tests[DKM*10] and extract
possible call sequences. These approaches may also be called mining algo-
rithms in the literature.

Static client-side approaches [RGJ07, SYFPO7] make the assumption that
the analysed client code models valid usage of the component. As such they
represent a static view on the actual usage.

Component-side approaches [ACMNO05, NGCO05, BHS07, HIMO05] only anal-
yse the code of the component and can thus employ static analyses only as
a software component is usually not executable on its own. As such they
make worst case assumptions about the client’s behaviour. Thus there may
be call sequences marked as erroneous which could still be valid for some
client. Checking any client against a soundly computed specification would
find all errors however and can prove safety of the client’s library usage.
Client-side approaches cannot deliver this guarantee.

The dynamic approach by Dallmeier et al. [DKM*10] mines an initial model
from an executable client or test suite. Their approach then generates ad-
ditional client code by mutating the original client. From executions of the
mutated versions they add missing states and transitions to the initial model.
They show that this technique increases the completeness of the models and
especially adds transitions to the error state. These were often missing from
the initial models as the test suites rarely tested for exceptions.



Whaley and Lam [WMLO02] were the first to compute finite state machine
representations of call sequence constraints for classes. In their represen-
tation each method corresponds only to a single state. This yields an impre-
cise model and thus they split the model based on the class hierarchy and
field accesses. Additionally their approach combines a static, component-
side analysis with a dynamic mining algorithm.

Alur et al. [ACMNOS5] use a learning algorithm for regular languages. The
algorithm repeatedly queries a model checker whether the currently found
automaton is safe with respect to the component and whether the model
is approximately complete. The first query provides the algorithm with a
counter-example call sequence to remove from the automaton, the second
allows it to add call sequences. Their models additionally distinguish tran-
sitions based on the return value of the method call. The user of their ap-
proach is required to enter a set of predicates with which a finite abstraction
of the component is built and a single exception predicate which signifies
the error state. This requires multiple models for a complete specification
of all erroneous call sequences.

Nanda et al. [NGCOS5] simulate the client behaviour with an increasing
number of objects from different but interacting classes, such as a set and
its iterator. This results in complex models describing effects of calls on one
object on the state of other objects. Their approach also abstracts the in-
put classes with respect to the value of predicates but depends on an initial
phase in which predicates are computed from the classes.

Henzinger et al. [HIMOS5] propose an approach where abstract versions
of the component are iteratively refined using counter-examples. These are
generated from checking whether a candidate automaton is safe with re-
spect to the abstraction and whether it permits all legal call sequences. The
candidate automaton is recomputed and checked under the refined abstrac-
tions.

Beyer, Henzinger and Singh [BHSO7] compare the previous approaches
from [ACMNOS5, HIMO5] and another algorithm in a unified formal setting
and on a small number of Java classes transformed into this setting man-
ually. They show that with regard to theoretical as well as practical time
complexity each algorithm can outperform the others.

2.3 jFirm Intermediate Representation

jFirm is an intermediate program representation (IR) for bytecode. It is de-
scended from the libFirm IR[BBZ11] but reimplements the concepts with op-
erations more specific to bytecode. Where libFirm is written as a C library



and generic IR for compilers, jFirm is written in Java as a tool for static anal-
yses on bytecode.

Both are based on the concept of Static Single Assignment (SSA) form,
in which local variables only have a single definition in the representation.
This also requires the addition of ¢ functions which select variable defini-
tions from predecessor blocks based on the actual control flow at runtime.

jFirmis graph based in that each operation is a node that directly depends
on its operands via edges. All dependencies between nodes have been made
explicit via edges. In particular memory dependencies are made explicit via
memory values.

An operation modifying the heap, such as a store to a field of an object,
takes a memory operand and produces a new memory value on which other
operands may depend. This allows the intermediate representation to di-
rectly encode that some memory-dependent operation may not modify the
result of another if an analysis can prove this.

Nodes do not generally have a fixed order in which they must be executed,
except for the requirement that operands must be computed first and in or-
der. However, the nodes are embedded in a control dependency graph of
basic blocks where a block is control-dependent on nodes that have exe-
cution type such as unconditional jumps. In particular jFirm also makes
exceptional control flow explicit.

Figure 2.1 shows a simple getter method in the jFirm representation. The
dashed edges represent control dependencies and the solid edges data cor-
respond to data dependencies. The jFirm graph for each method has a ded-
icated starting block containing the parameter (PARAM) nodes and an END
node which acts as a sink for the memory values which may be alive after
the execution of the method.

In jFirm each node produces exactly one value, which may be a tuple. This
is the case with nodes 14 and 21 which have directly dependant nodes that
project parts of the tuple. In the case of node 14, the projection of DATA re-
turns the value of the field algorithm of the object at operand 1. The projec-
tion of EXC produces a jump to block 5 in case the operation throws a Null-
PointerException. This block contains the exceptional return where the ex-
ception value is re-thrown to the caller. In this case an analysis could prove
that node 14 may never throw an exception, as this can never be null and
thus the control flow from node 18 to block 5 could be removed as well as
the ¢ node 7. The CONT projection of node 14 jumps to block 20 in case no
exception was thrown.

In Java even a return may throw an exception if some some constraints
on the state of monitors are violated. In this thesis I assume that such ex-
ceptions never occur, as the approach does not take multi-threading into



BLOCK O

| PARAM <mem> (WHOLE) 4 | | PARAM this (java.security.Signature) 9 | | GOTO 10 |

f

GETFIELD algorithm 14

| PROJ EXC 18 | | PROJ EXCDATA 17 | | PROJ DATA 15 | | PROJ MEM 16 | | PROJ CONT 19 |
A A 7y G A
i BLOCK 20
1 0

ol RETURN 21
! A

| PROJ EXCDATA 22 | | PROJ EXC 23 | | PROJ CONT 24

A

Figure 2.1: The jFirm graph of java.securitySignature.getAlgorithm()

account.

