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The detection of memory dependencies is challenging for many aggressive optimizations,

such as automatic parallelization. Two problems automatic parallelization faces are

alias resolution and loop carried memory dependence detection. A relational analysis is

necessary to statically analyze aliasing. Different iterations of the same loop need to be

compared to prove the absence of loop carried memory dependencies. Even most flow

sensitive analyses look at statements, but not statement instances. Thus, loop iterations

are indistinguishable and different states of the loop are not taken into account. We

precisely describe statement instances by utilizing the polyhedral model. This model is

commonly used to analyze and optimize affine loop nests. Our approach extends this

usage to whole program regions, overapproximating non-affine expressions. Overall, we

present a parametric context and flow sensitive inter-procedural analysis, which gives

tight descriptions of memory accesses for arbitrary granularities of program regions.
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Chapter 1

Introduction

Memory dependence analysis is used for a wide range of applications such as alias reso-

lution or vectorization. Many of the available analyses and optimizations are combined

to automatically parallelize programs. Parallel program execution is necessary to ef-

fectively utilize multi-core systems, but many existing applications are not designed for

multi-core execution and can therefore not make use of the given hardware. Writing par-

allel programs is generally harder than writing sequential ones, which makes it desirable

to have the compiler taking care of parallelization.

This work focuses on generating descriptions for memory accesses of arbitrary program

regions, which can be used to support an automatic parallelizer. The parallelizer faces

several challenges regarding memory dependencies such as loop carried memory depen-

dencies and aliasing. We will discuss the challenges and present solutions to them in

terms of a static analysis with ideas for run-time extensions.

1.1 Desired Properties of Memory Access Descriptions

In order to obtain memory access descriptions fitting the needs of a parallelizer, we first

look at the challenges caused by memory dependencies in automatic parallelization.

1 for (i := 0; i < 10; i := i + 2) {

2 A[i] := A[i + 1];

3 }

Figure 1.1: Loop with Static Bound

Each iteration of the loop shown in Figure 1.1 can be executed in parallel and addition-

ally, all the information is already statically available. The write accesses are made to

odd positions in the array while the read accesses are at even offsets. The result of a

simple interval analysis for this example could look like this:

1



2 Introduction

interval(i) = [0,8]
interval(i + 1) = [1,9]

In order to check whether the accesses A[i] and A[i+1] overlap, the values for the index

positions are intersected.

interval(i) ∩ interval(i + 1) = [0,8] ∩ [1,9] = [1,8]

Since the resulting interval is not empty, we have to assume that there may be depen-

dencies.

This example already shows problems with the granularity of a simple interval analysis.

The results for i are typically widened to have a sound description for all possible

values of i. No difference is made between the effect of one particular iteration and the

accumulated effect of the entire loop. The values of i and i + 1 cannot interfere within

the same iteration as they refer to an integer and its successor.

Not only the memory dependencies within the same loop iteration but also those across

different loop iterations are interesting. Therefore the widening of the interval analysis,

which cannot take the increment of 2 into account, is too overapproximative to give a

useful solution for this purpose. In order to enable the parallel execution of statements

inside a loop, overlapping memory accesses within the same iteration and within different

iterations must be identified.

1 for (i := 0; i < N; ++i) {

2 A[i] := A[i + C];

3 }

Figure 1.2: Parametric Loop Carried Dependence

The example in Figure 1.2 shows a loop for which it is not statically decidable whether

there are memory dependencies. It depends on the values of N and C. The loop can

be vectorized with some vector width vw, if vw ≤ C holds. The loop can be completely

parallelized if N ≤ C holds. Both conditions are candidates for run-time checks that can

be generated and placed in front of the loop to select either the parallelized version or

the original sequential version.

1 for (i := 0; i < N; ++i) {

2 for (j := 5; j < M; j := j + 2) {

3 A[i] := A[i] + B[j];

4 }

5 }

Figure 1.3: Aliasing
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Since there can be aliasing in C-like languages, the two arrays A and B in Figure 1.3

may refer to the same memory region. A run-time check can resolve this problem: if

A+i and B+j are disjoint memory regions for every i and j, the accesses do not overlap.

The same holds if A and B do not alias. In these cases the outer loop can be parallelized.

Not only loops, but arbitrary program regions or instructions are interesting for memory

dependence analysis. Consider the function calls f(A,x) and g(A,x) with an array A

and a scalar variable x and the following definitions for the functions:

1 func f(B[], b) {

2 for (i := 0; i < b; ++i) {

3 B[i] := 0;

4 }

5 }

6

7 func g(C[], c) {

8 C[c] := 1;

9 }

Figure 1.4: Potentially Parallelizable Functions

The called functions need to be analyzed to determine whether the function calls can

access the same memory regions. The function f accesses the given array in the range

from 0 to b − 1, and the function g accesses the array at position c. Whether memory

accesses of functions overlap often depends on the parameters of the functions. Summa-

rized access descriptions that are parametric in the function parameters can be used to

conclude that f(A,x) and g(A,x) cannot overlap.

Our analysis should be capable of aliasing, have a parametric description of accesses and

also be inter-procedural to provide summarized descriptions for functions. In order to

support loop parallelization it should also be capable of the concept of loop iterations.

To achieve this, we designed an inter-procedural context and flow sensitive analysis,

which works with polyhedral descriptions for function accesses.

1.2 Overview

Chapter 2 will present background information on the theoretical concepts and the

technologies for the implementation. A comparison to similar approaches is provided

in Chapter 3. The memory access descriptions and the analysis to generate these de-

scriptions is presented in Chapter 4. The limitations of this approach are discussed

afterwards, in Chapter 5. Experimental results for the analysis are discussed in Chap-

ter 6 together with possible run-time extensions. Chapter 7 describes technical details
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of the implementation. Finally, Chapter 8 concludes this thesis and provides ideas for

future research on this topic.



Chapter 2

Background

This section gives an overview of the theoretical and technical background of the thesis.

We use a polyhedral description of the memory accesses, which are represented by objects

of the Integer Set Library (ISL [1]). The analysis works on LLVM-IR and uses the Scalar

Evolution Analysis [2] in combination with techniques from Polly [3] to interpret the

instructions and generate the polyhedral description.

2.1 Polytopes

To describe accesses, we collect affine constraints on program variables. A system of these

constraints can be interpreted as a geometric structure, a convex n-dimensional polytope,

where n is the number of variables. Figure 2.1 shows the 2-dimensional polytope for the

constraint system {x ≥ 2, i ≤ 6, x + i ≥ 4}.

2 4 6 8

2

4

i

x

Figure 2.1: 2-Polytope with Dimensions x and i

We chose polytopes for our analysis because they are relational, thus allowing us to de-

scribe values of a variable depending on values of another variable. Convex n-polytopes

are part of Presburger arithmetic [4]. This arithmetic is a first order logic based on

5



6 Background

addition. It is decidable, complete and consistent. The logic does not formulate mul-

tiplication or division, but some properties that are related to those operations can

still be expressed. Presburger arithmetic includes existential and universal quantifica-

tion, therefore the property that a variable x is divisible by two can be expressed as

∃y. y + y = x.

Note that convex polytopes only include constrains based on ≤ and ≥. We will later only

consider integer values as the domain of polytopes and use the notation x < y, which

can be expressed as x ≤ y − 1 (similarly x = y for x ≤ y ∧ y ≤ x).

2.2 LLVM

LLVM [5] is a compiler framework, which is built for program analysis and transforma-

tion. A wide range of different languages such as C, C++, Objective C, Java and Python

can be compiled to the low level LLVM Intermediate Representation (LLVM-IR). This

is one of the aspects making LLVM an attractive choice to implement the analysis: We

are not tied to a high level language and do not need support for high-level language fea-

tures, but work on a language independent low level representation. Another important

advantage of LLVM-IR is that it is in Static Single Assignment (SSA) form [6], which

guarantees that every variable is defined exactly once and that the definition dominates

all its uses. Phi nodes are introduced to construct SSA form from a non-SSA program.

They are selectors of values depending on the edge taken to the phi node.

1 func f(x) {

2 a := 5;

3

4 if (x > 0)

5 a := 3;

6 else

7 a := 7;

8

9 return a;

10 }

Figure 2.2: Sim-
ple Program

a := 5

x > 0 not(x > 0)

a := 3 a := 7

return a

Figure 2.3: Non SSA Form
CFG of Figure 2.2

The example in Figure 2.2 shows a program and Figure 2.3 its control flow graph (CFG).

The SSA form of the control flow graph is shown in Figure 2.4. The introduced phi selects

the value for a3 depending on whether the left-hand side or the right-hand side led to

the phi.



Background 7

a0 := 5

x > 0 not(x > 0)

a1 := 3 a2 := 7

a3 := phi(a1, a2)

return a3

Figure 2.4: SSA Form CFG
of Figure 2.2

SSA form makes def-use chains explicit and is therefore a helpful property for program

analysis.

The instruction set of LLVM-IR contains arithmetic operations, conditional and uncon-

ditional branches, phi nodes, cast operations, as well as specialized instructions for calls

and pointer arithmetic. The code in Figure 2.5 shows a simple loop, which increments

a variable i by 2 in every loop iteration until it reaches the value 10.

1 func f(a) {

2 for (i := 0; i < 10; i := i + 2) {

3 a := a + i;

4 }

5 return a;

6 }

Figure 2.5: Simple Loop

Loops do not have a syntactic representation in LLVM-IR; they are expressed using

branches and labels. Instructions are grouped to form basic blocks, each marked with a

label. Control flow is represented by conditional and unconditional branches at the end

of a basic block. All instructions inside a basic block are unconditionally executed when

entering it.

