
Universität des Saarlandes
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

Sierra:
A SIMD Extension for C++

submitted by
Immanuel L. Haffner

on 01 April 2015

Supervisor
Dipl.-Inf. Roland Leißa

Advisors
Dipl.-Inf. Roland Leißa
Prof. Dr. Sebastian Hack

Reviewers
Prof. Dr. Sebastian Hack
Prof. Dr. Jan Reineke

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,
Date Signature

iii

Acknowledgement

I would like to thank my advisor Roland Leißa for offering me this topic as a Bachelor’s
thesis. Many hours of discussion and hacking with him not only supported me in
this venture, but also gave me many useful insights into research and improved my
programming skills a lot. His feedback and criticism has helped me profoundly to come
up with the results of this thesis.

Thanks also go to my supervisor Sebastian Hack, who is a great teacher and mentor.
Without his teachings I would not have been able to complete this task. Furthermore, I
want to thank him for reviewing my thesis.

I also want to thank my second reviewer Jan Reineke. His lectures aroused my interest
in the program analysis domain and influenced the direction of my further studies.

iv

Abstract

Powerful Single Instruction, Multiple Data (SIMD) hardware extensions for data parallel
computing are available on many processors. Although they can drastically increase
performance of programs, many programs do not utilize these hardware extensions.
Targeting SIMD hardware from within general-purpose languages such as C++ compels a
highly error-prone, assembly-like programming style. The productivity of the programmer
is significantly reduced and portability of the source code is lost. Languages featuring
data parallel semantics offer a more convenient and hardware independent way of SIMD
programming. Yet, many programmers refuse to redeploy their existing code to another
programming language. Automatic approaches are often unable to detect or effectively
leverage existing data parallelism, and the programmer can sparsely reason about the
compiled program.

We present Sierra: A SIMD Extension for C++. Sierra adds vector types to C++ and
overloads the semantics of common C++ constructs in an intuitive way. Code written in
Sierra is hardware independent, yet it compiles to specialized SIMD code. The simplicity
of Sierra code makes SIMD programs easy to maintain and debug. In contrast to prior
approaches, in Sierra the programmer is granted full control over vector lengths.

We evaluated Sierra on a set of public benchmarks. The results show speedups of
2x-4.5x for SSE and 2.5x-7x for AVX. We show the necessary changes to port a program
to Sierra. As expected, the process of porting requires only minor changes to the original
program.

v

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 2

2 Sierra at a Glance 3
2.1 Types . 3
2.2 SIMD Mode . 5

3 Code Generation 9
3.1 The Language SLang . 9
3.2 SSA Construction for Statements . 10
3.3 Branching on Vectorial Conditions . 13
3.4 Vectorial Functions . 14
3.5 Vectorial If . 14
3.6 Vectorial While . 16
3.7 Vectorial Short-Circuit Evaluation . 18

4 Related Work 23
4.1 Intrinsics and Boost.SIMD . 23
4.2 Array notation . 24
4.3 Single Program, Multiple Data . 25
4.4 OpenMP . 27
4.5 Automatic vectorization . 27

5 Evaluation 29
5.1 Implementation . 29
5.2 Experimental Results . 29
5.3 Porting to Sierra . 30

6 Future Work 33
6.1 goto & switch-case . 33
6.2 Vectors of Pointers . 34
6.3 Functions with Implicit Polymorphism in Vector-Length 34
6.4 Vectorization of Compound Types . 35

vii

Contents

7 Conclusion 37

viii

Chapter 1

Introduction

With the persistent growth of compute power necessary for research and economy, high-
performance computing has become a constant topic of current research. Hardware
manufacturers frequently release new processors featuring higher clock frequency, more
cores, or more powerful instruction set architectures (ISA).

Because of physical limitations, the rise in clock frequency advances very slowly. For
this reason, modern chips feature multiple cores: current CPUs have up to 72 compute
cores, while the number of cores on general purpose GPUs (GPGPU) ranges into the
thousands. Software must be specifically designed to perform efficiently on a multicore
architecture. A program using multiple cores is called task parallel. The development
of task parallel software is a non-trivial and time consuming task. In economy, the
cost-benefit-ratio of parallelizing existing sequential code is often very poor. Another
approach to improve the efficiency of software is exploiting the very powerful ISA of
the concrete hardware. The ISAs of nowadays CPUs usually include SIMD instructions.
These SIMD instructions allow to process multiple homogeneous data inside special SIMD
registers with only a single instruction; this is referred to as data parallelism. SIMD
registers come in sizes of 4x32 bits (SSE, AltiVec), 8x32 bits (AVX, AVX2), or 16x32
bits (AVX-512). [1–8]

We call the number of elements that fit into a SIMD register the vector length. For
SSE we have a vector length of 4 for integers and floats, and a vector length of 2 for
doubles.1 Programs using SIMD instructions can be accelerated by a factor of up to the
vector length. As for task parallelism, this is not an easy procedure. Often not only the
algorithms of a program, but also the underlying data structures have to be altered in
such a way, that data parallelism can be exploited efficiently [9–12].

To make use of languages that feature implicit data parallelism, the performance-
critical code must be split off the main program (usually written in general-purpose
languages like C++) into a specialized kernel language (e.g. OpenCL [13]). An interface
between both languages has to be implemented; a driver has to be launched from the
main application to initialize and run the kernel code and to gather the results. Logical

1For the remainder of this thesis, we assume integers and floats are 32 bits long, and doubles are 64
bits long.

1

1. Introduction

functionality needed by both the main application and the specific kernel has to be
implemented in each language. As porting existing code to a new language is a major
effort, many programmers hesitate to adopt such kernel languages.

1.1 Contribution
To allow effective, robust, and human-readable programming of vectorized code in a
general purpose language, we present Sierra, a SIMD extension for C++. Sierra extends
the C++ language by the new keyword varying. Data types annotated with this keyword
will be vectorized by the compiler, and operations on these vectorized data types are
translated to SIMD instructions. Although the set of available SIMD registers and
instructions depends on the ISA and therefore varies from hardware to hardware, Sierra
code is independent of the underlying architecture as instruction selection is done during
compilation. This way Sierra allows portable programming for SIMD hardware while
the source code remains maintainable and reusable. In contrast to languages featuring
implicit data parallelism, Sierra gives the programmer the ability to intermix both scalar
and vectorized code, and grants him fine-grained control over the vectorization lengths.

This thesis focuses on the code generation for source programs with vector types and
vectorized control flow. The underlying concepts of Sierra presented in this thesis can
be applied to any programming language and can be seen as a guideline to augment an
existing language by vector programming facilities. Vectorization of compound types or
pointer types is outside the scope of this thesis and will not be discussed.

1.2 Outline
Chapter 2 gives a brief overview on how Sierra integrates with common C++. Examples
demonstrate the use of the varying keyword and its semantics. Furthermore, a notion of
vectorized control flow is introduced and we explain masking.

In Chapter 3 we present the language SLang, a minimal showcase for Sierra, and
explain our syntax guided code generation. We take a closer look at the most interesting
cases, show optimizations for naïve approaches, and discuss potential pitfalls.

In Chapter 4 we discuss related work, including explicit vectorization at source code
level, languages with data parallel semantics, and automatic vectorization techniques.

Our evaluation is presented in Chapter 5. Besides benchmark results we evaluate the
process of porting scalar software to Sierra.

Chapter 6 lists future work. We conclude in Chapter 7.

2

Chapter 2

Sierra at a Glance

2.1 Types

Sierra achieves vectorization of a program by vectorizing the underlying data and
converting operations on this data to their vectorial counterparts. Vectorization is
triggered by the new type constructor varying(L), which syntactically behaves like a
type qualifier in C++. The parameter L is a constant expression that specifies the vector
length, and must be a positive power of two. The type constructor uniform is syntactic
sugar for varying(1). We call uniform variables scalar and varying(L) variables vectorial
(where L > 1). Except for uniform types, it is an error to mix vectors with different
vector lengths (see Section 2.1.2). In general, a type without a varying annotation is
scalar. The keyword uniform only stresses this fact.