The main advantages of using jFirm for static analysis are that all effects
of operations are made explicit by dependencies in a graph. Additionally,
the large amount of bytecode operations that differ only in argument types
such as array loads for different primitive arrays and calls for different types

of methods are handled by a much smaller set of operations.
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3 Approach

The first part of the approach is a precondition analysis similar to Snuggle-
bug by Chandra et al.[CFS09]. However, instead of finding preconditions
that may be stronger than the weakest precondition we aim to find at least
the weakest precondition. This ensures that the precondition represents all
possible program states leading to an error.

In the context of the set of program states encoded by a certain precondi-
tion, we call a weaker precondition an over-approximation of the states that
may reach a postcondition. A precondition of a method call with regard to
the error postcondition must thus represent at least the set of all states that
ensure that the error state is reached to prove that a certain program state
is not contained.

The second part of my approach will extract a model of erroneous call se-
quences by exploring the state space of a single object of a target class. Be-
ginning with the error state it finds predecessor states and incoming transi-
tions by examining preconditions of method calls. From these states further
predecessor states are found via preconditions of method calls. Finally the
algorithm examines which states are reachable by computing and analysing
preconditions of constructor calls.

3.1 Precondition Analysis

The precondition analysis is a backward abstract interpretation of blocks
in the control dependence graph. In the following I define the logical do-
main and the abstract semantics of jFirm operations as transformers on the
logical domain.

3.1.1 Logical Domain

The domain consists of formulae in a first-order logic without quantifiers.
A limitation of the domain is that it does not correctly model overflow and
floating point types and as such the analysis may be unsound and/or im-
precise. This does not limit the approach in general BKWO09] and is .

1



The logic is inspired by that of the Snugglebug [CFS09] tool. The main
difference is with regard to the intermediate representation, as there are no
local variables in the jFirm IR and no fixed execution order of the operations
within a block. Each data dependence edge can be seen as an assignment to
a variable z,, representing the value of the dependant node n. The precondi-
tion at the start of the method will never contain such variables, except for
those representing parameters.

The analysis handles Java operations that are not implemented in the logic
using unknown terms that may have any possible value of a certain type. The
only operators missing in the logic are %, &, |, ~, >>, >>> and <<. Terms
with unknown value are also used for the return values of calls that are not
analysed, such as calls to native methods. New unknown values are created
and thus indexed by a new id € N to guarantee that these values may be
equal to other values of the particular type but cannot be proven to be equal
to other unknown values of that type.

In the logic the memory is modelled using the theory of arrays [SDBLO1]
an instance of the theory of uninterpreted functions. In Java the memory
can be separated into disjoint parts by fields, as the field written to is always
statically determined and two different fields may never refer to the same
memory location. This introduces a primitive form of alias analysis by types
into the logic and thus reduces the complexity of terms built during analysis.
Each field f defined in any class C'is thus represented as an array, indexed
by references to objects that include the field in their Java runtime state. In
the following I will call such arrays, implementing disjoint parts of the Java
heap space, memory arrays.

The same can be done for primitive array types, but not for array types
with reference element type. As an example consider that an array of type
Integer might alias with an array of element type Object, but never with an
array of int elements.

Array accesses are two-dimensional array accesses in the theory because
they are translated to memory accesses. The memory array is indexed by
the reference to the array object and the element index of the original array.

Table 3.1 gives an overview of the terms of the logic. Terms named o re-
fer to terms of reference type, i to terms of integer type and v to terms of
any Java type. Terms named f stand for terms that evaluate to a memory
array in the logic. This is either a memory array constant £, which imple-
ments the memory of a field g or a writewrite( f;,o0,v) where the same con-
straints hold for the term f;. The write term models a functional update of
the memory array f;, by remapping the index o to the value v. In the imper-
ative setting of Java this corresponds to a field write 0. f = v.

Terms named « in the table similarly refer to either A,, a particular A; or

12



T
unknown;q ¢

null
Fy

Ay
Ay
Ty
My,
Ret

Exc
read(f,o)

read(f)
write(f,o,v)

write(f,v)
readA(a,o0,17)

writeA(a,o,i,v)
typeOf (o)
dispatch(t,m)

ti {+, -, *, /} to
length(o)
fresh(id,T})

freshA(id, T;,to,w,tn)

Variables for each node n in the graph

Variables for over-approximated and thus un-
known values of a certain type ¢

Constant for the null object reference

Memory of field f as an array indexed by an ob-
ject reference

Memory of primitive element type ¢ arrays
Memory of reference element type arrays
Constant for each Java reference type ¢
Constant for each Java method m

Special variable referring to the return value in
postconditions

Special variable referring to an uncaught excep-
tion

Field load function where f is an array of int or
reference type indexed by an object reference o
Field load function for static fields

Field write function, which returns a functional
update of f where o maps to v, thatis flo — v]
Field write function for static fields

Array read function where « is an array indexed
by the array object reference o and the accessed
index i

Array write function

Dynamic type of the object referenced by term o
Function to resolve a call to m on receiver type ¢
Arithmetic operations

Length of an array referenced by o
Uninterpreted function for creating new object
constants of reference type ¢

Uninterpreted functions for creating new array
object constants with array type ¢ and given di-
mension size terms t;

Table 3.1: An overview of the terms in the logic.
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awriteA(a;,0,i,v). This allows the logic to model sequential updates to
memory locations as functional updates of an array, as the logic may not
include side-effects.