The LLVM intermediate representation for the loop in Figure 2.5 can be seen in Fig-

ure 2.6. In the basic block %for.cond the values for the uses of a and i inside the loop

are selected and the condition is calculated. Depending on the result, either the body

of the loop is executed or the loop is left. The loop body calculates the addition a + i

and branches back to %for.inc unconditionally. Here the increment is computed and

the unconditional branch to the loop header is taken.
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1 define i32 @f(%a) #0 {

2 entry:

3 br label %for.cond

4

5 for.cond: ; preds = %for.inc , %entry

6 %a.0 = phi i32 [ %a, %entry ], [ %add , %for.inc ]

7 %i.0 = phi i32 [ 0, %entry ], [ %add1 , %for.inc ]

8 %cmp = icmp slt i32 %i.0, 10

9 br i1 %cmp , label %for.body , label %for.end

10

11 for.body: ; preds = %for.cond

12 %add = add nsw i32 %a.0, %i.0

13 br label %for.inc

14

15 for.inc: ; preds = %for.body

16 %add1 = add nsw i32 %i.0, 2

17 br label %for.cond

18

19 for.end: ; preds = %for.cond

20 ret i32 %a.0

21 }

Figure 2.6: LLVM-IR

Loops are not syntactically represented in LLVM, but some helpful analyses for loops,

such as the LoopInfoPass, are already implemented. This pass provides basic information

such as the blocks belonging to the loop and loop nests.

2.3 Scalar Evolution

The Scalar Evolution is a value analysis which aims to find a closed form description for

integer or pointer expressions in the program. The closed form expressions extracted by

the analysis are represented by so called SCEVs. SCEV Constants and SCEV Unknowns

are the smallest SCEVs, a SCEV Constant represents an integer constant (such as 5)

and a SCEV Unknown an integer value not known at compile-time. SCEV Unknowns

can also occur for undefined values, e.g., a load from memory. All other SCEVs, e.g., the

Scalar Evolution equivalent of an addition, the SCEVAddExp, are based on them and

are recursively defined. Further supported operations are subtraction, multiplication,

unsigned division, maximum and cast operations.

The Scalar Evolution [2] is specialized to compute a closed form description of loop

variant variables (e.g. induction variables) which they call Add Recurrences. Currently

only additive recurrences are supported. An example of an Add Recurrence is shown in

Figure 2.7.
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{ 0
Start

, +
Operator

, 2
Stride

}<%for.cond
Loop

>

Figure 2.7: Scalar Evolution Add Recurrence

The description of an Add Recurrence contains an initial value for the variable, a stride

and the operation performed. They always describe the evolution of a scalar with respect

to the surrounding loop, identified by the label of the unique header block. Start is a

constant in this case, but it can also be a variable. Figure 2.8 shows a loop with an

array access.

1 for (i := 0; i < 10; i := i + 2) {

2 array[i] := i;

3 }

Figure 2.8: Loop with Memory Access

In this case the initial value for the Add Recurrence is a pointer variable, so the start is

parametric in this variable. The Add Recurrence for this example is shown in Figure 2.9.

{ @array
Start

, y+y
Operator

, y2 * sizeof(array[0])y
Stride

}<%for.cond
Loop

>

Figure 2.9: Scalar Evolution Parametric Add Recurrence

The Scalar Evolution can often compute trip counts for loops, which our analysis relies

on to widen the results for statements inside the loop. We will go into more detail about

this in Section 4.3.4. The analysis is based on the work of Engelen [7, 8] which uses the

results of Bachmann et al. [9–11] on chains of recurrences. Further information about

the Scalar Evolution can be found in the thesis of Tobias Grosser [12].

2.4 Integer Set Library

The Integer Set Library [1] (ISL) is a C library which provides functionality for program

analyses and transformations which rely on the polyhedral model. It provides a frame-

work to represent and manipulate multidimensional affine integer sets and relations.

The Add Recurrence from Figure 2.7 can be expressed in ISL as shown in Figure 2.10.

{[i0]→ [2i0] ∶ i0 ≥ 0 and i0 ≤ 4}1

Figure 2.10: Affine Relation in ISL

The Add Recurrence represents the values for the program variable i. The ISL descrip-

tion captures all values of i depending on the virtual loop iteration i0. Due to the upper

1Syntax similar to the original ISL syntax. 2i0 denotes 2 ∗ i0.
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bound of 10 and the stride of 2, the loop iterates five times, represented by i0 ranging

from iteration zero to iteration four. For a given iteration number i0 one can obtain the

concrete value for i in this iteration. As an example, in iteration three, the value for i

is 2 ∗ 3 = 6.

There are three kinds of dimensions in ISL: parameter dimensions, input dimensions

and output dimensions. An arbitrary amount of dimensions of each kind is possible.

Figure 2.11 shows the different types of dimensions in the ISL descriptions.

[p1, p2]
Parameter Dimensions

→ { [i0, i1, i2]
Input Dimensions

→ [o0]
Output Dimensions

∶ c0 and c1}

Figure 2.11: ISL Dimension Types

The output dimensions describe the values inside the polytope depending on the input

and parameter dimensions. The constraints c0 and c1 restrict the dimensions.



Chapter 3

Related Work

Memory dependence analysis is a very popular and active area of research. Our work

presents a relational, context sensitive inter-procedural analysis, which is able to handle

recursion and has a parametric description of the accesses. Currently our analysis is

purely static. The following approaches are similar to ours or present interesting ideas

on how to extend it.

The work of S. Rus, L. Rauchwerger and J. Hoeflinger [13] about a static and dynamic

memory reference analysis addresses the necessity of run-time checks to achieve accurate

results. Their approach is similar to ours: they introduce a parametric description of

accessed memory regions, so called linear memory access descriptors (LMADs). Addi-

tionally, they deal with non-linear access expressions, e.g. for indirect memory accesses.

Their analysis works on Fortran ’77, hence they do not address problems such as alias-

ing or recursion, because they do not occur in Fortran. The LMADs are descriptions of

memory accesses within loops and can contain conditions, call sites and recurrences. To

represent accesses of larger program regions, they collect access information referring to

arrays in summary sets. These sets are classified in different categories, distinguishing

read and write accesses among others. Using LMADs comes at the cost of redefining

operations and optimizations for this description.

The problem of constructing access descriptions for whole program regions is addressed

by R. Rugina and M. C. Rinard [14]. Their inter-procedural analysis computes ranges for

array accesses using constraint systems for lower and upper bounds. Their goals include

finding array bound violations, whereas we assume that there are no out of bounds

accesses. Our analysis could be adapted to check array bounds, but this would result

in very conservative conclusions about the memory accesses in many cases. To give an

accurate description of the accesses within a program region they generate read and

write sets. Their analysis is also purely static. The representation of ranges for values

of array accesses is strictly weaker than the polyhedral representation when considering

11
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linear-affine bounds, as every such range can be expressed by a polyhedron, but not vice

versa.

We provide an intra-procedural value analysis as a first step for the overall analysis,

which we want to compare to similar approaches in the following.

P. Cousot and N. Halbwachs developed a value analysis using polyhedra [15]. The general

method of handling conditionals and assignments in the paper of Cousot and Halbwachs

is similar to our approach; only the handling of loops differs. Cousout and Halbwachs

use widening after analyzing the loop once, which is defined as dropping all constraints

that are not exactly the same before and after the symbolic execution of the loop. They

do not take the loop bounds into account, which is a sound overapproximation. In most

cases this is not accurate enough to find precise descriptions of array accesses within the

loop. As loop iteration variables are often used for array accesses, the bounds of these

variables are an important information. To tackle these problems, we use the Scalar

Evolution. It provides information about loop bounds and variant variables, which we

use to widen the results of expressions within the loop. This is explained in more detail

in Section 4.3.4.

The analysis described by Cousot and Halbwachs works with one polyhedron per pro-

gram variable describing real numbers. We use a union of polyhedra to avoid the over-

approimating join if the union is not a polyhedron again. We constrain our polyhedra

to describe integers, as other values are of no particular interest to form the access

descriptions.

Halbwachs presents an improved widening operator, widening up to, in his work Delay

analysis in synchronous programs [16]. This widening operator builds invariants about

values of variables. It does not skip all constraints about a variable but finds bounds for

the variable that changes. This operator is therefore already able to handle simple loop

bounds and improves precision of the analysis.

Henzinger and Ho [17] present an extrapolation operator, which is more precise than

Cousot and Halbwachs’ widening operator, but lacks the guarantee to terminate. Never-

theless, this operator is useful to gain precise information when granting some additional

computation time and can be seen as an alternative operator to improve the precision

of Cousot and Halbwachs’ analysis.



Chapter 4

Analysis

Our analysis consists of multiple steps as shown in Figure 4.1. In the intra-procedural

phase, a value analysis generates polyhedral descriptions for program variables. After-

wards accesses which occur in the function are analyzed separately and summarized to

a single memory access description for the whole function.

Inter-procedural analysis

Intra-procedural analysis

Context Collection

Local Access AnalysisCall Analysis

Function Level Lifting

Initial Function Analysis

Fixpoint Reached?

Functions

Accesses per

Function

Context
Information

Local Access

Descriptions

∀F. F ∈ Functions

Accesses per Function

Accesses of Called

Functions

Accesses of Function

Figure 4.1: Analysis Phases

13
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Function calls are not resolved in the initial intra-procedural analysis, this is done by a

fixpoint iteration in the inter-procedural analysis. In this phase each function is again

analyzed individually with access descriptions of all functions that are called inside this

function. Resolving the calls leads to new access descriptions for each function, which

are then propagated to the call sites again. The propagation is done until a fixpoint is

reached.

4.1 Parametric Access and Value Description

As motivated in Chapter 1, we want an analysis that generates relational memory access

descriptions. We chose a polyhedral representation, as it is parametric and as powerful

as Presburger arithmetic. This logic is decidable, consistent and complete, and therefore

a solution to a constraint system can always be found if it is solvable. The results of

the value analysis as well as the memory access descriptions are polyhedral unions. To

explain what will become parameters in our description and how to interpret them,

consider Figure 4.2.

1 for (i := 0; i < N; ++i) {

2 A[i] := ...;

3 }

Figure 4.2: Parametric Loop with Memory Access

Our description for the access in line 2 is parametric in the parameters shown in Fig-

ure 4.3.