2.1.1 Arithmetic Types

Figure 2.1 demonstrates how the type constructor is used to declare variables of arithmetic
vector types. The second line declares n as a vectorial int variable with vector length 4.
The third line declares variable d of type vectorial double with vector length 4. The size
of variable d is 256 bits, which may exceed the size of the available SIMD registers. In
Section 5.1 we explain how this case is handled internally.

1 int uniform u; // scalar int
2 int varying (4) n; // 4- vector of ints
3 double varying (4) d; // 4- vector of doubles
4 int varying (7) m; // error: 7 not a power of 2
5 int varying (f()) l; // error: ’f()’ not constant

Figure 2.1: Declaration of vectorized arithmetic types

Arithmetic Conversions. The C++ Language Specification defines specific rules
when and how values are automatically converted from one type to another. In Sierra

3

2. Sierra at a Glance

these rules apply analogously to vectors:

1 short varying (4) s;
2 int varying (4) i;
3 s + i; // s is converted to int varying (4)

2.1.2 Broadcast

Although in general intermixing vector types of different lengths is forbidden, intermixing
uniform and vectorial data is allowed:

1 int uniform u = 3;
2 int varying (L) v = u;
3 int varying (L) w = u + v;

In the assignment of the second line, the value of the uniform variable u is broadcast
to the vector length of the left-hand side. This yields a new vector of length L, where
each element has value 3. This vector is then assigned to v. Similarly the value of u is
broadcast in the addition on line 3.

2.1.3 Initializer List

In C++, variables can be initialized on declaration. In Sierra vectorial variables can
be assigned or initialized with a scalar value through broadcasting (see Section 2.1.2).
Alternatively a vectorial variable can be initialized by specifying an initializer list of
length equal to the variable’s vector length. Syntactically, an initializer list behaves like
a structure initializer.

1 int varying (4) v = {0, 1, 2, 3};

Here, the first element of a will be assigned 0, the second element will be assigned 1,
and so on. Additionally, Sierra implements the concept of compound literals, introduced
with C99, for vectors:

1 int varying (4) v;
2 v = (int varying (4)) {0, 1, 2, 3};

2.1.4 Element Access

To access and manipulate specific elements of a vector we introduce the following two
functions:

4

2. Sierra at a Glance

1 template < class T, int L>
2 T varying (L) insert (T varying (L) &vector , int i, T value) {
3 ...
4 }
5
6 template < class T, int L>
7 T extract (T varying (L) vector , int i) {
8 ...
9 }

The function insert assigns value to the vector’s element at index i; the func-
tion extract returns the value of the vector’s ith element. Note that both function
templates are parametric in the vector length.

It is important to understand that these functions must be provided by Sierra and
must not be defined by the programmer. As the internal representation of a vector
varies with the target machine’s ISA, accessing an element of a vector via aliasing yields
undefined behaviour.

2.2 SIMD Mode

Sierra leaves the semantics of the programming language unchanged as long as operations
are performed solely on values of scalar type. As soon as a Sierra vector type is involved
in a computation or influences control flow, the program enters Sierra’s SIMD Mode.
Inside SIMD Mode, the semantics of the language is extended to vector types. Control
flow is vectorized and the semantics of control flow constructs is adopted accordingly. In
vectorized control flow, operations are performed on so called SIMD Lanes, which are
indexed from 0 to n− 1, where n is the vector length of the vector type that triggered the
SIMD Mode. An instruction executed in SIMD Mode is executed on each SIMD Lane
simultaneously (see Section 2.2.2). We distinguish between live and dead lanes. Dead
lanes do not execute instructions, leaving original data unmodified. SIMD Lanes may
become live or dead during program execution (see Section 2.2.1).

In scalar control flow, logical control flow divergence can be implemented with
conditional branches. In vectorized control flow, a conditional branch may skip live
lanes, harming the program semantics. Therefore control flow is converted to data flow.
Conditional branches are removed to flatten the control flow and operations are masked
[12, 14, 15].

2.2.1 Masking

SIMD instructions are masked to target specific elements of a vector. Masking effectively
selects which lanes are live and which ones are dead. The example in Figure 2.2 demon-
strates masking of operations inside a vectorial if-statement. The value 3 is broadcast
and compared to the variable v, evaluating to the vector {true, false, false, true}

5

2. Sierra at a Glance

0 8 7 1

2 ⊥ ⊥ 3

⊥ 5 4 ⊥

2 5 4 3

int varying(4) v = {0, 8, 7, 1};

if (v < 3) v += 2;

else v -= 3;

print(v);

Figure 2.2: Automatic masking in vectorized control flow

of type bool varying(4). We call this vector the (current) mask.1 The current mask
selects which lanes are live in the true-successor, here the lanes with index 0 and 3. The
negated current mask selects which lanes are live in the false-successor, i.e. lanes 1 and
2. The symbol ⊥ denotes that the value of the element is undefined at this point in the
program. When control reaches the print(v); statement, the live lanes of the true- and
false-successor are joined again.

Code Generation

Depending on the available hardware, Sierra uses different techniques to realize the
masking. The examples in Figure 2.3 show two implementations of the example from
Figure 2.2.

In Figure 2.3a the underlying instruction set is AVX-512. This instruction set allows
to blend instructions, meaning that instructions take an additional mask argument
(predicate), and computations are only performed on the live lanes. This technique is
called predicated execution.

Figure 2.3b shows an implementation using the SSE instruction set, which does not
feature implicit masking. Therefore, we have to produce new vectors for both the true-
and the false-successor, and merge them into the result vector using the mask.

In comparison, AVX-512 has lower register pressure since no copies have to be made
before modifying data. Furthermore, AVX-512 needs less instructions, since explicit
masking can be omitted.

1We will see later on that during program execution multiple masks are used. The current mask
always refers to the mask used to determine which lanes are live/dead at the current point of execution.
Each program point has at most one current mask.

6

2. Sierra at a Glance

1 SIMD_Load (v, {0, 8, 7, 1});
2 SIMD_Lt (mask , v, {3, 3, 3, 3});
3 SIMD_BlendAdd (mask , v, {2, 2, 2, 2});
4 SIMD_Neg (mask , mask);
5 SIMD_BlendSub (mask , v, {3, 3, 3, 3});

(a) Predicated execution using AVX-512 blend instructions.

1 SIMD_Load (v, {0, 8, 7, 1});
2 SIMD_Lt (mask , v, {3, 3, 3, 3});
3 SIMD_Add (then , v, {2, 2, 2, 2});
4 SIMD_Sub (else , v, {3, 3, 3, 3});
5 SIMD_Select (v, mask , then , else);

(b) Explicit masking with SSE instructions.

Figure 2.3: Assembly-like pseudo code for Figure 2.2.

2.2.2 Lock-Step Semantics

The C Language Specification defines sequenced execution as “The presence of a sequence
point between the evaluation of expressions A and B implies that every value computation
and side effect associated with A is sequenced before every value computation and side
effect associated with B.” [16] We extend the definition of sequenced execution to vector
operations. When a sequence point is reached, all operations before the sequence point
are guaranteed to have terminated execution on all SIMD lanes. The sequence points
in Sierra constructs are placed at the same positions as in their scalar counterparts.
However, to allow various implementations and optimizations, we leave the order in which
elements of a vector are processed unspecified.

7

Chapter 3

Code Generation

In this chapter we will discuss Sierra’s code generation. As generating scalar SSA form is
a well-known procedure [17], we will mainly focus on code generation for vector constructs,
i.e. when inside SIMD Mode. Section 3.1 presents the small, C-like programming language
SLang. In Section 3.2 we show how to translate SLang into an SSA-form intermediate
representation (IR). Section 3.3 explains how control flow divergence is based on vectorial
conditions. Section 3.4, Section 3.5 and Section 3.6 show how the implicit masking
embedded in the semantics of SLang is implemented by explicit masking in the IR. Last
but not least Section 3.7 presents a technique do implement short-circuit evaluation on
vector expressions.