New object references are created in the logic using the uninterpreted
functions fresh(id,T;) and freshA(id,T;,ty,.,t,) With fresh id € N. The
id ensures that such object references are never equal.

The type0Of (o) function allows the logic to reason about dynamic Java
types and assert the type of the objects referenced by the fresh functions.

The dispatch(¢,m) function models the dynamic dispatch semantics of
Java calls. As the analysis assumes that only the classes known to it may be
accessed, it can assert the value of this function for a given type constant 7;
and method constant M,,.

In table 3.2 I give an overview of the literals used in the logic. These are
the atomic elements of the first-order logic formulae in the abstract domain.
Other than the usual boolean constants, equality predicates and the nega-
tion operator, the subType predicate takes two terms evaluating to types and
implements the Java subtyping relation.

false

true

subType(t;,t2) Whether type ¢, is a subtype of type ¢, in Java
t1{#, =}to (In)Equality of reference and primitive type terms
t1{<, <, ... Ho Inequalities of primitive type terms

=l Negation of another literal [

Table 3.2: An overview of the literals (or atoms) in the logic.

The axioms of the logic are summarized in table 3.3. Axioms F1 to F3 re-
late field loads and describe how these terms can be reduced under certain
circumstances. Axiom F1 asserts that the fields of newly created objects are
initialised with the default values of the field’s type while axioms F2 and F3
are the read-over-write axioms from the theory of arrays.

Similarly, axioms Al through A3 give the axioms of a two-dimensional
theory of arrays with default values. Properties of the length of arrays and
how it can be extracted from a fresh array reference are handled by axioms
A4 and A5. The array axioms Al, A4 and A5 do not handle the case of arrays
with multiple dimensions. The basic scheme can be extended by wrapping
the freshA function in a finite number of array reads ensuring that the in-
dices are larger than zero and smaller than the corresponding lengths given
by the parameters of freshA.

Axiom S asserts the typing rules of the Java Language Specification[GJISB035]

14



for the type constants in the logic. Axioms T1 and T2 specify how typeOf
operates on new (array) object references by extracting the type constant
parameter. The Java dynamic dispatch rules are asserted for classes known
to the analysis in axiom D.

F1 vtvVf: read(Fy,fresh(id,T;))=ds

F2 VfVoi,00Vv: 01 = 0o = read(write(f,o1,v),0) =v

F3 VfVoi,00Vv : 01 # 0o = read(write(f,o1,v),00)=read(f,oz)

Al Vil:i<IANi>0= readA(A,,, fresh(id,T;,1),i)=d.;

A2 YaViy,19V01,00V0 : 01 = 09 N i1 = i9 =
readA(writeA(a,o01,%1,v),09,i0)="v

A3 YaVii,i9Vo1,09Y0 : 01 # 09 Ni1 # o =
readA(writeA(a,o1,i1,v),09,i2)= readA(a, oq,i3)

A4 Vo:length(o) >0

A5 Vi:length(fresh(id,T;,1)) =1

S Vty,to : SUbType(Ts,Ty) < s isasubtype of ¢

T1 Vt:typeOf(fresh(id,T;))="T,

T2 vtvil: typeOf(freshA(id,T;,l))="T;

D dispatch(T;, M,,)= M, < a calltom on dynamic type ¢ resolves to

method m’

Table 3.3: An overview of the logic’s axioms. The default value d; of a field
fis d, := nullin case of a reference type or d; := 0 in case of any
primitive type.

All formulae in the domain F' are in disjunctive normal form which has
advantages for the analysis as shown by Chandra et al.[CFS09] and is nec-
essary for the automaton inference algorithm in Section 3.2.

The domain is ordered by implication, thus the smallest element is false
as it implies every other element in the domain and the largest element is
true since it is implied by every other element. The least upper bound of
two elements is their disjunction.

3.1.2 Symbolic Transformers

Before the actual execution, the precondition analysis computes symbolic
transformers for each edge (4, i, B, n) in the control dependency graph (CDG).
A is the block that is control-dependant on node n in block B via its ith
control-dependency. This transformer captures the effect of the edge and
block B on the precondition at A and is defined as follows.

Definition 1 TF (A, i, B,n)(¢) := (¢ A condition(n))[phis(A,i)|[mem(B)]

15



In this definition condition(n) is the formula that enables the jump n. The
substitution [phis(A,i)] exchanges each PHI node in block A with its ith de-
pendency in parallel which captures the semantics of the SSA ¢ nodes. The
effects of memory-dependent nodes in block B are summarized by the sub-
stitution [mem(B)] and is defined in Definition 4.

The precondition ¢ at a block B is defined as the least upper bound
V{TF(A,i,B,n)(¢a) | (A,i,B,n) € CDG} over the predecessors in the CDG.

For the following definitions a function term(n) is needed which computes
the term in the logic corresponding to the value computed by the node n.
This function is only defined for side-effect free computations such as arith-
metic operations. A PROJ DATA node n of a node with side-effect is repre-
sented in the term as the variable z,,. These variables are then replaced with
terms by the substitution [mem(B)].

Definition 2 [phis(A,i)| := [term(v)/z, | n =PHI € AAv =in(n,i)]

Similarly, PHI nodes are represented using such variables, as their value
depends on the particular control-flow predecessor of the containing block.
Definition 2 shows how the substitution of the PHI nodes of a block by their
ith input in(n, ) is built.