[A,Aend,N]
Parameter Dimensions

→ { [i0]
Input Dimensions

→ [o0]
Output Dimensions

∶ ...}

Figure 4.3: Parameters for the Access A[i]

A parameter can be an integer variable for which we do not know the exact value, e.g.

a function argument. In our example above N is such a parameter. A and Aend refer

to the location of an array, where A corresponds to the first position of the array and

Aend to its last position. We do not track memory content, so whenever we refer to

arrays we refer to their addresses. The dimension i0 is introduced in order to express

the abstract concept of loop iterations. It enables us to represent values with respect to

a loop iteration. For a loop nest of depth three, the description has three dimensions,

i0, i1 and i2. This property will be useful for the detection of loop carried memory

dependencies, which will be explained in detail in Section 4.5.1. The value and access

descriptions contain only a single output dimension. More output dimensions can occur
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when expressing accesses to multidimensional arrays. However, the analysis currently

supports only one dimensional arrays, hence a single output dimension is sufficient.

The value descriptions are always parametric in all global variables and function param-

eters. For readability we will only list those that are relevant in the current example.

4.2 Language Definition

We formally define our analysis on an abstract language, though the implementation

works on full LLVM-IR.

func f(v1, ..., vn) s (Function Definition)

Figure 4.4: Functions

Since the only types that can be used to access memory are integers, the language only

allows integer values and they are not annotated explicitly. A function in our language

(as defined in Figure 4.4) always returns an integer. The statement s is the function

body and v1 to vn are parameters of the function.

e ∶= f(e′) (Function Call)

∣ A[e′] (Read Access)

∣ A[e′ ∶ e′′] (Slicing)

∣ e′ ○ e′′ (Binary Operation)

∣ ◻ e′ (Unary Operation)

∣ v (Variable)

∣ c (Constant)

○ ∈ {+,−,∗, /,<,≤,>,≥,=,∧,∨} ◻ ∈ {¬,−}

Figure 4.5: Expressions

Figure 4.5 lists the expressions in the language and Figure 4.6 the statements.

s ∶= A[e] ∶= e′ (Write Access)

∣ for (v ∶= e; e′;φ∗) s′ (Loop)

∣ (if (e) then s′ else s′′) φ∗ (Conditional)

∣ return e (Return Statement)

∣ A ∶= alloc(e) (Allocation)

∣ s′; s′′ (Sequence)

∣ v ∶= e (Assignment)

Figure 4.6: Statements
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The language does not have pointers. For the theoretical part this is fine, as one can

rewrite every pointer into an array and every pointer dereference into an array access.

The language represents programs in SSA form, therefore on every join point of control

flow phi nodes (denoted by φ∗) are placed.

4.3 Intra-procedural Analysis

The intra-procedural phase of the analysis describes how to analyze program regions in

isolation, i.e., without resolving function calls. It consists of a value analysis and an

analysis for all memory accesses inside the function.

The results of both, the value analysis and the inter-procedural analysis are polyhedral

unions. In the first case they represent values of variables, in the second case they

describe memory accesses.

The polyhedral unions are partially ordered by a subset relation. The most precise

information is the empty polyhedron, whereas the least precise is the unconstrained

polyhedron (a polyhedron describing the whole parameter space). The most precise

information is also referred to as bottom, and the least precise information as top. The

lattice we operate on is not finite. Section 4.3.1 defines the meet and join operations as

well as the abstract transformers for statements and expressions.

4.3.1 Value Analysis

The results of the memory dependence analysis should be parametric. The value analysis

works on the same domain to supply the memory dependence analysis with parametric

control flow sensitive value information.

The context C is a mapping from program variables to a union of polyhedra.

C ∶ Vars→ ⋃P

The union of polyhedra is used to avoid overapproximation. Joining two polyhedra is

not necessarily a polyhedron again. The convex hull could be computed to gain a single

polyhedron, but this is generally overapproximative and might be costly.

Program variables Vars are split into array variables VarsA and scalar variables VarsS

(with VarsS ∩VarsA = ∅). Initially every variable is mapped to the bottom element.

Cinitial = {(x,�) ∣ x ∈ Vars}
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The join of two polyhedra is the union containing both polyhedra.

∪ ∶ P × P → ⋃P
P1 ∪ P2 ∶= Pu

where P ⊆ Pu⇔ P ⊆ P1 ∨ P ⊆ P2

The join of two polyhedral unions is a union containing the elements of both unions.

∪ ∶ ⋃P ×⋃P → ⋃P
Pu1 ∪ Pu2 ∶= Pu

where P ⊆ Pu⇔ P ⊆ Pu1 ∨ P ⊆ Pu2

A join of two contexts is the join of every two corresponding polyhedral unions.

∪ ∶ C × C → C
C1 ∪C2 ∶= {(x,Pu1 ∪ Pu2) ∣ (x,Pu1) ∈ C1, (x,Pu2) ∈ C2, x ∈ Vars}

The intersection of two polyhedra is a polyhedron again, therefore we use the regular

polyhedral intersection ∩poly. If the polyhedra have different parameters, the missing

ones are added as unconstrained parameters.

∩ ∶ P ×P → P
P1 ∩ P2 ∶= P1 ∩poly P2

The intersection of a union of polyhedra with another union of polyhedra is computed by

intersecting all polyhedra from one union with every polyhedron from the other union.

∩ ∶ ⋃P ×⋃P → ⋃P
Pu1 ∩ Pu2 ∶= {P1 ∩ P2 ∣ P1 ∈ Pu1, P2 ∈ Pu2}

In some cases the context should be constrained using polyhedra generated from a

condition. In order to do this, the union of polyhedra generated from the expression is

intersected with all polyhedra in the context.

∩ ∶ C ×⋃P → C
C ∩ Pe ∶= {(x,Pu ∩ Pe) ∣ (x,Pu) ∈ C, x ∈ Vars}

Note that all the operations above are commutative.

4.3.1.1 Symbolic Evaluation of Expressions

The evaluation of expressions does not directly influence the context, they are only

relevant when used within a statement. Therefore a different evaluation function is

used for expressions and statements. The function ⟪⋅⟫C ∶ (E × C) → ⋃P evaluates an

expression within a context.
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⟪c⟫C = []→ {[]→ [c]}

Constants are represented by a description which maps everything to the constant value.

⟪v⟫C = [v]→ {[]→ [v]}

Variables are evaluated similarly, everything is mapped to the corresponding parameter.

There are two cases to distinguish for binary operations: either the operation ○ is ex-

pressible in Presburger arithmetic and therefore has a corresponding polyhedral opera-

tion ○poly, or it is not expressible.

⟪e ○ e′⟫C = p ○poly p′ with p = ⟪e⟫C and p′ = ⟪e′⟫C

In the case that the expression is representable, both operands are evaluated and the

equivalent polyhedral operation is used to combine them.

⟪e ○ne e′⟫C = [n]→ {[]→ [n]} with fresh1 parameter n

For inexpressible operations a parameter is introduced. The evaluation of the expressions

returns a description which maps to this parameter.

⟪f(e)⟫C = [n]→ {[]→ [n]} with fresh parameter n

⟪A[e]⟫C = [n]→ {[]→ [n]} with fresh parameter n

A similar evaluation is defined for function calls and memory accesses. Return values

of functions are not taken into account and memory content is not tracked, therefore

parameters are introduced for those values.

The parameters for unknown values or inexpressible expressions are useful when com-

paring accesses of certain regions, this is explained in more detail in Section 5.1.

⟪◻e⟫C = ◻poly p with p = ⟪e⟫C

The unary operations of the language are all expressible and handled analogously to the

binary ones.

4.3.1.2 Symbolic Evaluation of Statements

The function J⋅KC ∶ (S × C) → C takes a statement and a context and returns a new

context.

JA[e] ∶= e′KC = C
1The fresh parameters has a unique name.
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Writing to some array changes the content of the array. Since the information about

array variables that are stored in the context refers to the memory location of the array,

not its content, this statement does not influence the context.

Jfor (v ∶= e; e′;φ∗) sKC = C ∪Cb ∪CSE
with

CSE ∶ Context Information from Scalar Evolution

Cu = C ∪CSE
Cb = JsK(Cu∩⟪e′=true⟫Cu)

To symbolically evaluate loops, the loop body is evaluated with respect to the condi-

tion that guards the loop. Note that the information becomes flow sensitive with this

evaluation function. The Scalar Evolution provides information about the loop iteration

count, which is used to determine lower and upper bounds for induction variables. In

particular, phi nodes are evaluated by the Scalar Evolution as they are used to obtain

the closed form descriptions of loop variant variables.

We use the SSA properties throughout the work, therefore we need to ensure SSA form

in our language. For readability, we will omit the phi selections for all examples.

Consider the example in Figure 4.7.

1 for (i := 0; i < N; ++i) {

2 ...

3 }

Figure 4.7: Loop Evaluation

The value of i ranges between 0 and N − 1. This information is provided by the Scalar

Evolution and is added to the context. Every other statement inside the loop that uses

i will have a description that is parametric in i. For the context collection phase this

parametric description is kept and no fixpoint iteration or widening is applied. Later on

this will become necessary and is explained in Section 4.3.4.

J(if (e) then s else s′) φ∗KC = C ∪Ct ∪Cf ∪Cφ
with

Ct = JsK(C∩⟪e=true⟫C)
Cf = Js′K(C∩⟪e=false⟫C)

Cφ = {(p, ⟪x⟫Ct ∪ ⟪x′⟫Cf
) ∣ [p ∶= φ(x,x′)] ∈ φ∗}

By evaluating the branches with respect to e = true or e = false respectively, the control

flow information is taken into account. Conditions that either always evaluate to true

or false will result in ⟪e = false⟫C or ⟪e = true⟫C being empty. The intersection with

an empty union of polyhedra is again empty, therefore for every statement within the
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branch the information will be bottom. This can only occur for dead statements. The

phi nodes select the values that were assigned differently within the consequence and

alternative. Again we will omit the phi nodes in the following for readability.

Jreturn eKC = C

The return statement does not influence the context, as it only contains an expression

and return values of functions are not used.

Js; s′KC = Js′KJsKC

To evaluate a sequence, the first statement is evaluated and the resulting context is used

to evaluate the second statement.

Jv ∶= eKC = C ∪ {(v,⟪e⟫C)}

For an assignment the right-hand side expression is evaluated and the resulting polyhe-

dral union is stored in the context for the variable v. Due to the SSA properties C does

not refer to v yet.