3.1 The Language SLang

Figure 3.1 describes the syntax of SLang, a subset of standard C++ augmented by the
type constructor varying, designed to be a minimal showcase for Sierra. An expression
is a constant1, a vector of constants where the elements are separated by commas, a
variable, a logically negated expression, a binary expression with an arithmetic, relational,
or assignment operator, or a function call with arbitrarily many arguments, separated
from each other by commas. A type is an unqualified type, i.e. bool or int, optionally
qualified by varying(L), where L is a constant. The rules for type conversion have already
been stated in Section 2.1. The Scope statement declares a new scope that begins with
the opening braces “{” and ends with the closing braces “}”. The inner part s expands
to a (potentially empty) list of statements. Declarations inside a scope are only visible
from within the same scope. Since SLang has no Void type, functions always return a
value; the Return statement always requires an expression. Functions can be defined
with arbitrarily many parameters, separated from each other by commas. Functions must
be defined on declaration, forward declarations are not possible.

As already mentioned, pointer and compound types are outside the scope of this
thesis, and therefore have been omitted in SLang.

1We limit constants to numeric literals.

9

3. Code Generation

e ::= Expression
c Constant
| {c} Vector Constant
| id Variable
| ! e Not
| e op e Binary Operation
| id(e) Function Call

t′ ::= Unqualified Type
bool
| int

t ::= Type
| t′

| t′ varying(L) Vector Type

s ::= Statement
{s} Scope
| e; Expression-Statement
| t id; Declaration
| if (e) s else s If-Else
| while (e) s While
| break; Break
| continue; Continue
| return e; Return

f ::= t id(t id) {s} Function

Figure 3.1: Syntax of SLang

3.2 SSA Construction for Statements

The pattern in Figure 3.2 shows how vectorial statements are translated to SSA form.
Rectangular boxes represent basic blocks, while clouds represent arbitrarily complex
sub-graphs. Every statement has an incoming mask and an outgoing mask. We create
a single entry and a single exit for each statement, this makes it simpler to establish
dominance. The incoming mask must dominate the body of a statement and the outgoing
mask must post-dominate the body. The incoming mask initializes the statement’s
current mask. All instructions inside a statement are masked with the current mask.
The current mask can change during execution of the statement. The outgoing mask
of a statement is used as the incoming mask for its successor. Scalar statements do not
have any incoming or outgoing mask.

3.2.1 From Scalar to Vectorial

When code generation enters SIMD Mode, there is a special case for the incoming mask
of a statement. The original context is scalar and the statement for which code is to be
generated is vectorial. Hence, the predecessor statement is scalar, and as such has no
outgoing mask. The examples from Figure 3.3 demonstrate two such scenarios.

10

3. Code Generation

entry

body

exit

incoming mask

outgoing mask

Figure 3.2: General form of a vectorial statement in SSA form

1 bool varying (4) cond;
2 ...
3 if (cond) {
4 // SIMD Mode
5 }

(a)

1 int i;
2 int varying (4) j;
3 ...
4 i + j;

(b)

Figure 3.3: Triggering SIMD Mode

In Figure 3.3a we see an If statement with the condition cond. Since cond is vectorial,
it renders the If statement vectorial, too. Hence, code generation for this statement
expects an incoming mask, yet there is no current mask at this point. We will create a
new mask with the same vector length as cond and set each lane live. This mask is the
If statement’s current mask.

In line 4 in the example in Figure 3.3b we see the expression i + j. Because the
variable j is vectorial, so is the expression, and hence the expression statement. Since the
context is scalar, code generation must enter SIMD Mode before code for the expression
can be generated. As in the previous example, a mask with vector length 4 is created
and all lanes are set live. This mask is the current mask for the Expression statement.

3.2.2 From Vectorial to Scalar

In general, code generation exits SIMD Mode after finishing code generation for the
statement that triggered the SIMD Mode. In case of Figure 3.3a, the SIMD Mode is
triggered at line 3 and exited at line 5.

However, there is a special case where code generation must remain in SIMD Mode. In
Figure 3.4 the If statement triggers SIMD Mode, and the expression return 42 becomes
vectorial. For the lanes 0 and 3 the function returns 42, and these lanes are rendered
dead for the remainder of this function. Program execution continues with the successor

11

3. Code Generation

⊥ ⊥ ⊥ ⊥

42 ⊥ ⊥ 42

⊥ 13 13 ⊥

42 13 13 42

bool varying(4) v = {1, 0, 0, 1};

if (v) return 42;

return 13;

Vector returned by the function =

Figure 3.4: Vectorized return

of the If statement. When the expression return 13 is reached, it must be executed only
on lanes 1 and 2. Hence, code for the expression must be generated from within SIMD
Mode.

Whenever code generation encounters a return inside SIMD Mode, the outgoing mask
of the statement that triggered SIMD Mode is used as mask for all successors of that
statement, even if the context was scalar. Here, the outgoing mask of the If statement is
{0, 1, 1, 0} and is used as current mask for the second return-statement.

3.2.3 Nested Statements

In SLang there are only three statements that produce nesting. A statement nested inside
a Scope statement simply uses the mask of its predecessor as incoming mask. The first
statement in a Scope uses the Scope’s incoming mask. A statement nested in a While
statement or the then-statement of an If statement uses the evaluated condition as mask.
A statement nested in the else-statement of an If statement uses the negated condition
as mask.

All computations performed to evaluate the condition are masked with the statement’s
current mask. Hence, only already live lanes may be live in the nested statement; dead
lanes remain dead.

Figure 3.5 demonstrates masking of nested statements. The body of the While
statement uses the evaluated expression v > 2 as incoming mask, which is {0, 0, 1, 1}
in the first iteration. The If statement uses this mask as incoming mask. It evaluates the
condition with respect to its current mask. This condition is used to mask the then- and
the else-statement of the If. This means, no matter what the value of v is, the lanes 0
and 1 will remain dead in the then- and the else-statement. However, the value of v is
used to mask the remaining live lanes.

We see that during code generation in SIMD Mode, multiple masks may be used. In
the example we create an incoming mask for the While statement to enter the SIMD
Mode. Then there is an incoming mask for the body of the While statement, which is

12

3. Code Generation

1 int varying (4) v;
2 v = {0, 1, 2, 3};
3 while (v > 2) { // current mask = {0, 0, 1, 1}
4 if (v % 2) {
5 // current mask = {0, 0, 0, 1}
6 } else {
7 // current mask = {0, 0, 1, 0}
8 }
9 }

Figure 3.5: Nested statements in SLang

computed at runtime by evaluating the While’s condition. Afterwards the then- and the
else-statement have an incoming mask each. It is possible that multiple masks reach
the same program point, but only one of them, i.e. the current mask, is used to mask
instructions and determine which lanes are live or dead. Because the computation v % 2
is already masked with {0, 0, 1, 1}, it evaluates to {0, 0, 0, 1}, which is the incoming
mask of the then-statement. Negating this mask to compute the incoming mask of the
else-statement yields {0, 0, 1, 0}, as the negation is also masked.

3.3 Branching on Vectorial Conditions

In previous examples we already saw If and While statements with vectorial conditions.
In a scalar setting we would translate these to code with conditional branches. SIMD
allows us to process multiple homogeneous data at once with a single instruction, but
not to execute multiple instructions at once. Hence we cannot execute both sides of a
conditional branch simultaneously. Instead we have to schedule execution of one side
before the other. Section 3.5 and Section 3.6 will explain in detail how this scheduling is
performed by the code generation.

We however need conditional branches that depend on vectorial conditions, e.g. for
While statements. We will see later on, that a While loop iterates as long as the condition
evaluates to a vector with at least one element being not 0. We introduce the following
tests that take a bool vector as argument and return a scalar bool. These tests will be
inserted by the code generation wherever necessary. The concrete implementation of
these tests depends on the available ISA.