In jFirm there are seven different control-flow operations as summarized
in the first part of the table in Definition 3 which shows how the condition
that enables its execution is computed. All of these, except GOTO, depend
on its producer node, their single input dependency. The two branches of
an IF depend on the conditional expression c that is the input to the IF and
can be either INSTANCEOF or a comparison CMP. For a potentially exception-
throwing node p the condition that leads to the exception being thrown is
shown in the lower part of the table. An arbitrary number of CASE nodes and
a single DEFAULT node may be dependent on a SWITCH node. The input v to
the SWITCH determines whether a certain CASE is executed while the DEFAULT
case must exclude all other cases.

The last part necessary for the transformer is the Definition 4 of the substi-
tution [mem/(B)]. The substitution is built by composing substitutions along
the chain of memory dependencies which are always in(m,0) of a node m.
This process terminates when either the beginning of the block or method
isreached. As jFirm currently does not support the representation of differ-
ent exceptions being thrown, Exc is replaced by a generic instance of type
java.lang.RuntimeException. This is another difference to the precondition
analysis of Chandra et al.[CFS09].

The substitute(m) method in particular implements the effects of nodes
that read from or write to memory. The operation PUTFIELD f for example
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Definition 3 condition(n) represents the formula that enables execution of a
node n. It depends on the operation of n and its input dependencies as defined

INSTANCEOF ¢

(%

in the following table:
Node n Inputs condition(n)
GOTO true
PROJ CONT D —condition(p)
PROJ EXC P condition(p)
PROJ TRUE IF— ¢ condition(c)
PROJ FALSE IF— ¢ —condition(c)
CASE ¢ SWITCH— v term(v) = term(c)
DEFAULT SWITCH— v  A{term(v) # term(c) | CASE ¢ — SWITCH € FE}
Node ¢ Inputs condition(c) the literal implementing the branch

condition c
subType (typeOf (term(v)) ,T;)

CMP relation lLr term(l) relation term(r)

Node p Inputs condition(p) for an exception to be thrown
GETFIELD f m, o term(o) = null

PUTFIELD f m,o0,v term(o) = null

ARRAYLENGTH m,o term(o) = null

ARRAYLOAD m,o,i term(o) =nullVvi < 0Vi> length(term(o))
ARRAYSTORE m, 0,1, v term(o) =nullvi<0Vi> length(term(o))
CAST ¢ m,o term(o) # null A =subType (typeOf (term(v)),T})
NEWARRAY ¢ m,d term(d) < 0

DIV m,l,r term(r) =0

modifies the memory array of the field f by substituting previous occur-
rences with a functional update.

Different to reads or writes from memory the CAST and integer DIV oper-
ations are only memory-dependent because they may throw exceptions.

The precondition of a method m with regard to a postcondition ¢ is com-
puted by a fixed-point iteration which applies the transformers until the
precondition ¢p stabilizes for every block B. The analysis initializes every
block precondition with false, except for the END block to which the post-
condition is assigned.

The transformers are monotonous in that any ¢z can only increase dur-
ing the computation of the fixed-point. However, as the domain is not finite
and contains infinite increasing chains of formulae we must apply a widen-
ing after a finite number of iterations. This widening assigns true to a pre-
condition which is always a fixed-point since it is the largest element in the
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Definition 4 Let (A, i, B,n) be the edge the transformer is built for

Then [mem(B)] := sub(m) where m is the last memory node in block B and

sub(m) is defined as follows.
(

if m = PARAM
] V m = PHI
sub(m) = V block(m) # B
sub(in(m,0)) o [fresh(T,,.) /JExc] ifn=PR0OJ EXCAn —-m € FE
sub(in(m, 0)) if m = PROJ MEM
L sub(in(m,0)) o substitute(m) else

The function substitute(m) is defined via the following table where x, is the vari-
ableforanoded = PROJ DATA with m as its input node. id is an integer not used
before to identify an object reference.

Node m Inputs  substitute(m)
GETFIELD f m,o [read (f,term(o))/z4]

PUTFIELD f m,o,v write(f,term(o),term(v))/f]
ARRAYLENGTH 1m0 [Length (term(o)) /z4]
ARRAYLOAD m,o,i [readA(A, ), term(o),term(i)) /z4]
ARRAYSTORE ~ m,o0,i,v [writeA(A, ,,term(o),term(i),term(v)) /A, /]
CAST ¢ m, o [term(o0)/z4]
NEWARRAY ¢ m,d [freshA(id, T}, term(d)) /z4]
NEWOBJECT ¢ m [fresh(id, T;) /4]
DIV m,l,r [(term(l)/term(r))/xz4]
RETURN m, v (Nul1/Exc, term(v)/Ret]

EXCRETURN m,v [term(v)/EXC]

domain.

The precondition of the whole analysed method with respect to the post-
condition, is the precondition ¢s where the block S contains the PARAMnodes
of the method.

3.1.3 Interprocedural analysis

For interprocedural analysis we must also handle any CALL node n in the
graph. This deviates from the above scheme, since we must compute the
precondition of a possible callee method m' with regard to the postcondi-
tion.
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Definition 5 Letxz,andz. bethevariablesforthePR0OJ DATA and PROJ EXCDATA
nodes of the call node c respectively In addition let node o be the receiver object
of the call and a; the parameters to ¢, in particular ay = o. The transformer for a
control dependency edge (A, i, B,n) with a block B ending with a call c is defined
as follows.

post(¢) := ¢[phis(A,i)|][Ret/zq, EXC/x,]

disp := dispatch(typeOf (term(o)),m)

[params(m')] := [term(a;)/vp, | pi = PARAM € N,,,/]

pres(¢) := \[{pre(m/, post(¢))[params(m’)] Am’ = disp | possible callee m’}
(pres(o) Aterm(o) # null)[mem(B)] if n =PR0OJ CONT

TFeau(4,1, B,n)(@) = (pres(¢) V term(o) = null)[mem(B)] if n =PR0OJ EXC

In this definition post translates the postcondition into the space of any
called method by substituting the formal special variables Ret and Exc for
their projections in the caller method. The term disp evaluates to the method
that the call dispatches to, based on the type of the receiver object o. pre
computes the precondition of a method call using the interprocedural anal-
ysis while pres captures all possible callees and replaces the formal param-
eters of the callee by the actual terms in the caller.