JA ∶= alloc(e)KC = let

C ′ = C ∩ ⟪Aend = A + e⟫C ∩ ⟪A ≤ Aend⟫C
in

{(v, I ∩ ⟪Bend < A⟫C) ∣ (v, I) ∈ C ′, B ∈ VarsA}

∪ {(v, I ∩ ⟪Aend < B⟫C) ∣ (v, I) ∈ C ′, B ∈ VarsA}

end

When allocating memory, information about the position of the allocated array is added.

No other array can overlap with the new memory region. The location of A is restricted

such that all already defined arrays B in the context, are either located before or after

A in the contiguous memory.

4.3.2 Local Access Descriptions

Local access descriptions are a polyhedral representation of single access statements. For

every program point a set of read and write descriptions is built. Assume the statement

A[i] = B[j] +A[j + 3] at program point x. The set of read and write descriptions for x

are:
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Wx = {[A,Aend, i]→ {[]→ [A + i] ∶ A + i ≤ Aend, i ≥ 0}}

Rx = {[A,Aend, j]→ {[]→ [A + j + 3] ∶ A + j + 3 ≤ Aend, j ≥ −3},

[B,Bend, j]→ {[]→ [B + j] ∶ B + j ≤ Bend, j ≥ 0}}

The constraints A + i ≤ Aend and i ≥ 0 are added because we assume the programs to

access arrays in bounds. For the same reasons A + j + 3 ≤ Aend and j ≥ −3 are added.

Read and write sets contain an access description for every array that is accessed at a

program point.

4.3.3 Propagate Access Descriptions

So far we have only derived information about memory accesses of single statements.

The accesses are now summarized to express all accesses within a program region. To

determine whether two memory regions access the same memory locations, the intersec-

tion of the memory access descriptions for the regions is calculated. If this intersection

is empty, the accesses are disjoint, thus the regions are independent with regards to

memory effects.

1 func f(A[], x) {

2

3 // Begin R1

4 for (i := 0; i < 10; ++i) {

5 A[i] := i;

6 }

7 // End R1

8

9 // Begin R2

10 for (j := 10; j < 20; ++j) {

11 A[j] := x;

12 }

13 // End R2

14 }

Figure 4.8: Regions with Disjoint Memory Accesses

Consider the example in Figure 4.8. Marked are two regions, R1 and R2, which have

disjoint memory accesses. Figure 4.9 shows the control flow graph and Figure 4.10 the

control dependence graph for this example.
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n0

n1

n4n2

n3 n5

n6

n7

n8

i := 0

i < 10

not(i < 10)

A[i] := i j := 10

++i

j < 20

not(j < 20)

A[j] := x

++j

Figure 4.9: Control Flow
Graph of Figure 4.8

func f

fori forj

A[i] := i A[j] := x

Figure 4.10: Control Dependence
Graph of Figure 4.8

Assume the propagation of accesses was done along the control flow edges. The ac-

cess A[i] would propagate along the edge from n1 to n4 and over n5 into the second

loop where the access A[j] is made. The results for n8 would therefore include access

descriptions for both A[i] and A[j]. To decide whether the accesses of R1 and R2

overlap, the descriptions at n4 and n8 could be compared. However, the intersection

of the descriptions at these program points will be non-empty, because both program

points include the accesses to A[i]. This problem does not occur when propagating

along control dependencies.

In the given example, the propagation starts at the access level. The accesses are lifted to

loop level and then to function level. The different levels of lifting correspond to different

granularities a parallelizer may be interested in. At access level, different accesses of the

same loop can be compared to each other (which corresponds to comparing them within

the same loop iteration in our case). At loop level loop carried dependencies can be

detected (explained in detail in Section 4.5.1). Finally, at function level all effects of the

function are summarized. The usage of control dependencies rather then control flow is

only interesting for the intermediate steps; if we were only interested in function level

accesses we could also use the CFG to propagate the accesses.

4.3.3.1 Propagation over Loops

Statements inside of loops can be executed more then once. If the index of an array

access depends on variables that change within the loop, more than one position of the

array is accessed during the execution of the loop. Consider Figure 4.11.
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1 func f(A[]) {

2 for (i := 0; i < 20; i := i + 5) {

3 A[i] := i;

4 }

5 }

Figure 4.11: Propagation of Access Polyhedra for Loops

The local access description for line 3 looks like this:

W3 = {[A,Aend, i]→ {[]→ [A + i] ∶ A + i ≤ Aend, 0 ≤ i}}

Considering only the statement in line 3, exactly one position, namely position i of the

array A, is accessed. The fact that the statement is executed multiple times needs to

be taken into account to describe all accesses of the loop. The function parameter A is

a fixed parameter inside the function, it is always the same array with the same logical

address. This is different for i, which is not fixed, its value changes in every iteration.

Therefore the access description should also depend on the loop iteration. The iteration

dependent description for the loop looks like this:

W2−4 = {[A,Aend]→ {[i0]→ [A + 5i0] ∶ A + 5i0 ≤ Aend, 0 ≤ i0}}

The value of i is incremented by 5 in every iteration, hence the access position is 5i0.

With the additional context information about the loop bound the following description

is gained:

W2−4 = {[A,Aend]→ {[i0]→ [A + 5i0] ∶ A + 5i0 ≤ Aend, 0 ≤ i0 ≤ 3}}

Access descriptions at function level are parametric in the global variables and function

parameters. This description should be independent from loop iterations but still capture

all accesses of a loop inside the function. In order to lift the access description W2−4 to

function level the input dimension i0 needs to be removed. An existentially quantified

variable is introduced in order to eliminate i0. The access description at function level

looks like this:

Wf = {[A,Aend]→ {[]→ [A + x] ∶ ∃y. 5y = x, A + x ≤ Aend, 0 ≤ x ≤ 15}}

ISL [1] provides methods to eliminate dimensions, which either introduce existentially

quantified variables or apply a Fourier-Motzkin-Elimination. More details on this can

be found in the ISL Manual [18] and the source code documentation [19].

4.3.3.2 Propagation over Conditionals

When propagating descriptions from inside the consequence or alternative of a condi-

tional to the outside, the condition can be used to constrain the accesses. Consider

Figure 4.12.
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1 func f(A[], x) {

2 res := 0;

3 if (x < 5)

4 res := A[1];

5 return res;

6 }

Figure 4.12: Presburger Condition

The local access description for Figure 4.12 is shown in Figure 4.13.

R4 = {[A,Aend]→ {[]→ [A + 1] ∶ A ≤ Aend}}

Figure 4.13: Local Access Polyhedron for line 4 in Figure 4.12

The access in line 4 happens only if x < 5 holds, therefore this constraint is added to the

description.

R3−4 = {[A,Aend, x]→ {[]→ [A + 1] ∶ A ≤ Aend, x ≤ 4}}

Figure 4.14: Local Access Polyhedron with Condition

Note that this restriction makes the polyhedron smaller. Before using the information

of the condition, x was unconstrained, now it is constrained.

Lifting the description in Figure 4.14 to function level is easy: nothing changes. All

parameters in the description correspond to function parameters.

There are conditions that cannot be expressed using Presburger arithmetic. Consider

Figure 4.15.

1 func f(A[], x) {

2 res := 0;

3 z := x * x;

4 if (z < 5)

5 res := A[1];

6 return res;

7 }

Figure 4.15: Non-Presburger Condition

As mentioned in Section 4.3.1.1, a parameter is introduced for expressions that cannot

be accurately represented in the polyhedral union. Since the multiplication in line 3 of

Figure 4.15 is not expressible, a parameter for z is introduced. The local description of

the access is shown in Figure 4.16.

R5 = {[A,Aend, z]→ {[]→ [A + 1] ∶ A ≤ Aend, z ≤ 4}}

Figure 4.16: Local Access Polyhedron with Non-affine Condition
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At function level, the description should no longer be parametric in z as it is neither a

function parameter nor a global variable. There is no further information about z in the

context. It cannot be determined whether z ≤ 4 holds, so the conservative assumption

is that the condition may be true and the access happens. Eliminating z leads to losing

this constraint and assuming that whenever the function is called, the access is made.

This is a sound overapproximation on the accesses within the function.

The purpose of introducing a parameter for non-affine expressions is explained in Sec-

tion 5.1.

4.3.4 Overapproximation and Intra-procedural Widening

In most static intra-procedural analysis widening is crucial for the precision of the results.

We have not seen widening so far, as it happens implicitly.

The polyhedral analysis is a strong relational analysis, which allows modeling the pro-

gram exact for all linear affine parts. Most of the presented examples contained accu-

rately expressible accesses and conditions, as those are the ones which are interesting

to discuss. For all other expressions an overapproximation is applied. One example for

this was presented in Figure 4.15. The condition could not be expressed in terms of the

parameters of the function and the truth value could not be computed. The assumption

for such conditions is that both, the consequence and the alternative of the conditional,

are executed. This soundly overapproximates the accesses of a conditional.

Parameters introduced for non-linear-affine expressions are always assumed to have the

value top. Whenever accesses are lifted and this parameter is projected out, the expres-

sion behind this parameter is approximated by assuming all possible values for it.

The Scalar Evolution can calculate bounds on the iteration count of a loop. This is

achieved by computing how often the back edges to the loop header are taken. The

bound on the iterations does not need to be a simple constant, but can be an arbitrary

Scalar Evolution expression. This expression can especially refer to a program variable,

which can be correlated to a parameter in the polyhedral description. This enables

parametric bounds on loop iterations.

[A,N]→ {[i0]→ [A + i0] ∶ A ≤ Aend, 0 ≤ i0 ≤ N}}

Figure 4.17: Description of an Access within a Loop with Parametric Bound N

Figure 4.17 describes an access to an array within a loop. The number of loop iterations

is bounded by N . Assume that N is a function parameter, then the function level

description is given by Figure 4.18.
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[A,Aend,N]→ {[]→ [y] ∶ A ≤ y ≤ A +N, A ≤ Aend, y ≤ Aend}

Figure 4.18: Lifted Description of the Access in Figure 4.17

The access description is not overapproximated by the lifting, due to the calculated

bound.

However, the Scalar Evolution is not always able to calculate the iteration count. In

this case an overapproximation is made when lifting the accesses. Figure 4.19 shows an

access without a bound on the iteration count, and Figure 4.20 the access widened to

function level.