All-True. Evaluates to 1 if the tested bool vector is true on all currently
live lanes, 0 otherwise.

Any-True. Evaluates to 1 if the tested bool vector is true on any currently
live lane, 0 otherwise.

13

3. Code Generation

3.4 Vectorial Functions

A function is vectorial if it returns a vector. Vectorial functions can be invoked from
both scalar and vectorial contexts. In case the context is scalar, code generation enters
SIMD Mode as already stated in Section 3.2.1. It is forbidden to call a vectorial function
from within SIMD Mode if the vector lengths of the returned value and the current mask
differ. The incoming mask of the Call expression is passed as hidden parameter to the
function and used as the incoming mask of the first statement in the function body.

In Section 3.2.2 we already explained how a Return statement influences masking. As
multiple Return statements may be executed within a single function call, the returned
value must be stored until control flow returns to the caller. To do so, every function
keeps a return vector of the return type. Each Return statement stores the value of the
evaluated expression to this vector. Of course, the store is only executed on the currently
live lanes. The right side of Figure 3.4 shows the value of the return vector at different
points of execution.2 If execution of the function does not diverge, each element of the
vector was assigned a value exactly once. When a return was executed on every lane that
was live at the entry of the function body, the function returns to the caller, with the
assembled return vector as return value.

3.5 Vectorial If

A scalar If statement has a scalar condition. This condition is evaluated and converted
to bool. In case the value is 1 control flow continues in the then-statement, and in
the else-statement otherwise. After the then- or the else-statement has been processed,
program execution continues at the successor of the If statement. As the condition selects
which statement is executed, control flow diverges.

In the vectorial setting, the condition of the If statement is vectorial. Hence, we
cannot simply decide whether to execute either the then- or the else-statement. Instead,
both statements are executed and the condition is used to mask the instructions inside
the statements. Figure 3.6 shows shows how a vectorial If statement is translated to SSA
form. Let us initially ignore the dashed arrows. We see that there is no control flow
divergence. In the if-entry block, the vectorial condition is evaluated to the condition
mask. Then program execution continues in the then-statement with the condition mask
as incoming mask. After the then-statement has been processed, the else-statement is
executed with the incoming mask being the negated condition mask. Program execution
continues in if-exit, where the live lanes of the outgoing masks of both statements are
joined, forming the outgoing mask of the If statement.

The dashed arrows show optional branches that may improve program performance.
If every element of the condition mask is 0, execution of the then-statement becomes
superfluous. The same holds for the else-statement if every element of the condition
mask is 1. Therefore we add an Any-True check in if-entry to decide at runtime whether

2At the second Return statement the value of the return vector is ⊥ on lanes 0 and 3 because the
corresponding lanes are dead.

14

3. Code Generation

. . .

. . .

cond_mask = eval(cond)
cond = Any -True(cond_mask)
br cond , then - entry, else - entry

then-entry

then

cond = All -True(cond_mask)
br cond , if - exit, else - entry

cond_mask = φ(•, 0)
then_mask = φ(•, 0)
current_mask = neg cond_mask

else

else-exit

then_mask = φ(•, •)
else_mask = φ(•, •)
current_mask = or then_mask , else_mask

if-entry

if-exit

then-exit

else-entry

Figure 3.6: If statement translated to SSA form

15

3. Code Generation

to skip execution of the then-statement and immediately proceed with the else-statement.
Similarly, we introduce an All-True test in then-exit.

By adding these conditional branches we implemented the dashed arrows. The
translated If statement now contains control flow divergence. This introduces a new
problem: the outgoing mask of the then- and the else-statement no longer dominate
the if-exit block. We introduce two φ-functions in if-exit, one for the outgoing mask
of then and else each. Note that the outgoing mask of the then- respectively the else-
statement is not necessarily equal to the incoming mask. We need to introduce two more
φ-function in else-entry: one for the condition mask and one for the outgoing mask of
the then-statement.

3.6 Vectorial While

The SSA form of a vectorial While loop looks similar to its scalar counterpart. The
while-head block has two incoming edges, one from the predecessor statement and one
from the exit of the loop body. Inside the loop header the vectorial condition is evaluated
to the condition mask. An Any-True check of the condition mask is performed, and if it
evaluates to 1 program execution continues in the loop body. Otherwise, loop iteration
terminates and execution continues in while-exit. Code for the loop body is generated
and the condition mask is used as its incoming mask. The outgoing mask of the loop
body is then passed back to the loop header, where it is used as current mask. As the
loop header has two predecessors, we introduce a φ-function to select the incoming mask.

16

3. Code Generation

break,
continue

. . .

current_mask = φ(•, •)
cond_mask = eval(cond)
cond = Any -True(cond_mask)
br cond , body - entry, while - exit

body-entry

body

current_mask = φ(•, •)
continue_vec = φ(•, •)
current_mask = or current_mask , continue_vec
br while_entry

while-exit

. . .

while-entry

body-exit

Figure 3.7: While statement translated to SSA form

Break and Continue

When a break is encountered, all currently live lanes are set dead for the remainder of the
whole loop. Again, we can add an additional check here to improve program performance:
if the current mask is All-True with respect to the current mask of the loop body, the
break can directly jump to the loop’s exit block.

A continue renders all currently live lanes dead, but only for the remainder of the
current loop iteration. When body-exit is reached, all lanes that were set dead by a
Continue statement are set live again. Therefore, every loop keeps a continue vector, a
bool vector with the same vector length as the current mask. Initially, all elements are
set to 0. When a continue is executed, it sets the elements on the currently live lanes

17

3. Code Generation

1 int varying (4) v;
2 v = {0, 1, 2, 3};
3
4 while (v < 5) {
5 if (v % 3)
6 break ;
7 if (v == 0) {
8 v = 2;
9 continue ;

10 }
11 v = v * 2;
12 }

Figure 3.8: Demonstration of Break and Continue

of the continue vector to 1. In the body-exit block, the continue vector is used to set
the lanes, that were rendered dead by a Continue statement, live again. Additionally,
we introduce an All-True test with respect to the loop body’s current mask for each
Continue statement to directly branch to body-exit if execution of the remainder of the
loop body becomes superfluous.

The example in Figure 3.8 shows a loop with both a Break and a Continue statement.
In the first iteration, the condition v < 5 evaluates to {1, 1, 1, 1}. Then v % 3 is
evaluated to {0, 1, 1, 0}. The break renders lanes 1 and 2 dead for the remainder of the
loop. Execution continues in the If statement on line 7. The expression v == 0 evaluates
to {1, 0, 0, 0}. After the assignment v = 2, the Continue statement renders lane 0
dead for the remainder of this iteration. The assignment v = v * 2 is then executed
with the current mask {0, 0, 0, 1}. The value of variable v after the first iteration is
{2, 1, 2, 6}. Before the program returns to the loop header, lane 0 is set live again.
The outgoing mask of the loop body, i.e. {1, 0, 0, 1}, is then used as incoming mask
for the loop header.

In the next iteration, the condition evaluates to {1, 0, 0, 0}, as lanes 1 and 2 remain
dead. The last live lane is set dead by the break in line 6. As all lanes are dead and the
continue vector is All-False, program execution continues at the loop exit.

3.7 Vectorial Short-Circuit Evaluation

The short-circuit operators && and || evaluate their right-hand side only if necessary. In
the scalar setting, the expression a && b would only evaluate b if a evaluated to 1.

Sierra tries to mimic this behavior when evaluating vectors. Figure 3.9a shows a
logical and (a && b) translated to SSA form, where a and b are vectors. If a is All-False,
execution of the T -successor is superfluous, and b must not be evaluated. Hence, the
conditional branch directly jumps to F and B is not executed. Otherwise, b is evaluated.
If b is Any-True, T is executed, F otherwise.