3.2 Automaton Inference

Given the definitions to derive preconditions of method calls, we are now
able to use these to define automaton inference algorithm that analyses the
state space of an abstract object O of a class C. Beginning with the error state
labelled with the predicate ExceptionThrown := Exc # null the algorithm
repeatedly computes preconditions of method calls and states as postcon-
ditions and translates these preconditions into additional states and edges
of the automata.

The algorithm requires a set methods(C') which defines the interface of the
class that should be considered when constructing the automaton. In most
cases this set is defined by the visibility of the methods and includes only
those that are visible to any class and thus public.

Definition 6 A typestate automata fora class C'is atuple (S, E,init, E;n;t).

S C Fisafinite subset of all formulae in the logical domain F and each s € S is
called a state. Each edge (s,a,t) € E is composed of a source state s € S, target
statet € Sandanactiona € {p: m |p € F Am € methods(C)} U {e}. init is
theinitial state of the automaton signifying the state of the object before a call to
the constructor. Edges (init,p : m,t) € E,,;; are transitions from the initial state
with a conditionp € F, m € constructors(C) and a target statet € S.
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AUTOMATONINFERENCE(C)

OO WN —

E; Einit =0
S = {ExceptionThrown}
O = new variable
AXIOMS(O # null, type0f (O) = T¢)
workList = [ ]
PREDECESSORS(ExceptionThrown, ExceptionThrown, workList)
while workList # ()
s = POLL(workList)
PREDECESSORS(S, s A ~ExceptionThrown, workList)
for m € constructors(C)
forse S
if s = ExceptionThrown
post ='s
else post = s A -ExceptionThrown
precondition = pre(m, post)[O/this]
for (¢, ¢p) € SPLIT(precondition)
if VALID(INITIAL(C, O) = ¢,) A SATISFIABLE(¢p)
E = EU (init,¢p : m, s)
EPSILONS(S, E)
REMOVEUNREACHABLE(S, E, init, E;;;)
return (S, E, init, E;,;;)

PREDECESSORS(target, post, workList)
1 for m € methods(C)

2

3
4
5
6
7
8

precondition = pre(m, post)[O/this]
for (¢5, ¢p) € SPLIT(precondition)
if SATISFIABLE(¢;) A SATISFIABLE(¢)p)

if ¢ ¢ S
ADD (workList, ¢s)
S =SU ¢

E = EU (¢s, ¢p : m, target)

Figure 3.1: Automaton inference algorithm

Figure 3.1 shows the main procedures of the algorithm. First, we initialise
the set of states with the error state and create a fresh variable in the logic to
represent the abstract object O. Contrary to the function fresh of the logic,
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the axiom for default field values does not hold for this variable. This is be-
cause we use the variable to substitute the this parameter in each computed
precondition and we want to keep the symbolical values of the fields in the
precondition to identify the state.

The algorithm begins by computing the predecessors of the error state and
adding these to a work list. The PREDECESSORS procedure iterates over all
possible calls that could have been made on the object to reach the target
state. To identify predecessor states the algorithm makes use of the dis-
junctive normal form of the precondition and splits it into pairs of formulae
(¢s, ¢p). &5 is a conjunction which may never refer to x, variables of the logic
where p = PARAM is some parameter, while in ¢, each conjunct includes a
parameter variable. Figure 3.2 illustrates this process. For each such pair,
the algorithm adds a state ¢, with a transition to the target state, guarded by
the parameter condition ¢,.

The loop over the work list terminates when no more new predecessors
can be found. Termination is only guaranteed for classes where finitely
many steps can lead to an exception. The full specification of any other
class however, cannot be encoded in a finite state automaton. In particu-
lar it would require very coarse over-approximation to encode such a class.

An example of such a case would be a bounded stack that can grow with
PUSH operations and shrink with POP operations and would throw an ex-
ception when it reaches a certain maximum size or POP is called on an
empty stack. A precise automaton specifying these properties would need
at least as many states as the maximum size, that size might be unknown
however. The operations might thus throw exceptions from any state, as it
cannot be determined statically whether the size has been reached.

After finding a fixed point on the set of states in the automaton, the algo-
rithm proceeds to check for each state s whether it may be reached by a call
to the constructor. This is the case for non-error states when the construc-
tor does not throw an exception and the state related part of the precondi-
tion is implied by a formula INITIAL(C, O) describing the initial values of the
object’s fields.

After adding the constructor transitions, the algorithm adds s-edges from
any state a« implying another state b. In particular whenever a method m call
may throw an exception independent of the state of the object, for example
a NullPointerException when a parameter is equal to null, the automaton
includes an edge (true, ¢, : m,ExceptionThrown) and a ¢rue state is created.
This state is implied by any other state and thus all states have a transition
to true.

Since there may be states which are unreachable from the init state the
algorithm removes these from the automaton in a last step.
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SPLIT(¢pre) = (¢51 A ¢p1) VeV (¢5n N ¢pn)

Figure 3.2: Adding predecessor states of a target state to the automaton. The
s; are conjuncts of predicates containing no references to param-
eters and p; are conjuncts of predicates each including some ref-
erence to a parameter.

3.2.1 Example

Listing 3.1 shows a simplified version of java.io.PipedOutputStream. In the
documentation for this class many implicit constraints such as ”A Piped-
InputStream must be connected before writing.” or “len may not exceed
b.length.” are left unsaid and require deduction or experimentation by the
programmer.