[A,Aend]→ {[i0]→ [A + i0] ∶ A ≤ Aend, i0 ≥ 0}

Figure 4.19: Description of Access without Loop Bound

[A,Aend]→ {[]→ [y] ∶ A ≤ y ≤ Aend, A ≤ Aend}

Figure 4.20: Lifted Description of the Access in Figure 4.19

Note that in both lifted descriptions the accesses are constrained by y ≤ Aend because

accesses are assumed to be inbound.

Widening in an intra-procedural analysis is only necessary for statements within loops.

Due to the parametric description and the concept of loop iterations, an explicit widening

is not necessary. Nevertheless, the results are sound, as values for variables inside a loop

(or accesses made inside a loop) are overapproximated if the loop iteration count is

unknown.

4.4 Inter-procedural Analysis

In order to generate sound results for the accesses of a function, calls inside the func-

tion need to be considered. The presented intra-procedural analysis generates access

descriptions for a function under the assumption that called functions do not access

any memory. This is not sound for a standalone intra-procedural analysis, because it

underapproximates the accesses of a function. The intra-procedural analysis is embed-

ded in an inter-procedural analysis in our case. The underapproximation is intended to

compute the least (not greatest) fixpoint in the inter-procedural analysis.

An inter-procedural analysis generates access descriptions for functions with respect to

called functions. In the inter-procedural analysis the results of the intra-procedural

analysis can be used as initial access descriptions for each function. In order to describe

the accesses made by a call, the current access description of the called function is

instantiated with the arguments handed over at the call site. The resulting description

is added to the access description of the caller.
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Note that the inter-procedural analysis described above is context sensitive. It aims

to find the least fixpoint by starting with the assumption that no memory is accessed

within callees.

4.4.1 Application of Inter-procedural Analysis

We will demonstrate our inter-procedural analysis using the example in Figure 4.21.

1 G[];

2

3 func g(m, n) { func findMin(A[], m) {

4

5 a := 0; min := A[0];

6 b := 0; for(i := 1; i < m; ++i){

7 elem := A[i];

8 if (m < n) { if(elem < min){

9 a := findMin(G, m); min := elem;

10 b := findMin(G[m + 1 : ], n); }

11 } }

12

13 return a + b; return min;

14 } }

Figure 4.21: Example Inter-procedural Analysis

The function findMin searches the minimal element in the array A starting at position

0 up to position m − 1. Function g calculates the sum of the minima for the parts 0 up

to m − 1 and m + 1 up to n of the global array G. In the case where m is greater than

or equal to n, no memory accesses are made.

The intra-procedural analysis calculates descriptions for all explicit accesses inside a

function, considering no memory access is done by called functions. The results of the

intra-procedural analysis are shown in Figure 4.22.

RfindMin = {[A,Aend,m]→ {[]→ [y] ∶ A ≤ y < A +m, A ≤ Aend, y ≤ Aend}}
WfindMin = {}

Rg = {}
Wg = {}

Figure 4.22: Intra-procedural Access Descriptions for g and findMin

Inside function g are no memory accesses, so both the read and the write ployhedral

unions are empty. In findMin only read accesses occur which read from positions A[0]
up to A[m − 1].

These results are used as initial access descriptions for the inter-procedural analysis. As

findMin does not call any functions, the overall accesses of findMin are the results
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from the intra-procedural analysis. Note that we omit the end-constraints for better

readability in the following examples.

RfindMin = {[A,m]→ {[]→ [y] ∶ A ≤ y < A +m}}
WfindMin = {}

Figure 4.23: Accesses for findMin

For g we resolve the function calls to findMin. The first call is a = findMin(G,m).
We adapt the access description of findMin to express this call using the following

steps:

1. Create a primed version of the original access.

{[A′,m′]→ {[]→ [y] ∶ A′ ≤ y < A′ +m′}}

2. Generate equality constraints for every function parameter with its correspond-

ing argument.

A′ = G, m′ =m

3. Add those constraints to the primed version of the access.

{[G,A′,m′,m]→ {[]→ [y] ∶ A′ ≤ y < A′ +m′,

A′ = G, m′ =m}}

4. Project all primed parameter out of the polyhedral description.

{[G,m]→ {[]→ [y] ∶ G ≤ y < G +m}}

5. Add all context constraints which hold for the relevant parameters at the posi-

tion of the function call.

{[G,m,n]→ {[]→ [y] ∶ G ≤ y < G +m, m < n}}

Figure 4.24: Function Call Resolution

After applying these steps, the fixpoint is reached, nothing changes in the next iteration.

Hence, the final results are empty write sets for both functions and the read accesses

are as shown in Figure 4.25.

Rg = {[G,m,n]→ {[]→ [y] ∶ (G ≤ y < G +m, m < n)
or

(G +m + 1 ≤ y < G +m + 1 + n, m < n)}}
RfindMin = {[A,m]→ {[]→ [y] ∶ A ≤ y < A +m}}

Figure 4.25: Accesses of g and findMin

The description of the access in Rg is a union of two polyhedra. The union is constructed

by the join of the access descriptions of the calls. A polyhedron is a conjunction of

constraints. For readability the conjunctions are separated by commas. Disjunctions
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cannot occur within a polyhedron, only inside a polyhedral union. They are expressed

by an “or”.

4.4.2 Fixpoint Iteration

A fixpoint iteration in the inter-procedural analysis is necessary, because changes in the

access descriptions of a function need to be propagated to the call sites to obtain sound

results. The iteration order does not influence the results directly, but it influences the

number of iterations required to reach the fixpoint.

For acyclic call graphs the fixpoint iteration will always terminate. Within strongly

connected components the fixpoint iteration might not terminate, therefore widening is

applied if the fixpoint iteration does not terminate within a fixed amount of iterations.

The example in Figure 4.26 motivates the need of widening.

1 func f(A[], x) {

2

3 if (x > 0) {

4 A[x] := 7;

5 return f(A, x-1);

6 }

7

8 return x;

9 }

Figure 4.26: Recursive Function

The initial description for the accesses in f is given by:

Wf = {[A,x]→ {[]→ [A + x] ∶ x ≥ 1}}

This access describes exactly one position that is written, namely the position A + x.

The function call inside f need to be analyzed in the next step. To resolve the call

f(A, x − 1) the steps described in Figure 4.24 are used to gain the following result:

Wf(A, x−1) = {[A,x]→ {[]→ [A + x − 1] ∶ x ≥ 2}}

We get A + x − 1, x ≥ 2 from A′ + x′, x′ ≥ 1 as we used x′ = x − 1, which matches

the intuition that the recursive call only accesses memory again if x was large enough

initially. The description is exact so far, when considering only one recursive call. The

new access description for f is:

Wf = {[A,x]→ {[]→ [y] ∶ y = A + x, x ≥ 1 or y = A + x − 1, x ≥ 2}}
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This description for the accesses of f differs from the ones before. Therefore callers of

the function f need to update their result again. The function is recursive, so it needs

to be updated itself. In the next iteration the access A+x− 2, x ≥ 3 is discovered. Here

a problem can be detected: in every further iteration the bound on x increases and one

additional position of A is accessed. The fixpoint iteration does not terminate for this

example, thus widening is needed.

4.4.3 Widening

Our widening is applied after a fixed amount of iterations without reaching a fixpoint.

This can only happen within a strongly connected component (SCC). The widening we

present is applied at call sites. It is only applied for calls from a member of a SCC to a

member of the same SCC.

In the following description we refer to the values handed over at a call site as arguments

and to function parameters as parameters.

If the arguments are independent from parameters of the function, no special widening

needs to be applied. There are two cases where this can occur: A local variable or a con-

stant is passed to the function. Constants do not need to be overapproximated as they

cannot influence the termination behavior of the presented fixpoint iteration. Local vari-

ables do not influence the termination in our case, as we eliminate (and therefore already

overapproximate) them when lifting the access to function level (c.f. Section 4.3.3).

The interesting case are parameter dependent arguments. To avoid divergence of the

fixpoint iteration, within the SCC the evolution of arguments should be considered,

rather than the exact expression at the call sites. If we have a parameter b and a call

site with the argument b + x this call site can be overapproximated by assuming that b

evolves in a certain direction. The evolution depends on the information given for x. In

the case that x is positive, the value for b + x is larger than b. To resolve the function

call containing the argument b + x the constraint that it is equal to the called function

parameter is not added. The widening adds a constraint to express that “something

larger than b” is handed over.

Consider Figure 4.26 again to get an intuition how this widening works and how it is

implemented. The fixpoint iteration did not terminate for this example. For a human

it is easy to see that x is getting smaller and A stays the same, but the analysis needs

an algorithmic solution to detect this.

Every argument is compared to every parameter of the caller. First A and x − 1 are

compared. They are considered distinct, as they refer to different function parameters.



Analysis 31

Then x and x − 1 are compared, which both refer to x. In this case the polyhedral

description of both expressions is used to test how they can be correlated. The value of

x − 1 is always smaller than the value of x. The value for A stays the same.

Overall four types of evolutions are considered: the parameter is passed to the function

as is, it will be larger, smaller, or the evolution could not be determined. To give an

example of the last case consider Figure 4.27.

1 func f (A, x) {

2 z = A[0];

3 return g(x + z);

4 }

Figure 4.27: Call Argument Depends on Function Parameter

In this case the relation between x and x + z cannot be determined. The variable z can

have an arbitrary value, hence the evolution of x is unknown.

For the example in Figure 4.26 the relation between A and the argument handed over

to f again is equal, for x and x − 1 the relation is smaller. With these relations, the

results of the called function can be widened. First, a primed version for the description

is constructed:

Wf = {[A′, x′]→ {[]→ [y] ∶ y = A′ + x′, x′ ≥ 1 or ...}}

The constraint x′ < x is added, which corresponds to the intuition that x will be smaller

in the following iterations. For the array A′ = A is added.

Wf = {[A,A′, x, x′]→ {[]→ [y] ∶ y = A′ + x′, x′ ≥ 1, x′ < x, A′ = A or ..., x′ < x, A′ =
A}}

To express that x should be an arbitrary value that is smaller, x′ is projected out. This

is also done for all other primed parameters. The result describes accesses with not only

a single position x that is accessed, but accesses from 0 up to x.