18

3. Code Generation

Figure 3.9b shows a similar graph for the translated vectorial logical or (a || b).
This time execution of F becomes superfluous if a is All-True. If this is not the case, B
is executed. If Any-True of b, T is executed, F otherwise.

cond = Any -True(a)
br cond , T, b

cond = Any -True(b)
br cond , T, F

cond_mask = φ(•) cond_mask = φ(•, •)

A

B

T F

(a) a && b

cond = All -True(a)
br cond , T, b

cond = Any -True(b)
br cond , T, F

cond_mask = φ(•, •) cond_mask = φ(•)

A

B

T F

(b) a || b

Figure 3.9: Short-Circuit Evaluation for logical and/or

The graphs do not show a control flow edge from T to F. Inserting such an edge is

19

3. Code Generation

not job of the code generation for expressions, but has to be done by the code generation
for statements such as If and While.

Let us have a look at a more complex example of vector short-circuit evaluation.
Figure 3.10 shows the SSA graph for evaluating the expression (a && b) || (c && d).
Code generation starts at the top of the expression tree, the operator ||. It recursively
triggers code generation for its left-hand and right-hand side. First, the left-hand side is
processed. The operator || selects the original T as block T and C as block F for the
pattern in Figure 3.9a, and build the corresponding graph. So far, we constructed the
edges A → B, A → C, B → T and B → C Next, code for the right-hand side of || is
emitted. Again, we simply instantiate the pattern from Figure 3.9a, this time with both
T and F in the pattern being T respectively F from the original graph. This adds the
edges C → D, C → F , D → T , and D → F . Code generation for the expression is done
and we obtain the graph from Figure 3.10.

cond = Any -True(a)
br cond , b, c

cond = All -True(b)
br cond , T, c

cond_mask = φ(•, •)
cond = Any -True(c)
br cond , d, F

cond = Any -True(d)
br cond , T, F

cond_mask = φ(•, •) cond_mask = φ(•, •)

A

B

C

D

T F

Figure 3.10: Short-circuit evaluation of (a && b) || (c && d)

20

3. Code Generation

In the following example, sub-expression b will not be evaluated, as a already satisfies
the expression a || b on each lane. Similarly, sub-expression d is not evaluated because
of c.

1 a = {1, 1, 1, 1};
2 c = {0, 0, 0, 0};
3 ...;
4 (a || b) && (c && d);

21

Chapter 4

Related Work

4.1 Intrinsics and Boost.SIMD

Compilers often cannot harness the full power of the underlying hardware due to restric-
tions to the static analysis and optimization framework. Therefore, compiler-specific
language extensions to embed assembly code directly into the higher-level language
and intrinsic functions have been developed. These allow programmers to tune their
program on a very fine-grained level for specific architectures. However, this encourages
an assembly-like, highly error-prone programming style. The source code is obfuscated
by hardware-specific instructions, not only hiding the program’s logic and impeding
debugging, but also making the code non-portable.

In the special case of vectorized programming, the vectorized control-flow must be
implemented by the programmer himself. This means that not only the masks have to
be computed, but also results of operations have to be masked manually (see Figure 2.3).

4.1.1 Boost.SIMD

To overcome the hardware dependence of assembly code and to offer an abstraction to
vectorized programming, the C++ Boost.SIMD library [10] has been developed. It is
designed as an embedded domain specific language for C++ using Boost.Proto.

Boost.SIMD introduces the container class pack<class T, int N>, where T must be of
arithmetic type and N must be a power of 2, as a new layer of abstraction. A concrete
implementation for pack will be determined by Boost.SIMD at compile time, such that
special SIMD registers will be used to represent pack. The class pack internally takes
care of memory fetching strategies, such as vectorial load/store and gather/scatter.

To offer effective computation, operators and functions have been overloaded or
reimplemented for the pack class. It is also possible to evaluate a pack as a boolean
expression or compare packs of same length, yielding a new pack of the same length of
type logical.

Explicit masking is available through the use of the special if_else function.

23

4. Related Work

1 x = if_else (x != 0, x * y, y);

The function takes the first argument, evaluates it to pack<logical<T>> and uses it
as a mask to assemble a new pack<T> from the second and third argument and returns.
Before the function is called, the arguments must be evaluated. Thus, the evaluation of
x * y happens before the function call and is independent of the condition.

In contrast to Sierra, Boost.SIMD does not feature implicit vectorized control flow.
Therefore, masking has to be done explicitly using the if_else function, which directly
translates to code similar to Figure 2.3b. The programmer is forced to implement
vectorized control flow himself, making extensive use of the if_else function. In Sierra,
vectorized control flow is already embedded into the language semantics. The compiler
will generate the necessary masking code, no programmer intervention is necessary. The
container pack allows to specify the vector length manually. If the proposed vector length
does not fit into a single SIMD register, the data is distributed among multiple registers.
This is similar to Sierra’s double-pumping.

4.2 Array notation

Languages such as APL [18] and VectorPascal [19] have been developed to express data-
parallelism in scalar code. Existing languages, including C++ [20], were extended by
array notations to aid exposing data-parallelism to the compiler. Operations performing
on whole arrays (or sections) that make use of these array notations can be vectorized by
the compiler if profitable.

4.2.1 Intel R© CilkTM Plus

Cilk Plus [20, 21] is an extension for C/C++ to address both multicore and vec-
tor processing. The core feature is the new operator [:]. Expressions of the form
array-expression[lower-bound : length : stride] can be used to delineate an array
section of the array pointed to by array-expression with a size of length many elements.
The stride is used to only select every nth element, defaults to 1.

The semantics of C/C++ are extended in such a way, that operations such as
arithmetic operations or function calls can be performed directly on array-sections. The
following example demonstrates the use of the new Cilk Plus array notation.

1 if (0 == a[:])
2 result [:] = true;
3 foo(result [:]);

In the first line, all elements of the array a are compared to zero. For every index i,
where 0 == a[i], the second line will be executed, such that result[i] = true. After-
wards, the function foo is called with the array-section result[:] as argument. If foo is

24

4. Related Work

declared only for scalar arguments, the function call will simply be performed on every
array element. The function could also be declared as a SIMD-enabled function by the
annotation __declspec(vector), telling the compiler to generate both a scalar version of
the function and a vector version. SIMD-enabled functions can perform on both scalar
data and array-sections.

Array-sections can be used as indices to access arrays, resulting in gather/scatter
operations:

1 C[:] = A[B[:]] // gather
2 A[B[:]] = C[:] // scatter

The semantics of the language, and especially the [:]-operator, allow the compiler to
perform vectorization during compilation. Array-sections are split among SIMD registers,
and operations on array sections are translated to SIMD instructions. Whole functions
can be vectorized by passing array-sections as arguments. Again, the programmer has no
influence on vectorization lengths and vectorization granularity.

4.3 Single Program, Multiple Data

A different approach to exploiting SIMD hardware is providing a new language, that
expresses (data-) parallelism, coupled with a compiler, mapping this language-parallelism
to concrete hardware. In the Single Program, Multiple Data (SPMD) approach, the
programmer writes his program in a language that appears to be scalar, but features
parallel semantics. The compiler creates multiple instances of the same, scalar program.
These versions can then be mapped to SIMD lanes or processing cores.

With this approach, the programmer does not have to struggle with vectorization
details, such as register allocation, operator overloading, or masking. Besides that,
portability of the code relies on the compiler.

4.3.1 Intel R© SPMD Program Compiler

The Intel SPMD Program Compiler (ISPC) [12] is a compiler for a new, C-based language
extended by SPMD constructs. ISPC supports lightweight function calls from C++ to
ISPC and vice versa, and guarantees coherent shared memory between both languages.
Together with the syntactical similarity to C, this encourages the programmer to redeploy
computationally intensive kernel code to ISPC.