In this example we do not take into account the calls to sink for sake of
simplicity.

Figure 3.3 shows the computed specification using a shorter Java notation
for the field reads like sink and snk.connected. We can see that transitions
from the true state model method parameter preconditions which, if vio-
lated, lead from any state to the error state. Sound approaches which do not
encode parameter preconditions lead to very imprecise automata in which
any call to connect or write would lead to an error.
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1 public class PipedOutputStream {

2

3 private PipedInputStream sink;

4

5 public PipedOutputStream() {}

6

7 public void connect(PipedInputStream snk) {

8 if (snk == null) {

9 throw new NullPointerException();

10 } else if(sink != null || snk.connected) {
11 throw new IOException(”Already connected”);
12 }

13 sink = snk;

14 snk.connected = true;

15 }

16

17 public void write(byte b[]) {

18 if (sink == null) {

19 throw new IOException(”No pipe connected”);
20 } else if (b == null) {

21 throw new NullPointerException();

22 }
23 sink.receive(b, len);
24 }

25 }

Listing 3.1: Simplified version of java.io.PipedOutputStream
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b # null : write()

snk # null A —snk.connected
: connect()

sink = null sink # null

snk = null Vv snk.connected
: connect()

write()

b=null

connect()
: write()

ExceptionThrown

Figure 3.3: Manually = generated automaton for the simplified
PipedOutputStream
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4 Evaluation

The evaluation of the algorithms developed in Chapter 3 consists of three
parts. The first part is the implementation of the precondition analysis on
jFirm and an implementation of the automaton inference algorithm on top
of this analysis. In the second part I show that the algorithm can be used to
derive meaningful models of complete Java classes from the Java Platform
Standard Edition 6. In the last part [ implemented a prototype verifier to
show that these automata can be used to perform verification of client code.

4.1 Implementation

In the following I describe particular challenges and details of the four parts
implemented during this thesis. The first is the logic underlying the static
precondition analysis which is the second part. In the third part I use the
analysis to implement the inference algorithm that produces the automata
used in the last part, the verifier.

4.1.1 Logic

[ implemented the logic of the analysis in Java using a caching scheme such
that each literal and term is created at most once. While keeping the mem-
ory profile low this also allows fast lookup in hash tables and equality com-
parisons. The equals method can then act as a very fast approximation of
the logical equality test and benefits from a wide range of fast simplifica-
tions done when creating new literals and terms.

In particular I pre-process the jFirm graphs using constant folding and
an analysis that simplifies arithmetic terms. Additionally the axioms are
implemented as simplifications as they only operate on the local structure
of terms and literals or can use information from the internal class hierarchy
representation of jFirm.

Much of the logic as described in Section 3.1 can be translated directly
to a theorem prover for simplification and validity checking purposes. For
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this implementation I chose CVC3 [BT07] which like most provers, is im-
plemented in C/C++ but different to most, comes with a Java APl wrapping
the Java native interface to the library.

CVC3 does not directly support the syntax for the two-dimensional arrays
necessary for the implementation of Java array reads and writes in the logic.
These can be easily transformed into two nested reads from the memory
array however.

The axioms for dispatch and subType are instantiated for types and meth-
ods on the fly, when they occur during the analysis.

As calls to CVC3 are very expensive | delay all translation to CVC3 ex-
pressions to the latest possible point so that most cases of satisfiability and
validity checking are handled by quicker implementations of special cases
in the Java implementation of the logic.

Eager creation of CVC3 expressions lead to huge memory leakage as con-
junctions and disjunctions are created and destroyed often during the anal-
ysis, but did not seem to be freed by the Java native interface to CVC3 due
to exceptions thrown in object finalizer methods.

4.1.2 Precondition analysis

The definitions of the procedures in Section 3.1.2 are very close to how the
analysis builds the transformers, as the procedures are already defined in
terms of the jFirm IR. In the case of transformers for blocks containing CALL
nodes there are some special cases. When the target of a call is a native
method, I assume that this call may return an unknown value of appropriate
type, if any, and does not modify the postcondition. I also introduce the
option to unsoundly skip calls to some methods with the same assumptions
for the purpose of evaluation.

Results of the precondition analysis are cached for evaluations of pre(m, ¢)
and reused where possible. The implementation currently does not make
use of generalization[CFS09] to increase the possibilities of reuse and re-
duce the size of analysed postconditions.

The interprocedural precondition analysis depends on a call graph to re-
solve possible targets of method calls. I compute the call graph using a class
hierarchy analysis where a set of methods is given as the possible entry
points to the program or library. In case of the automaton inference algo-
rithm this is the set of interface methods that define the possible transitions
in the automaton.

The iteration strategy is an implementation of the recursive algorithm from
[WS10]. This algorithm recursively searches for the precondition at a block
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without recomputing preconditions of blocks already visited during the de-
scent. When a predecessor of block is updated during the descent, that
block’s precondition is immediately recomputed.

4.1.3 Automaton Inference

The main challenge when implementing the algorithm from Section 3.2 was
scalability of the satisfiability and validity checks. This is because in gen-
eral a finitely abstractable class C' may have a number m of methods and a
number p of predicates P relevant for the automaton. The algorithm may
find any conjunction of a subset of P as a state when exploring the state
space from the error state. For each of these, exponentially many, states, m
preconditions and 2m satisfiability queries are computed.

The most expensive computations are the satisfiability queries to CVC3. In
the implementation I approximate these using simplification rules for con-
junctions. In particular a conjunction containing a literal and its negation
can never be satisfied. I also simplify arithmetic operations when a literal
equates a term to a constant. This enables fast computation of the automa-
ton even in the case of a large number of states.