Wf = {[A,x]→ {[]→ [y] ∶ A ≤ y ≤ A + x, x ≥ 1}}

For this example the upper bound x and the lower bound of 0 are kept, which describes

the bounds accurately. The resulting access description is a tight description of all

accesses within f .

The analysis will not always be able to find the upper bound. If the bound is given by

a non-affine expression, it will be overapproximated when lifting the access to function

level. In this case the widening is overapproximative, it assumes that every element up

to the end of the array is accessed.
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If we cannot determine the evolution, widening in both directions is applied. Values for

parameters that are passed to the function unchanged are not widened.

We do not consider modulo so far, therefore monotonicity for all our operations is given.

To show that the widening is sound, it needs to be shown that the widening is going up

in the lattice and that it is terminating. For the three cases where widening is applied,

the easiest case is the one assuming all values for the argument. We directly go to the

top element of the lattice, therefore it directly terminates and also goes up in the lattice.

For both other cases we know the evolution and apply the widening depending on it.

As our operations are monotone, dropping the bound in this direction will capture the

values of the evolution and is therefore a progress and terminates directly.

4.5 Memory Dependence Analysis

The memory dependence analysis should give information about accesses made in func-

tions or regions. It should also be able to decide whether accesses in different regions

must, may, or must not overlap. In our analysis the decision of memory accesses being

disjoint reduces to the question if the intersections of polyhedra are empty. Given two

program regions we can intersect the read and write polyhedra and if anything other

than the read polyhedra overlap, we cannot guarantee disjoint memory accesses stat-

ically. There might be conditions under which the intersection would be empty, but

which cannot statically be proven. In these cases run-time checks could be generated,

for which our analysis already holds all necessary information.

For arbitrary program parts the analysis can directly provide summarized access de-

scriptions and therefore show program regions disjoint. Loop carried dependencies need

an additional processing step, which is explained in the following.

4.5.1 Loop Carried Dependencies

If a loop has loop carried dependencies, one loop iteration uses values that are calculated

in an earlier iteration of the loop. Figure 4.28 shows two examples. The one on the left-

hand side shifts the positions of the values in the array A by one. The example on the

right-hand side zero-initializes an array from position 0 to position N − 1.
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1 for (i := 0; i < N; ++i) {

2 A[i] := A[i + 1];

3 }

(a) Loop Carried De-

pendency on A[i]

1 for (i := 0; i < N; ++i) {

2 A[i] := 0;

3 }

(b) No Dependencies

Figure 4.28: Loop Carried Dependencies

In the absence of loop carried dependencies parallel execution of each loop iteration is

possible. In Figure 4.28 (b) the order in which zero is written to the array does not

matter, whereas in Figure 4.28 (a) the result depends on the order of the execution of

the loop iterations.

Our analysis can support parallelization with information about memory access de-

pendencies in different loop iterations. What we need to show is that there are no

dependencies between any two (or more) iterations of the loop. Therefore we compare

the access descriptions for one iteration with those of an arbitrary subsequent iteration.

To explain how this is achieved consider Figure 4.29:

1 for (i := 0; i <= N; i := i + 2) {

2 A[i] := A[i + 1];

3 }

Figure 4.29: Loop without Loop Carried Dependencies

In the example we have one loop variant variable i. A variable is loop variant, if it can

change within the loop, all other variables are considered loop invariant. In each loop

iteration i is incremented by 2. The array is accessed at positions i and i+1. Because the

loop stride is 2, we do not have any memory dependencies between two loop iterations.

We describe how to detect this using our analysis results. The initial access descriptions

are shown in Figure 4.30.

W2 = {[A,Aend,N]→ {[i0]→ [A + 2i0] ∶ A ≤ Aend, A + 2i0 ≤ Aend}}
R2 = {[A,Aend,N]→ {[i0]→ [A + 2i0 + 1] ∶ A ≤ Aend, A + 2i0 + 1 ≤ Aend}}

Figure 4.30: Local Accesses for Figure 4.29

During the analysis a bound on the loop iteration count is collected. The values for i

are constrained using this bound. Figure 4.31 shows the value description for i with

bounds.

[N]→ {[i0]→ [2i0] ∶ 0 ≤ i0 ≤ ⌊N/2⌋}

Figure 4.31: Value Description for i
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Remember that i0 describes the concept of a virtual loop iteration, so this description

expresses the value of i depending on the current iteration. In iteration 0 the value of i

is 0, in the next iteration it is 2 and so on. The maximal number of loop iterations for

the loop is ⌊N/2⌋ + 1, therefore i0 can range from 0 up to ⌊N/2⌋.

In order to compare one iteration with an arbitrary other iteration of the same loop, a

description is constructed that contains all possible further values for the loop variant

variables. To obtain this description, we first represent all possible increments as shown

in Figure 4.32.

[]→ {[]→ [inc] ∶ inc mod 2 = 0, inc > 0}

Figure 4.32: Value Description for the Increment of i

By adding these increments to the variant variable, every subsequent value for the

variable is expressed.

[N]→ {[i0]→ [2i0 + inc] ∶ 0 ≤ 2i0 + inc ≤ ⌊N/2⌋, inc mod 2 = 0, inc > 0}

Figure 4.33: Value Description for Subsequent Iterations of i

The value description for i in Figure 4.30 can be replaced by this description to get all

subsequent iterations. Figure 4.34 shows the result. The + in W2+ and R2+ indicates

that all following accesses are described.

W2+ = {[A,Aend,N]→

{[i0]→ [A + 2i0 + inc] ∶

A ≤ Aend,

A + 2i0 + inc ≤ Aend,

0 ≤ 2i0 + inc ≤ ⌊N/2⌋,

inc mod 2 = 0,

inc > 0}}

R2+ = {[A,Aend,N]→

{[i0]→ [A + 2i0 + inc + 1] ∶

A ≤ Aend,

A + 2i0 + inc + 1 ≤ Aend,

0 ≤ 2i0 + inc + 1 ≤ ⌊N/2⌋,

inc mod 2 = 0,

inc > 0}}

Figure 4.34: Subsequent Accesses for Figure 4.30

In order to find out whether there are dependencies, we intersect the write accesses

W2+ and W2 with all other accesses (W2,R2,R2+ and W2+,R2,R2+). In this case the

intersections are all empty, hence we have proven the accesses disjoint and can conclude

that there are no loop carried memory dependencies.

We only get tight descriptions if we know all loop variant variables and their evolution.

If there are loop variant variables for which the Scalar Evolution does not have an Add
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Recurrence we need to overapproximate them. To show the difficulties including loop

variant variables, consider the example in Figure 4.35:

1 x := 0;

2 for (i := 0; i < N; ++i) {

3 x := 1 - x;

4 A[i + x] := A[i + x] + 7;

5 }

Figure 4.35: Loop Variant Variable without Add Recurrence

The loop in the example carries dependencies. There is a value dependence on x and

the accesses are not disjoint in every iteration. In iteration zero A[1] is accessed, which

is accessed again in iteration one. The value of A[1] in the second iteration depends on

the value in the first iteration and is both read and written.

The description for both accesses is given by:

W4 = R4 = {[A,Aend, x]→ {[i0]→ [A + i0 + x] ∶ A ≤ Aend, A + i0 + x ≤ Aend}}

The interpretation of the description needs to be done carefully in this case. When just

comparing the accesses of one iteration with its successors, i0 + x and i0 + x + inc are

compared, which are always different. The problem is that x changes in every iteration,

but there is no monotone pattern to describe the change. In this case the value of x

needs to be overapproximated before the comparison. This overapproximation leads to

losing all information about the access:

W2−5 = R2−5 = {[A,Aend]→ {[]→ [y] ∶ A ≤ y ≤ Aend}}

The loop iterations cannot be proven disjoint, which is sound and even exact because

the loop has loop carried memory dependencies.

We shortly sum up the interference check for loops again in Figure 4.36.

Our detection of loop carried dependencies is based on comparing an iteration with

subsequent iterations. This is sufficient for two reasons: we have monotone operations

and the variant variables evolution is also monotone (or overapproximated otherwise).

By considering the evolution of the variant variable every possible behavior is covered.

We do not need to compare an iteration with any previous iterations, as this is captured

by comparing the previous iterations with subsequent iterations.
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1. Collect all local access descriptions for accesses within a loop.

2. Overapproximate loop variant variables where no Add Recurrence can be found.

3. Create the description for all further loop iterations. Look up loop variant

variable with Add Recurrences VA. For every v ∈ VA:

(a) Construct a polyhedron with the constraints (inc = v mod stride) and

(inc > 0)

(b) Look up the value description for v in the context

(c) Add the constructed polyhedron to this description and get the next iter-

ation accesses by replacing the variant variable with those descriptions

4. Intersect write descriptions with all other descriptions

Figure 4.36: Check for Loop Carried Dependencies

We want to discuss our introductory example shortly to show the limitations of the static

analysis part and explain ideas for run-time. The example is shown again in Figure 4.37.

1 for (i := 0; i < N; ++i) {

2 A[i] := A[i + C];

3 }

Figure 4.37: Parametric Loop Carried Dependencies

The loop has loop carried memory dependencies if C is less than N . Without further

information about C our analysis cannot show that A[i] and A[i + C] are disjoint.

The subsequent iteration accesses are described by A[i + inc] and A[i + C + inc]. The

introduced inc is bounded by N , but there is no bound for C, so the write and read

accesses can overlap when inc is equal to C. The accesses are disjoint when C > N holds.

By synthesizing constraints similar to this one and using them as run-time checks, we

could gain less conservative results.

This feature is currently not supported by the implementation. The theory is elaborated

and the descriptions are given in the correct form, but the interpretation and interface

to query loop dependencies need to be implemented.



Chapter 5

Limitations

The values of our analysis are constrained to integer values, as only those can occur in

memory accesses. Neither our value analysis nor the further parts are able to handle

floating point values.

Working with polyhedra with lots of parameters is slow. For every global array we add

two parameters (encoding begin and end). Access descriptions for accesses within a

function contain parameters for non-linear affine expressions and functions parameters.

Algorithms solving problems given in Presburger arithmetic have doubly exponential

complexity [20] in the number of parameters involved.