The example from Figure 4.1 shows the definition of an ISPC kernel. The export
keyword is used to make the function callable from C++. The uniform keyword behaves
as in Sierra, defining data as scalar. The declaration of the induction variable i is not
preceded by uniform. Therefore, the ISPC compiler will produce one instance of i for
every program instance. The variable is initialised with programIndex, which is a built-in
variable that assigns each program instance an index from zero to programCount. The

25

4. Related Work

1 export void update (uniform float a[],
2 uniform float b[].
3 uniform int n) {
4 for (int i = programIndex ; i < n; i += programCount) {
5 if (b[i] > a[i])
6 b[i] -= a[i];
7 }
8 }

Figure 4.1: An ISPC kernel

built-in variable programCount, which holds the number of created program instances, is
then used to increment the induction variable.

For this example, the compiler can create vector length many program instances
and distribute them to SIMD lanes. The result is a vectorized loop with a vectorized
induction variable of length programCount.

Making use of ISPC enforces the programmer to split his program among two
languages. Computationally intensive kernel code, which is implemented in ISPC, must
be compiled separately using a special ISPC compiler. The semantics of ISPC restrain
the compiler to use only a single vector length per translation unit for vectorization. On
the language level, the programmer has no influence on the vectorization lengths, and
therefore intermixing code of different vector lengths is not possible. In contrast to ISPC,
in Sierra the program starts in a scalar context and vectorization is triggered manually
by the programmer by making use of vector types.

4.3.2 Intel R© Array Building Blocks

Intel’s Array Building Blocks (ArBB) [22, 23] is an approach similar to ISPC, targeting
both SIMD and multi-core architectures. It evolved from the former Intel research project
Ct (C for Throughput Computing) and RapidMind, a multi-core development platform
for both Intel and AMD hardware.

ArBB provides the programmer with a C++-like language for kernel programming,
augmented with an expressive set of types, including dense, indexed, and sparse containers.
At compile time, the source code is translated into an intermediate representation. At
runtime, a JIT compiler optimises the IR for the detected target architecture. The binary
is executed inside the ArBB Virtual Machine, which consists of the Threading Runtime
(TRT), the Memory Manager (MM), and the Heterogeneous Runtime (HRT). TRT takes
care of implicit synchronization, MM and TRT partition data for parallel processing. HRT
coordinates loading and executing code and communication with acceleration devices
(e.g. GPGPUs).

In contrast to ISPC, the programmer is forced to produce boilerplate code to format
the scalar data before the ArBB kernel can be invoked. On the first execution of a ArBB
kernel the JIT compiler is invoked; re-execution of the same code reuses the cached
compilation results.

26

4. Related Work

4.3.3 OpenCL

The Open Computing Language (OpenCL) heterogeneous computing on a variety of
modern CPUs, GPUs, and other microprocessor designs. OpenCL is an open standard
maintained by the non-profit technology consortium Khronos Group. OpenCL 1.0 was
published in 2008, the latest version at present is OpenCL 2.0, released in 2013.

As in ISPC and ArBB, OpenCL forces the programmer to split the implementation
among two languages. OpenCL kernels are implemented in the OpenCL C language, a
derivate of C99. OpenCL C is enriched by OpenCL keywords and special vector types,
and omits function pointers and recursion. Similar to ISPC, OpenCL C features SPMD
semantics. The built-in function get_global_id() returns an integer unique for each
program instance. (It is similar to ISPC’s programIndex.) Implicit vectorization and
parallelization happen during the compilation process.

The host language has to do a set of routines to facilitate an OpenCL kernel. An
OpenCL compute context must be created to address the target hardware. A command
queue must be created to enable communication with the target device. Buffer memory
objects must be allocated to pass data to and from the target device. The OpenCL
program must be compiled, which usually happens at runtime. The kernel arguments
must be set, passing the buffer memory objects as I/O memory. Finally, the execution of
the kernel is enqueued on the target device.

4.4 OpenMP

Open Multi-Processing (OpenMP) [24] is a specification for a set of compiler direct-
ives, library routines, and environment variables that can be used to specify high-level
parallelism in Fortran and C/C++ programs. The latest version, OpenMP 4.0, in-
troduces preprocessor annotations to address SIMD hardware. The SIMD construct
#pragma omp simd is used to indicate that a loop can be transformed into a SIMD loop,
where multiple iterations of the loop are executed concurrently using SIMD instructions.
(This annotation is similar to the ICC/GCC extension #pragma simd.) Whole function
vectorization can be achieved with the annotation #pragma omp declare simd, enabling
the creation of multiple versions of the function that can process vectorial data from a
single invocation.

Annotations can be tuned with OpenMP clauses. The collapse clause specifies loops
to collapse with the loop immediately following the clause into one larger iteration space.
The clause safelen(N) specifies the maximal vector length used for loop vectorization.
The simdlen(N) clause defines the vector length of the arguments of a function annotated
with declare simd.

4.5 Automatic vectorization

Automatic vectorization techniques detect parallelism in scalar code and transform it in
order to exploit SIMD hardware [14, 15, 25–27].

27

4. Related Work

A common approach is Instruction-level parallelism (ILP) [28–30]. This technique
focuses on loop vectorization. The target loop is unrolled n times, where n is the desired
vector length. In the next step, similar instructions from n consecutive iterations are
replaced by SIMD instructions. Loops with unknown iteration count or early exit points
make it more difficult to apply ILP, as preparation or fix-up code must be introduced.
Loop-carried dependencies can prevent loop vectorization.

A different automatic vectorization approach is Superword-level parallelism (SLP)
[31]. This technique is independent of loops, as it leverages parallelism available in a set
of scalar operations:

1 e = a + b;
2 f = c + d;
3 m = e * f;

The first two instructions in the example are independent of each other and can
be executed in parallel. SLP will merge these instructions such that only one vectorial
addition is performed. This technique may also involve instruction reordering to produce
vectorization candidates. A more advanced technique of SLP, called Padded SLP [32],
extends SLP by inserting redundant instructions to produce additional vectorization
candidates.

28

Chapter 5

Evaluation

5.1 Implementation

We implemented Sierra as a fork of the LLVM -based compiler clang. At the time of
evaluation, our extension has been incorporated into clang version 3.3. As Sierra only adds
new functionality to clang, and does not substitute any of the existing, Sierra supports
the complete C++14 language standard. The Sierra extension must be explicitly enabled
by supplying the command-line switch -fsierra. Activating the feature will not break
compilation of existing C++ code.

Sierra directly operates on the AST representation of the input program. Semantic
analysis propagates vector types through type conversion and detects errors caused by
non-matching vector lengths. Code generation is augmented by special cases for vector
types, and immediately emits vectorized LLVM code. After the source to IR translation,
Sierra continues with clang’s usual compilation pass.

LLVM’s type legalization phase [33] may split vectors to match the target machine’s
native vector length. This allows to use vectors of length twice the machine’s native
vector length, e.g. int varying(8) on SSE. This technique is called double pumping. Our
benchmarks show that double pumping may indeed result in a performance improvement.1

5.2 Experimental Results

We selected five benchmarks to evaluate the performance of Sierra. We had to modify
the source of every benchmark to use varying types to trigger SIMD code generation.
We exposed the vector length in the source program as a macro, such that passing
-DVECTOR_LENGTH=L to the compiler sets the vector length of the program to L. As a
baseline for our evaluation we used a scalar version of the program. The clue is, that the
scalar version is only a special instance of the vector version; we generate it by setting
the vector length to 1. Hence, any modification on the original program influences the

1Although we do not have evidence, we claim that increased cache-locality is the reason for this
performance improvement.

29

5. Evaluation

 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

volumerenderer aobench mandelbrot binomial blackscholes

scalar SSE, no auto−vectorization

scalar AVX, no auto−vectorization

auto−vectorized SSE

auto−vectorized AVX

4x SSE

8x SSE

8x AVX

16x AVX

Figure 5.1: Speedups relative to scalar, non-vectorized SSE version

scalar and the vectorial variants equally.
We compiled several versions of all benchmarks by specifying -DVECTOR_LENGTH, no

further modification of the source code was necessary. We compiled all programs with -O3
and -ffast-math. We compiled the programs for both SSE4.2 (-msse4.2) and AVX
(-mavx).