The implementation also disregards methods when computing predeces-
sor state when the analysis deduces that any call to the method leads to error
state. This is the case if it discovers an edge from true to the error state with
parameter condition true.

4.1.4 Client Verification

Verifying a client against an automaton computed by this approach is very
similar to typestate verification [FYD*08]. The automaton however includes
additional information about method preconditions and predicates describ-
ing abstract states compared to a typestate automaton. A precise verifier
must gain knowledge from the client’s usage of the component to fully ex-
ploit the specification.

The verification algorithm tracks abstract objects in the code of the client.
These abstract objects may correspond to multiple objects at runtime as
a potentially infinite number might be allocated within loops or recursive
methods. [ use the common abstraction that tracks one abstract object per
allocation site.

The verifier is an abstract interpretation [CC77] of the client code where
the abstract domain maps abstract objects to sets of automaton states. At
runtime an object may be in any state its corresponding abstract object is
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mapped to. If these states include the error state at some program point, the
verifier has found a possible violation of the inferred class specification.

Each call statement in the client’s code may transform the set of states
an abstract object is mapped to. For a method call on an abstract object
its set of states afterwards are the e-successors of the incoming states with
respect to the called method. With my approach the verifier can disregard
transitions with an unsatisfiable parameter condition.

To check whether a parameter condition cannot be satisfied the verifier
can employ additional static analyses such as interval analysis [CC77] or
points-to analysis among others or enrich the abstract domain of the ver-
ifier such that it tracks primitive and reference values. The verifier is still
sound however, if it over-approximates and declares preconditions to be
satisfiable which can never be satisfied at runtime.

My implementation of a prototype verifier combines the typestate ab-
stract domain with an interval domain for integer typed fields and a simple
partially flow-sensitive and context-insensitive points-to analysis.

4.2 Results

For the following results I chose to unsoundly ignore calls to methods out-
side the analysed class. In many cases this is an approximation similar to
previous work [BHS07, ACMNO5, HIMO5] where only a few predicates over
the fields or local variables of the class were used to model the state of the
class and exceptions within such calls were ignored. In cases where such
class-local predicates may not be modified by the call, it is safely approxi-
mated by skipping it and assuming an unknown return value.

In general this unsound approximation disables the use of the generated
automata for verifying the absence of errors with regard to the use of the
class. To my knowledge no previous approach to automaton inference has
achieved this. A full evaluation of the suitability of the automata for verifi-
cation is beyond the scope of this thesis and the capabilities of the prototype
verifier however.

For program understanding and ease of readability, it is most often not
desirable to add predicates over the internal state of a field to a state of the
automaton. In the case of java.io.PipedOutputStream analysing the calls
to the field sink of type java.io.PipedInputStreamfor exceptions disables
the representation as a finite state automaton. This is because it manages
an arbitrary sized buffer array and indices to elements of the buffer which
may signal exceptions.
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Figure 4.1 shows the automaton computed by the inference algorithm on
the original Java bytecode of java.io.PipedOutputStream. In essence it is the
same as the simplified version from the example in Section 3.2.1, however it
displays the full complexity of the parameter conditions.

In addition it shows that the approach captures the effects of the call to
connect from within the constructor at the bottom left. It directly transitions
to the state Connected := —(read(this, sink) = null) and models the
effect of successive calls to <init>() and connect ().

However it also shows the limits of analysing only the PipedOutputStream
class asthe callto close() inthe state Connected staysin that state. This calls
only modifies the internal state of the sink field, but disallows any further
calls to sink.receive() and thus calls to any write() method on the Piped-
OutputStream as they would then throw exceptions. The automaton would
need at least one additional state to model this property, because the sink
field would still be initialised and thus connect () would still be an erroneous
call.

Alur et al. [ACMNOS5] also miss this fact in their automaton of PipedOut -
putStream. Additionally miss the property that additional calls to connect ()
are not possible after the first. This is due to their rewrite of the class that
removes any other exception other than the one they are interested in and
replaces it by adding a boolean return value to a method, signalling success
or failure.

Beyer et al. [BHSO7] find the property that a call to close() disables calls
towrite(). However, their automaton allows a reconnect after the close()
which in fact would always throw an exception. This seems to be an artefact
of their manual abstraction of the source code.

Figure 4.2 shows the automaton generated for java.security.Signature.
This class provides a common interface to several digital signature algo-
rithms. The automaton shows that before signing or verifying data, it must
be initialized with calls to initSign() or initVerify() calls respectively. It is
possible to switch between these modes at any time. Alur et al. [ACMNOS5]
find the same automaton, except for the addition of the parameter condi-
tions.

Both automata are generated by the analysis in a few seconds and with
memory usage of a hundred megabytes on average.
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4.2.1 Client verification

To check whether the prototype verifier is able to find the properties en-
coded in the automaton I ran it on a set of small tests adapted from the
OpenJDK test suite [JDK] for java.io.PipedOutputStream. The verifier checks
these tests against the automaton from Figure 4.1 and warns upon a poten-
tial violation.

Listing 4.1 shows a test that writes to a PipedOutputStream which has not
been connected. This property is captured by the automaton and the ver-
ifier correctly detects it and reports that a call to write() from the state
(read(this, sink) = null) will lead to the error state.

Listing 4.2 shows code that connects twice to the same PipedInputStream

is from different PipedOutputStream objects. The verifier is able to track
the field values of is and reports that these imply the parameter condition
—(read(connected, snk) = 0) of the transition that leads to the error.