Non-linear access patterns are not expressible within our polyhedral description. The

following section discusses how we can sometimes bypass overapproximation and when

we need to overapproximate.

5.1 Non-affine Expressions

The polyhedral representation only captures Presburger arithmetic, so multiplications

of variables or division are not accurately expressible. In Section 4.3.3.2 we already

mentioned how we overapproximate them to get access descriptions for whole functions.

We have not explained why we introduce parameters for them in the first place, which

is what we are going to do now.

Consider example 5.1. There are two loops which write results of function calls to the

array A.

37
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1 n := x*x;

2

3 for (i := 0; i < n; i++) {

4 A[i] := f(i); \\ f(i) does not access A

5 }

6

7 for (i := n; i < n + 20; i++) {

8 A[i] := g(i); \\ g(i) does not access A

9 }

Figure 5.1: Usage of a Parameter for Non-Affine Expressions

The loops do not access the same elements in A: one starts at 0 and writes up to position

n−1 and the other starts at n and writes up to n+19. Considering only the shown region,

we can prove that those accesses to A do not overlap as we have the fixed parameter

n in our polyhedron. We do not know anything about its value, but we do not have

to in order to prove the accesses disjoint. Conceptually the parameter n is similar to a

function parameter, but with a different scope.

For some regions we can make use of the strengths of the parametric representation to

be less overapproximative. This advantage is lost when looking at the memory accesses

at function level: n is only a local parameter and we need to overapproximate in order

to remove it from the access description.

Again, for more precise results we could add run-time checks for the affected expressions.

However, this creates new problems; consider Figure 5.2.

1 func f(a[], n) {

2

3 if (n * n < 15) {

4 // some memory accesses

5 }

6 }

(a)

1 func f(a[]) {

2 n := a[0];

3 if (n * n < 15) {

4 // some memory accesses

5 }

6 }

(b)

Figure 5.2: Functions with Non-affine Expressions

In example 5.2 (a) we could make use of the check whether n∗n < 15 holds and provide

two different polyhedral descriptions depending on on the result. This produces some

overhead without the guarantee of being profitable. For example 5.2 (b) it is even more

complicated: We cannot use n inside a constraint at function level as it is a local variable

and therefore not in scope at function level. The call context of the function and scoping

of the variables used in the non-affine expressions need to be taken into account, so the

position of the checks need to be calculated carefully.
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Evaluation

In the introduction we presented some examples we want to tackle with our analysis. In

Chapter 4 we defined the analysis and the resulting descriptions for memory accesses.

Now we have another look at the challenges of automatic parallelization presented in

Chapter 1 and evaluate if and how our results can help to enable parallelization.

As mentioned before, loop carried dependencies are not included in the evaluation as

they are not supported by the implementation as of now.

6.1 Enabling Parallelization

In order to parallelize program regions, a variety of conditions need to hold. Our analysis

should help to find out whether the memory accesses within the regions overlap.

6.1.1 Aliasing

Accesses made using different pointers do not necessarily lead to disjoint memory ac-

cesses. Figure 6.1 shows two variants of the aliasing example from the introduction.

1 func f (A[], B[]) {

2

3 for (i := 0; i < N; ++i) {

4 for (j := 5; j < M; j := j + 2) {

5 A[i] := B[j];

6 }

7 }

8 }

(a) Arrays as Arguments

1 A := alloc(N);

2 B := alloc(M);

3

4 for (i := 0; i < N; ++i) {

5 for (j := 5; j < M; j := j + 2) {

6 A[i] := B[j];

7 }

8 }

(b) Locally Allocated Arrays

Figure 6.1: Aliasing Case Study

39
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The accesses in Figure 6.1 (a) are independent if A and B do not alias. In Figure 6.1 (b)

A and B cannot alias due to the allocations above the accesses. The results for the write

accesses for both examples are shown in Figure 6.2.

W5 = {[A,Aend,B,Bend,N,M]→

{[i0, i1]→ [A + i0] ∶

0 ≤ i0 < N,

A + i0 ≤ Aend
A ≤ Aend, B ≤ Bend}}

(a) Arrays as Arguments

W5 = {[A,Aend,B,Bend,N,M]→

{[i0, i1]→ [A + i0] ∶

0 ≤ i0 < N,

A +N = Aend, B +M = Bend,

A ≤ Aend, B ≤ Bend,

(Bend < A or Aend < B)}}

(b) Locally Allocated Arrays

Figure 6.2: Write Access Descriptions for Figure 6.1

The accesses are parametric in all program variables and additionally in two artificial

parameters which encode the respective end positions of the arrays. The position of the

access is A + i0 and the bounds of i0 are computed as described in Section 4.3.4.

The generation of constraints to express disjoint memory regions such as Bend < A or

Aend < B in Figure 6.1 (b) has not been demonstrated so far. When analyzing an alloca-

tion, the bound on the size of the array is added to the context. Additionally, constraints

that the newly allocated array does not overlap with any other array are added. The

formal definition of how the constraints are generated is shown in Section 4.3.1.2. The

accesses in Figure 6.1 (a) are not constrained this way, since the allocation of the arrays

is not within the analyzed region.

These differences in the description are important when resolving aliasing. In the case

of the locally allocated arrays we can intersect the descriptions for the write access to

A and the read access to B and the result is empty. We can statically guarantee that

these accesses must not overlap. The intersection of the read and write accesses of

Figure 6.1 (a) is not empty. It depends on the values for A, B, i and j.

The analysis is purely static so far, in order to give a sound result for the case of

non-empty intersections we need to assume that the accesses may overlap. A different

way of interpreting the results is to require that there is no aliasing (maybe because

another analysis has computed those results). Accesses through different pointers are

then considered distinct and we can prove the accesses disjoint.
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Our description is strong enough to express aliasing, but the interpretation of the results

is very conservative when assuming aliasing. This is a consequence of the fact that

aliasing is usually not statically decidable. Run-time checks to resolve aliasing would

make the analysis less conservative. These checks could be synthesized from the access

descriptions, which is left for future work.

6.1.2 Recursion

Our analysis is inter-procedural and therefore needs to be capable of cycles in the call

graph. Cycles occur in strongly connected components, recursion is a special case of

such a cycle.

In Section 4.4.2 we have already seen an example where we gain accurate results for a

recursive function.

1 void merge (int *a, int n, int m) {

2 int i, j, k;

3 int *x = malloc(n * sizeof (int));

4 for (i = 0, j = m, k = 0; k < n; k++) {

5 x[k] = j == n ? a[i++]

6 : i == m ? a[j++]

7 : a[j] < a[i] ? a[j++]

8 : a[i++];

9 }

10 for (i = 0; i < n; i++) {

11 a[i] = x[i];

12 }

13 free(x);

14 }

15

16 void merge_sort (int *a, int n) {

17 if (n < 2)

18 return;

19 int m = n / 2;

20 merge_sort(a, m);

21 merge_sort(a + m, n - m);

22 merge(a, n, m);

23 }

Figure 6.3: Merge Sort1

We want to consider merge sort, a recursive sorting algorithm as shown in Figure 6.3.

Merge sort uses the divide and conquer principle to sort an array. It goes in recursion

for the first and second half of the array, and merges the presorted parts afterwards.

Since the two recursive calls work on disjoint parts of the array, they can be parallelized.

1http://rosettacode.org/wiki/Sorting algorithms/Merge sort#C
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We would expect our analysis to detect this, but it does not. The reason for this is the

loss of the upper bound for the call to merge. If we look at the loop in line 4, we can see

that k is incremented in every iteration, but i and j need not to be incremented in every

iteration. The scalar evolution is restricted to affine recurrences, which cannot be found

for i and j. Therefore only the value of k is bounded by n and the bounds on i and j

are missed. This leads to an imprecise result for merge which propagates to the results

of merge sort. With information about piecewise affine Add Recurrences we would be

able to prove the calls to merge sort disjoint.

6.2 Benchmarks

The implementation was tested using the official LLVM test suite [21]. It is designed for

performance testing.

Our focus is not primarily the performance, but rather the granularity of the access

descriptions. Nevertheless, of the 525 executed test 435 passed and 90 failed the per-

formance testing with respect to compile-time. Timeouts were expected, because of the

super exponential complexity.

Count Description

2200 Number of Modules

42537 Total number of functions

5341 Functions that can be analyzed

Table 6.1: Total Numbers of Modules, Functions and Amount of Analyzable Functions

Table 6.1 shows the overall test results. Modules in LLVM can be correlated to transla-

tion units in C. Out of 2200 Modules containing 42537 functions definitions, the analysis

was able to gain results for 5341 functions. There are several reasons why the analy-

sis cannot compute results. First of all, structs, which are widely used throughout the

tests cases, are currently not supported. Functions including a struct access cannot be

analyzed. This propagates to through the call tree. Table 6.2 gives an overview of the

most problematic cases for the analysis.

Count Description

7340 Load or Store to struct, union or multidimensional array

2224 Indirect calls (e.g. trough function pointer)

1490 Function parameter, argument or global variable cannot be expressed

1071 Irregular control flow

Table 6.2: Factors for Overapproximations



Evaluation 43

For indirect function calls we do not know which function is called, and in particular,

whether a function within our module is called. This function can have access to all

global arrays and to everything accessible from the arguments it is called with.

We rely on the Scalar Evolution to evaluate all kinds of expressions, though the Scalar

Evolution does not handle floating point expressions. Within the value analysis, these

values are directly overapproximated to top. This can also happen for global variables

and function arguments. At this point the analysis stops. Row 3 in Table 6.2 lists those

cases.

The first three problems listed in Table 6.2 are assumed to be not accurately analyzable,

as an overapproximation of those would result in overapproximating all reachable arrays

to a full access.

The irregular control flow entry represents functions where the analysis fails to fully

understand the structure. This influences mostly the value analysis, in particular the

condition propagation (for more details see Section 7.1). In this case, instead of giving

up, the results of the value analysis are overapproximated by mapping every value to

top. Accesses within the function are still analyzed afterwards.