Our tests ran on an Intel R© Ivy Bridge CoreTM i7-3770K CPU. We used the median
performance of 11 runs for computing the speedups shown in Figure 5.1.

We measured the performance of the scalar instances on both SSE and AVX. We
compiled each scalar instance with and without LLVM’s auto-vectorizer. The scalar SSE
version without LLVM’s auto-vectorizer serves as our baseline performance, and hence
has a speedup of 1x. Then we instantiated vectorized versions of all programs. On SSE
we used the vector lengths 4 (native) and 8 (double pumped). In case of AVX we used
vector lengths 8 (native) and 16 (double pumped).

Compiling the scalar, non-vectorized version for AVX instead of SSE did not make
notable differences. It is surprising, that auto-vectorization did not yield a performance
improvement; in three cases, performance decreased.

5.3 Porting to Sierra
To demonstrate how to port an existing program to effectively exploit SIMD hardware
using Sierra, we take a closer look at the volumerenderer benchmark. The two most
interesting functions are displayed in Figure 5.2a and Figure 5.2c.

The function render contains a loop nest to iterate over all pixels of the generated
image. For each pixel, generate_ray computes a new ray and raymarch is called. Finally,
the value for the pixel is written to image.

30

5. Evaluation

1 void
2 render (float volume [], float image [], /* ... */) {
3 for (int y = 0; y < image_height ; ++y) {
4 for (int x = 0; x < image_width ; ++x) {
5
6 auto ray = generate_ray (x, y, /* ... */);
7 auto result = raymarch (volume , ray , /* ... */);
8 image [y * image_width + x] = result ;
9 }

10 }
11 }

(a) Scalar render

1 void
2 render (float volume [], float image [], /* ... */) {
3 for (int y = 0; y < image_height ; ++y) {
4 for (int xx = 0; xx < image_width ; xx += L) {
5 auto x = xx + seq <L >();
6 auto ray = generate_ray (x, y, /* ... */);
7 auto result = raymarch (volume , ray , /* ... */);
8 image [y * image_width + x] = result ;
9 }

10 }
11 }

(b) Vectorial render

1 float
2 raymarch (float volume [], Ray& ray , /* ... */) {
3 float rayT0 , rayT1 ;
4 if (! intersect (ray , bbox , rayT0 , rayT1))
5 return 0.f;
6 // intersect initializes rayT0 , rayT1
7
8 // radiance along the ray
9 float result = 0.f;

10
11 // induction variables
12 auto pos = ray.dir* rayT0 + ray. origin ;
13 auto t = rayT0 ;
14
15 while (t < rayT1) {
16 auto d = density (pos , volume , /* ... */);
17
18 // terminate on high attenuation
19 auto atten = /* ... */;
20 if (atten > THRESHOLD)
21 break ;
22
23 auto light = compute_lighting (/* ... */);
24 result += light * /* ... */;
25 pos += /* ... */;
26 t += /* ... */;
27 }
28
29 return gamma_correction (result);
30 }

(c) Scalar raymarch

1 float varying (L)
2 raymarch (float volume [], Ray varying (L)& ray , /* ... */) {
3 float varying (L) rayT0 , rayT1 ;
4 if (! intersect (ray , bbox , rayT0 , rayT1))
5 return 0.f;
6 // intersect initializes rayT0 , rayT1
7
8 // radiance along the ray
9 float varying (L) result = 0.f;

10
11 // induction variables
12 auto pos = ray.dir* rayT0 + ray. origin ;
13 auto t = rayT0 ;
14
15 while (t < rayT1) {
16 auto d = density (pos , volume , /* ... */);
17
18 // terminate on high attenuation
19 auto atten = /* ... */;
20 if (atten > THRESHOLD)
21 break ;
22
23 auto light = compute_lighting (/* ... */);
24 result += light * /* ... */;
25 pos += /* ... */;
26 t += /* ... */;
27 }
28
29 return gamma_correction (result);
30 }

(d) Vectorial raymarch

Figure 5.2: Implementation of raymarch and render in C++/Sierra. Syntactic
differences between the scalar and vectorial variant are highlighted.

The subroutine raymarch casts a ray through the voxel volume and accumulates the
density of each hit voxel. First, it calls intersect to test whether the ray hits the voxel
volume. If this is the case, rayT0 and rayT1 are set to the start respectively the end of
the ray. Then a loop traverses the ray from start to end.

The highlighted text regions show the syntactic differences that are necessary to
port the scalar program to Sierra. The function seq<L>() returns a vector of the
form {0, 1, ..., L-1}. We can see that only eight small changes were necessary to
efficiently port this program to Sierra.

31

Chapter 6

Future Work

6.1 goto & switch-case

Although the semantics for most vectorized C++ statements are straight-forward, the
goto and switch-case statements are anything but trivial. The following statements we
make about goto hold for switch-case as well.

Let us have a look at the following example:

1 loop:
2 ...
3 if (cond)
4 goto exit;
5 else
6 goto loop;
7 exit:
8 ...

This code may be nested in some arbitrarily complex context with arbitrarily many
masks. The code in the example basically implements a do-while loop. The problem
here is that the then-statement of the if is scheduled before the else-statement. The
then-statement needs to determine at runtime whether all lines are live with respect to
the current mask. Only then it is allowed to jump to exit. The else-statement however
has to jump back to loop whenever at least one lane is live. We can see that the behaviour
of a goto depends on whether the branch jumps backwards or forwards in the control
flow graph. This is a problem that cannot be solved by syntax-guided code generation.
We currently believe that at least a control dependence analysis is necessary to determine
which checks must proceed a branch introduced by a goto.

33

6. Future Work

6.2 Vectors of Pointers

Our language SLang did not include pointer types at all. Allowing pointers to vectors is
straight-forward. Vectors can be stored to and loaded from memory by corresponding
vector load/store instructions provided by the ISA. Even if these vector loads/stores are
not provided, we can fall back to regular loads/stores. To store a vector it is disassembled
into vector length many scalars, which are then stored one after another. When loading
a vector we assemble it from the stored scalars.

It gets more complex as we allow vectors of pointers. When dereferencing a vector of
pointers as RValue, each pointer has to be dereferenced separately. We need to assemble
a new vector with the referenced values. Vice versa, when dereferencing such a vector as
LValue to store values, we need to write to vector length many different locations.

As one can imagine, this imposes a lot of overhead. And even worse, this overhead is
not visible to the programmer, and hence this is not in the spirit of C/C++.

There are two cases for which vectors of pointers can be implemented efficiently. The
first one is uniform vectors. If every element of the vector points to the same memory
region, we can issue a scalar load, and broadcast the loaded value afterwards. The other
case is a vector of pointers pointing to a consecutive memory region, i.e. vectors of the
form {p, p+1, p+2, ...}. Most ISAs provide special vector load/store instructions for
these vectors. However, an analysis is required to find out when a vector is of this form.

6.3 Functions with Implicit Polymorphism in Vector-Length

Assume we want to implement a function pow(base,exp) to compute the power function
on positive integers. Figure 6.1 shows a scalar implementation of this function.

1 int pow(int base , int exp) {
2 int res = 1;
3 while (exp --)
4 res *= base;
5 return res;
6 }

Figure 6.1: Implementation of power

To support this function in a vectorized context, we need to overload the function for
vector arguments:

34

6. Future Work

1 template <int L>
2 int varying (L) pow(int varying (L) base , int exp);
3
4 template <int L>
5 int varying (L) pow(int base , int varying (L) exp);
6
7 template <int L>
8 int varying (L) pow(int varying (L) base , int varying (L) exp);

The declaration from line 3 suffices and line 1 and line 2 are not necessary. Scalar
arguments would then be broadcast on call. However, it is desirable to have special
versions in case some arguments are scalar. In the example in Figure 6.1, annotating
parameter exp with varying causes the loop to always be vectorized, and may impose a
performance penalty if the original argument was scalar.