The test in Listing 4.3 checks the property that forbids write() calls after
a call to close(). As this is property is missing from the automaton in an
unsound way such that close() calls do not change the state, the verifier
does not generate an error.

import java.io.*;

public class NotConnected {
public static void main( String[] argv ) throws Exception {
PipedInputStream i = new PipedInputStream();
PipedOutputStream o = new PipedOutputStream();

try {
o.write(10);
throw new Exception(”"Test failed”);
} catch (IOException e) {
}
}
}

Listing 4.1: jdk/test/java/io/PipedOutputStream/NotConnected.java
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—(signature == null)

A offset + length <= length(signature)
A 0 <= length

A 0 <= offset : verify(byte[],int,int)

—(data == null) : update(byte[])

update(byte)
update(byte[],int,int)

—(certificate == null) \ [ /
read(this, state) ==

: initVerify(java.security.cert.Certificate)
sign(byte[],int,int)

data == null : update(java.nio.ByteBuffer)

initVerify(java.security.PublicKey)

certificate == null : initVerify(java.security.cert.Certificate)
—(len <= length(outbuf) - offset) : sign(byte[],int,in

outbuf == null : sign(byte[],int,int)
ExceptionThrown

@ clone()
toString()
—(0 <= length) : verify(byte[],int,int

—(0 <= offset) : verify(byte[],int,int)
signature == null : verify(byte[],int,int)
—(offset + length <= length(signature)) : verify(byte[],int,int)

—(data == null) : update(byte[])
sign()

—(data == null) : update(java.nio.ByteBuffer
—(outbuf == null)

A len <= length(outbuf) - offset : sign(byte[],int,int)

update(byte)

‘update(byte[],int,in ~
,,\ ‘ / —

—Cread(this, state) == 29— .
initSign(java.security.PrivateKey) - verify(byte[],int,int)
- ByteBuffer)

verify(byte[])

data == null : update(java.nio.

initSign(java.security.PrivateKey,java.security.SecureRandom)

update(byte[],int,int)
update(byte)

update(java.nio.ByteBuffer)
update(byte[])

=(read(this, state) == 3) A —(read(this, state) == 2

<init>(java.lang.String)

verify(byte[],int,int)

sign(byte[],int,int)

Figure 4.2: The automata inferred for java.security.Signature. Due to
space constraints, some get*/set* methods have been removed.
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import java.io.*;
public class MultipleConnect {

public static void main(String[] argv) throws Exception {
PipedOutputStream os = new PipedOutputStream();
PipedOutputStream 0s2 = new PipedOutputStream();
PipedInputStream is = new PipedInputStream();
os.connect(is);
try {
0s2.connect(is);
throw new Exception(”"Test failed”);
} catch(IOException e) {
}
}

Listing 4.2: jdk/test/java/io/PipedOutputStream/MultipleConnect.java

import java.io.*;
public class ClosedWrite {

public static void main(String[] argv) throws Exception {
PipedOutputStream os = new PipedQutputStream();
PipedInputStream is = new PipedInputStream();
os.connect(is);

os.close();

try {
os.write(10);
throw new

RuntimeException(”Test failed”);
} catch(IOException e) {
}
}

Listing 4.3: jdk/test/java/io/PipedOutputStream/ClosedWrite.java
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5 Conclusion

In this thesis I provide a new approach to the problem of creating modular
specifications as finite state automata. These are useful for programmer un-
derstanding when learning about libraries and can enhance the documen-
tation of software components by providing an intuitive view on erroneous
usage. In addition, these automata can be used to detect defects in code us-
ing the component and are a further step towards automatic modular veri-
fication.

My approach makes use of an over-approximate precondition analysis
of method calls. The analysis is implemented on top of an expressive logi-
cal theory modelling nearly all features of the Java language besides multi-
threading and reflections. The analysis is fully automatic and makes use
of the CVC3 theorem prover to handle validity queries that it cannot solve
using an array of common simplifications.

The algorithm that infers the automata assumes that the assertions in the
analysed class signify the error state. From the repeated application of the
precondition analysis to the discovered states it discovers transitions from
additional states by splitting the preconditions of method calls into pred-
icates on the fields of the class and conditions on the parameters to the
method call. This generates sequences of calls with parameter conditions
that may lead to the error state. In a final step the automaton is provided an
initial state by analysing the preconditions of constructor calls.

I implemented this approach in Java on the jFirm intermediate repre-
sentation and show that this approach yields automata modelling usage
properties of Java classes. I show that the generated automata represent
the valid properties discovered by previous approaches [BHS07, ACMNOS5]
while increasing the expressiveness with the parameter conditions.

To demonstrate the ability of a verifier to make use of these automata,
[ implemented a prototype that checks test cases against a computed au-
tomaton. I showed that the verifier can detect violations of the properties
modelled by the automaton.
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5.1 Future work

A limitation faced by my approach and all other specification inference al-
gorithms is unknown code. Components can include callbacks to client
code or possibly operate on subclasses provided by the client. In Java es-
pecially toString, compareTo and hashCode are often overwritten methods
accessed by library classes. In future work I could extend the approach to
encode assumptions about the client code in such a way that a verifier can
independently check whether they hold.

An inherent problem is the choice of finite state automata to abstract soft-
ware components. These can only represent regular properties and thus
cannot express more complex properties. An applicable example would be
a stack, where a number of stack push operation allows an equal number
of pop operations. In future work I would like to explore whether more ex-
pressive classes of automata or formal languages could be used to specify
such properties and whether these can be inferred automatically.

Another challenge is the inference of loop invariants and variants using
widenings. An idea to explore in future work would be to use the syntac-
tical evolution of formulae in the precondition transformers to introduce
quantifiers that can represent these properties in a finite approximation.
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