Count Description

23673 Functions outside translation unit

10058 Overapproximated calls to functions outside translation unit

Table 6.3: Calls to Functions Outside the Translation Unit

For all functions of which we can see only the declaration, we need to consider that they

may touch memory. We overapproximate every call to such a function, to accesses for

function arguments and global arrays. Table 6.3 shows the number of overapproxima-

tions and the number of unknown functions.

Count Description

361 Modules

791 Analyzable functions

Table 6.4: Modules not Containing Problems Described in Table 6.2

Consider Table 6.4. Out of the 2200 modules of all test cases, only 361 neither contain

any struct or union accesses nor indirect function calls. Within these tests, many function

calls to functions outside the translation unit occur (see Table 6.5), which makes the

results for those modules overapproximate as well.
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Count Description

838 Functions outside translation unit

1349 Overapproximated calls to functions outside translation unit

Table 6.5: Calls to Function Outside the Translation Unit

Overall, the results are inconclusive which is mostly due to missing implementation

features. With these features and the loop carried memory dependencies, more compre-

hensive results could be achieved by using the analysis within an automatic parallelizer.



Chapter 7

Technical Details

The analysis is implemented in C++ and analyzes programs given in LLVM-IR. The

concept of a module in LLVM can be correlated to a translation unit in C. Modules can

hold global variables and functions, functions consist of basic blocks whereas they are

constructed from single instructions. LLVM provides an interface to write analyses which

work on the intermediate representation, the LLVM Pass Framework. This framework

allows to add passes easily. Each analysis, transformation or optimization in LLVM

is a different pass and is scheduled by the Pass Manager. Passes can have a different

granularity depending on which logical unit they belong to. If it is sufficient to analyze

one function at a time and the results do not relay on other functions, a function pass is

a reasonable solution. As we need to iterate over the whole call graph within a module,

our pass is a module pass.

The module pass is responsible for the coordination of the analysis. The first step

is running the intra-procedural analysis on every function of the module. Within the

intra-procedural analysis a value analysis is performed first.

The value analysis looks at every instruction and extracts useful information. We have

described the value analysis on our high level language in Section 4.3.1. For the parts of

the analysis that diverge a lot in the implementation will now explain how we translated

the concepts to fit the low level LLVM-IR equivalents.

7.1 Condition Propagation on the CFG

There is no syntactic representation for conditionals or loops in LLVM-IR. In our lan-

guage it was easy to find the scope of a condition introduced by one of those concepts,

which is not that obvious in the intermediate representation.

Consider the function in Figure 7.1.
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1 func f () {

2 ...

3 if (x < y)

4 ...

5 else

6 ...

7 }

Figure 7.1: Example Condition Propagation

The consequence is executed when x < y holds, otherwise the alternative is executed.

Figure 7.2 shows the corresponding LLVM-IR code.

1 define i32 @func () #0 {

2 entry:

3 ...

4 %cmp = icmp slt i32 %x, %y

5 br i1 %cmp , label %if.then , label %if.end

6

7 if.then: ; preds = %entry

8 ...

9 br label %if.end

10

11 if.else: ; preds = %entry

12 ...

13 br label %if.end

14

15 if.end: ; preds = %if.else ,

16 ... %if.then

17 }

Figure 7.2: Example Condition Propagation in LLVM-IR

The analysis starts at the entry block and follows branches along the control flow. When

reaching a conditional branch, such as the one in line five, the condition and the negated

condition are computed. Then the immediate post-dominator of the branch destinations

is computed. In the example the destinations are %if.then and %if.else, the immedi-

ate post-dominator is %if.end. The %if.then block is evaluated under the assumption

that our condition holds, analogously for the else branch with the negated condition.

The algorithm for this computation is recursive which resolves nesting and the scoping

of the conditions. After both branches have computed their results, they are joined. Re-

member that we have polyhedral unions, which allows us to not overapproximate when

joining these results. For the then branch we will get results that contain the collected

values with the additional constraint x < y and for the else branch with the constraint

x >= y, so they are disjoint. After the join the analysis continues at the post-dominator.

The described propagation corresponds to a propagation along the control dependencies.
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There are a couple of corner cases to take care of: First of all, the immediate post-

dominator does not need to exist. This can occur if there is a return statement inside a

conditional our due to control flow induced by exception handling. Another LLVM pass

to normalize the CFG is executed before our pass. This pass cannot always normalize

the CFG, in these cases our analysis will drop all value analysis results for the function.

The condition cannot always be expressed with a polyhedral union. In this case we

assume that both branches are executed unconditionally, which is a sound overapproxi-

mation. On the other hand, we may detect that a condition cannot hold. We have found

a dead branch, and the bottom value is assigned to all values inside the corresponding

blocks.

For non-SSA programs the condition of a conditional branch does not need to hold until

the immediate post-dominator is reached. One of the variables inside the condition may

be overwritten within a block. This is not a problem in our case since the analysis always

operates on an SSA form program and therefore it is clear which values are addressed

within the condition.

Switch statements in LLVM-IR are handled using the same concepts.

7.2 Further Remarks

Our analysis requires some properties on the given LLVM-IR in order to compute useful

results. One requirement has been mentioned in Section 7.1, namely to be able to find

post-dominators for basic blocks. A second requirement is, that the Promote Memory To

Register Pass of LLVM is executed before our analysis. This pass eliminates unnecessary

reads and writes to memory, e.g. for local variables that are stored to memory in one

instruction and are immediately loaded again for the next instruction. This elimination

is crucial for the Scalar Evolution as it does not reason about values stored to or loaded

from memory. Our results strongly dependent on those of the Scalar Evolution and

therefore we require this pass.

In our language we did not introduce the concept of pointer but rather only referred to

arrays. In LLVM-IR we handle every pointer variable as an array. Accesses are always

relative to some pointer or array variable. The intermediate representations uses special

instructions to address a certain position relative to a pointer, called GetElementPoint-

erInstruction. This instruction can also describe an access to a multidimensional array

or a struct. We do not support structs or multidimensional arrays, so our analysis gives

up on a function when they are accessed. To overapproximate them, we would need
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to exclude the possibility that they hand out pointers to functions outside the module,

which could result in accesses we cannot detect.

In the last phase of our analysis we resolve function calls and iterate until results stabilize.

We have already described how we handle strongly connected components and functions

within our module, but we have not talked about functions outside the module that

are called. These functions cannot be analyzed as we only see the declarations, so we

need to overpproximate them soundly. This is done by generating whole array accesses

for all global arrays and for all pointers handed over to these functions. In a couple of

cases we can do better: Functions in LLVM can be annotated with read none, which

indicates that this function does not accesses any memory. Those functions are not

overapproximated when called (and also not analyzed when within our module). LLVM

provides a module pass named TargetLibraryInfo which, in combination with Memory

Builtins, enables us to detect functions like malloc or free. Especially malloc is

interesting for our analysis, as a call to malloc creates a new array. Therefore instead

of handling malloc as a regular function, we have a special treatment: We handle the

pointer we receive as a new array and do not assume memory accesses to arrays when

malloc is called.
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Conclusion and Future Work

8.1 Future Work

There are several approaches to improve analysis precision as well as applicability. The

support of multidimensional arrays could be added without the need of new logic. Return

values of functions are not supported but may be a nice additional feature.

Currently structs are not supported at all, we need to give up when structs are involved.

To make the approximation for structs better, one could look at the fields of the struct.

When the struct contains only primitive data types and no pointer, it could be handled

similar to arrays. An approximation for other structs could also be thought of.

The handling for function calls to functions outside the translation unit is quite overap-

proximative. A more advanced approach for the approximation of these functions could

be thought of, e.g., link time optimizations.

For simplicity we consider that no overflow occurs. The theory is based on integers of

unlimited size, so x < x+1 is always true. Polly [3] is aware of possible overflows. LLVM

as well as the Scalar Evolution support integer overflow detection by marking values that

cannot overflow. For all other computations Polly adds constraints describing that the

results belong to a residue class. This residue class is calculated by value mod maxInt.

As we have seen before, the Scalar Evolution is able to calculate loop bounds. With these

loop bounds we constrain loop variant variables for which the Scalar Evolution provides

an Add Recurrence. But, as described in Section 6.1.2, we still miss loop bound infor-

mation on variables for which the Scalar Evolution could not find an affine recurrence.

An additional detection for upper bounds of loop variant variables is desirable.
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We do not work with modulo during the analysis1, although it is part of Presburger

arithmetic. This could be added in the analysis, but then the inter-procedural widening

is no longer sound. It relies on the monotonicity property of the operations, that the

modulo operation does not have.

Loop carried dependencies are challenging for every parallelizer. Detecting those depen-

dencies is a desirable feature. This is elaborated in the theory and supported by the

descriptions, but not yet by the implementation of the dependence analysis.

An interesting new extension would be to use the gained access descriptions to extract

run-time checks. These checks could be placed in front of a critical section to select

either a parallelized version or a sequential version at run-time. This includes two major

tasks: constructing the run-time checks and finding out when they are actually useful

for a parallelizer.

8.2 Conclusion

The work presents a context and flow sensitive inter-procedural analysis for memory

dependencies. The main contribution is, that the analysis works at an inter-procedural

level and provides parametric accesses descriptions for different kinds of granularities

of program regions. The descriptions are carefully designed to address a variety of

different problems. In order to compare regions within a function, control flow sensi-

tive information is used. Loop carried memory dependencies can be detected using the

access descriptions as they encode values with respect to loop iterations. The summa-

rized descriptions for functions enable the comparison of regions that contain function

calls. There are no restrictions on the program under analysis. Solutions for recursions,

function calls outside the module, loops and other language elements are provided.

Although the descriptions for memory accesses are powerful, the practical results so

far are not as good as expected. First, the analysis is purely static which makes it

conservative. Run-time checks would improve on the results. The main problems for

a loss of precision in practice are missing information on loop variant variables and

the expensive calculations for intersections and joins. The last aspect is the one we

assume to be the most critical: To reduce the time for the calculations, a restriction

on the number of parameters needs to be considered. Sometimes the introduction of a

parameter does not pay off, an overapproximation is therefore profitable to reduce the

time for the computations. The question remains how to detect those parameters.

1For the detection of loop carried dependencies modulo is used, but these calculations are done when
the analysis has already collected all access descriptions.
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Overall the approach has a lot of potential for further research.
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