The number of specializations grows exponentially in the number of parameters. It is
obviously bad practice to have the programmer implement all specializations of a vectorial
function. Instead the programmer should only write down the scalar implementation, as
in Figure 6.1, and the compiler creates all necessary vectorial versions on demand. This is
a complex task and cannot be solved by naïve template meta-programming. The compiler
needs to detect that the variable res is always vectorial, no matter which parameter is
vectorial.

6.4 Vectorization of Compound Types
We already mentioned that vectorization of data-only compound types is achievable with
small effort. Vectorization of complex classes however is much harder. The compiler
does not only have to look at member variables, but also needs to analyze all functions
that operate on these member variables. Vectorization of a member may now depend on
another variable or the implementation of a function.

This task may become straight-forward when we can rely on functions with implicit
polymorphism in vector-length

35

Chapter 7

Conclusion

This thesis presented Sierra: A SIMD Extension for C++. Chapter 2 shows how the
varying keyword is used to declare vector types and how these types integrate with
general C++. We further show that these types synergize well with both macros and
templates. In Chapter 3 we present our minimalistic showcase language SLang and
our syntax-guided code generation. We present translation patterns for vectorial if,
while, and the lazy evaluation operators || and &&. With examples we show potential
pitfalls in a naïve translation approach and explain how to avoid them. In Chapter 4 we
compare our work with related approaches, including famous tools like OpenCL, Intel R©

SPMD Program Compiler, Intel R© Array Building Blocks and OpenMP. We present our
evaluation in Chapter 5. The results of our experimental results are shown in Section 5.2.
In Section 5.3 we see the necessary differences to port one of the benchmarks to Sierra.
As we expected, Sierra allows programming of readable and maintainable source code
that compiles to high-performance machine code.

You can download the Sierra compiler from www.github.com/sierra-lang/sierra.
To keep informed about the progress of this project you can visit our website at
www.sierra-lang.org. There you will find a roadmap with future goals and all publica-
tions related to Sierra. A link to our Github site is also provided.

37

www.github.com/sierra-lang/sierra
www.sierra-lang.org

Bibliography

[1] AMD64 Architecture Programmer’s Manual Volume 1: Application Programming.
Publication No. 24592, Revision 3.14. Advanced Micro Devices, Inc. Sept. 2007.

[2] AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System
Instructions. Publication No. 24594, Revision 3.14. Advanced Micro Devices, Inc.
Sept. 2007.

[3] AMD64 Architecture Programmer’s Manual Volume 4: 128-Bit and 256-Bit Media
Instructions. Publication No. 26568, Revision 3.10. Advanced Micro Devices, Inc.
Sept. 2007.

[4] Linley Gwennap. ‘Altivec vectorizes powerPC’. In: Microprocessor Report 12.6
(1998), pp. 1–6.

[5] Intel R©:64 and IA-32 Architectures Optimization Reference Manual. Order Number
248966-020. Intel Corporation. Nov. 2009.

[6] Intel R©:64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture. Order Number 253665-033US. Intel Corporation. Dec. 2009.

[7] Intel R©:64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-M. Order Number 253666-033US. Intel Corporation.
Dec. 2009.

[8] Intel R©:64 and IA-32 Architectures Software Developer’s Manual, Volume 2B:
Instruction Set Reference, N-Z. Order Number 253667-033US. Intel Corporation.
Dec. 2009.

[9] W. Baxter and III H. R. Bauer. ‘The program dependence graph and vectorization’.
In: POPL. 1989.

[10] Pierre Estérie et al. ‘Boost.SIMD: generic programming for portable SIMDization’.
In: Proceedings of the 2014 Workshop on Workshop on programming models for
SIMD/Vector processing. ACM. 2014, pp. 1–8.

[11] Roland Leißa, Sebastian Hack and Ingo Wald. ‘Extending a C-like Language for
Portable SIMD Programming’. In: PPoPP. 2012.

[12] Matt Pharr and William R. Mark. ‘ispc: A SPMD Compiler for High-Performance
CPU Programming’. In: InPar. 2012.

[13] Khronos. The OpenCL Specification. Version: 1.2. 2012.

39

Bibliography

[14] J. R. Allen et al. ‘Conversion of Control Dependence to Data Dependence’. In:
POPL. 1983.

[15] Ralf Karrenberg and Sebastian Hack. ‘Whole Function Vectorization’. In: CGO.
2011.

[16] ISO/IEC. ‘IEC 9899: 2011 Information technology - Programming languages - C’.
In: International Organization for Standardization, Geneva, Switzerland (2011).

[17] Matthias Braun et al. ‘Simple and efficient construction of static single assignment
form’. In: Compiler Construction. Springer. 2013, pp. 102–122.

[18] Kenneth E. Iverson. A Programming Language. John Wiley & Sons, Inc., 1962.
[19] Greg Michaelson and Paul Cockshott. Vector Pascal, an array language. 2002.
[20] Intel Cilk Plus Development Team. Intel Cilk Plus Language Specification. 2013.
[21] R.D. Blumofe et al. ‘Cilk: An efficient multithreaded runtime system’. In: ACM

SigPlan Notices 30.8 (1995), p. 216.
[22] Michael McCool. ‘A Retargetable, Dynamic Compiler and Embedded Language’.

In: CGO. 2011.
[23] Volker Weinberg. ‘Data-parallel programming with Intel Array Building Blocks

(ArBB)’. In: arXiv preprint arXiv:1211.1581 (2012).
[24] OpenMP Application Program Interface. OpenMP Architecture Review Board,

2013.
[25] Randy Allen and Ken Kennedy. ‘Automatic Translation of FORTRAN Programs

to Vector Form’. In: ACM Trans. Program. Lang. Syst. (1987).
[26] Viet Ngo. ‘Parallel Loop Transformation Techniques For Vector-Based Multipro-

cessor Systems’. PhD thesis. University of Minnesota, 1994.
[27] Dorit Nuzman and Ayal Zaks. ‘Outer-Loop Vectorization: Revisited for Short SIMD

Architectures’. In: PACT. 2008.
[28] Gerald Cheong and Monica Lam. ‘An Optimizer for Multimedia Instruction Sets’.

In: SUIF. 1997.
[29] Andreas Krall and Sylvain Lelait. ‘Compilation Techniques for Multimedia Pro-

cessors’. In: International Journal of Parallel Programming (2000).
[30] N. Sreraman and R. Govindarajan. ‘A Vectorizing Compiler for Multimedia Exten-

sions’. In: International Journal of Parallel Programming (2000).
[31] Samuel Larsen and Saman Amarasinghe. ‘Exploiting Superword Level Parallelism

with Multimedia Instruction Sets’. In: PLDI. 2000.
[32] Vasileios Porpodas, Alberto Magni and Timothy M Jones. ‘PSLP: Padded SLP

Automatic Vectorization’. In: ().
[33] Yosi Ben-Asher and Nadav Rotem. ‘Hybrid type legalization for a sparse SIMD

instruction set.’ In: TACO (2013).

40

	Introduction
	Contribution
	Outline

	Sierra at a Glance
	Types
	Arithmetic Types
	Broadcast
	Initializer List
	Element Access

	SIMD Mode
	Masking
	Lock-Step Semantics

	Code Generation
	The Language 1SLang
	SSA Construction for Statements
	From Scalar to Vectorial
	From Vectorial to Scalar
	Nested Statements

	Branching on Vectorial Conditions
	Vectorial Functions
	Vectorial If
	Vectorial While
	Vectorial Short-Circuit Evaluation

	Related Work
	Intrinsics and Boost.SIMD
	Boost.SIMD

	Array notation
	[1.0]Intel® Cilk™ Plus

	Single Program, Multiple Data
	Intel® SPMD Program Compiler
	Intel® Array Building Blocks
	OpenCL

	OpenMP
	Automatic vectorization

	Evaluation
	Implementation
	Experimental Results
	Porting to Sierra

	Future Work
	goto & switch-case
	Vectors of Pointers
	Functions with Implicit Polymorphism in Vector-Length
	Vectorization of Compound Types

	Conclusion

