
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor Thesis

SUACA
A tool for performance analysis of machine programs

submitted by

Hendrik Meerkamp

submitted

July 10, 2018

Supervisor

Prof. Dr. Sebastian Hack

Advisor

Andreas Abel

Reviewers

Prof. Dr. Sebastian Hack
Prof. Dr. Jan Reineke

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any other media or
materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der
Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science Department.

Saarbrücken,…………………………….. ………………………………………….
 (Datum / Date) (Unterschrift / Signature)

Abstract

When trying to highly optimize your code it is essential to know how well it
fits your machine. In this work we present Saarland University Architecture
Code Analyzer (SUACA), a tool that reimplements the throughput and port
analysis of Intel’s IACA. Additionally it offers various options to further
investigate the code’s performance as well as its bottlenecks. We will discuss
what its capabilities are and how the results should be understood.

Acknowledgments

I would like to thank my advisors Prof. Sebastian Hack and Prof. Jan
Reineke for the useful discussions and especially Andreas Abel for always
finding time for me and all of my questions. I would also like to thank my
friends Johanna Müller, Stefanie Lörsch, Kallistos Weis and Jonas Cirotzki
for their proofreading.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Intel’s Microarchitectures . 4
1.3 IACA’s Analysis . 5
1.4 Scope of Work . 6
1.5 Measurements . 7
1.6 Related Work . 8

2 Functionality of SUACA 11
2.1 Throughput Analysis . 11
2.2 Latency Analysis . 14
2.3 Control Flow Graph . 14
2.4 Dependency Graph . 15
2.5 Architecture Selection . 16
2.6 Detailed Information . 17
2.7 Branch Analysis . 19
2.8 The Command Line Interface (CLI) 21

3 Implementation 23
3.1 Dependency Analysis . 23

3.1.1 Single Iteration . 23
3.1.2 Multiple Iterations . 26

3.2 Simulation of the Front-End 26
3.3 Choosing the Ports . 27
3.4 Executing Applicable Instructions 32
3.5 Performing a Cycle . 32
3.6 The Divider Pipe . 33

4 Evaluation 35
4.1 Bottleneck Analysis . 35
4.2 Complete Analysis . 37
4.3 Flag Dependencies . 43

5 Conclusion and Future Work 47

1

1
Introduction

1.1 Motivation

Knowing your machine is a major advantage when trying to optimize high-
performance scientific code. IACA (Intel Architecture Code Analyzer) [3]
is a tool by Intel to analyze x86 machine code with respect to a specific
microarchitecture. However, it has some drawbacks that oftentimes prevent
it from being useful in practice, mainly because it doesn’t support the most
recent processors. IACA 3.0, which was released in late 2017, supports the
4th (Haswell) to the 6th (Skylake) generation of Intel Core microarchitectures.
Skylake was released in 2015. IACA 2.3 additionally supports the 2nd (Sandy
Bridge) and the 3rd (Ivy Bridge) generation. So at the time of writing IACA
is about three years behind and its further development remains unclear.
The second complication is that IACA is closed source. Its user guide [4] is
the only documentation it has which provides little to no information about
how it actually computes its output. As a result a user will often find himself
wondering how its output fits the analyzed program.
In this work we present SUACA (Saarland University Architecture Code
Analyzer), an open source alternative. It uses measurements provided by [1]
which are parsed during runtime. This way a user does not rely on a software
update of the tool as he can simply perform the measurements on his own,
should we not already support his microarchitecture. At the time of writing
SUACA supports all Intel Core microarchitectures from the 1st (Nehalem)
to the 8th (Coffee Lake) generation, except for the server variant of Skylake.

3

CHAPTER 1. INTRODUCTION

1.2 Intel’s Microarchitectures

In order to understand some the computations described in the following
sections, we give a brief overview over Intel’s microarchitectures. They use the
x86 instruction set. However, a single x86 instruction will be not executed

F
ro

n
t

E
n

d
E

xe
cu

ti
on

E
n

gi
n

e
M

em
or

y

Instruction Cache

Instruction Fetch & Decode

Reorder Buffer

Scheduler

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

A
L
U
,
V
-M

U
L
,
..
.

A
L
U
,
V
-A

D
D
,
..
.

L
o
a
d
,
A
G
U

L
o
a
d
,
A
G
U

S
to
re

D
a
ta

A
L
U
,
JM

P
,
..
.

L1 Data Cache

L2 Cache

4–6 µops

µops

µop µop µop µop µop µop

Figure 1.1: Pipeline of Intel Core
CPUs (simplified). [1]

on the CPU as it is, but the
instruction will be translated
into a sequence of so called
µops which can then be exe-
cuted. Unfortunately, there
is little to no official docu-
mentation about those µops,
neither about the functional-
ity of an individual one nor
about their interaction with
one another. From the mea-
surements we can conclude
that each microarchitecture
has its own µops which makes
it even harder to find reliable
information.
Figure 1.1 shows a sketch
of a microarchitecture by In-
tel. We can see the front-
end including the decoder
unit, which is responsible for
the translation of the instruc-
tions into the µops. In our
simulation, we will only con-
sider the number of µops the

front-end produces each cycle which are currently 4–6 depending on the archi-
tecture. Our main interest is focused on the execution engine or more precisely
on the scheduler (or reservation station) and the ports. The scheduler is re-
sponsible for the distribution of the µops over the ports. As mentioned before,
a certain amount of those will be loaded into it by the front-end in each cycle.
It has a maximum capacity which also depends on the specific architecture
(the scheduler of the Sandy Bridge architecture we will be using for most of
our examples has a capacity of 54). The most important property to observe
from this figure are the ports. Each port can be seen as a pipeline that a
µop can run through in order to be executed. The ports themselves hold the

4

1.3. IACA’S ANALYSIS

actual execution units of the processor like the ALU or the MULTIPLEXER.
Every port can hold a single µop per cycle and they support pipelining, which
means that the port can be used again by another µop in the next cycle while
others are still inside the execution units. The only exception from this is the
DIVIDER unit which is slow at executing and can be blocked for multiple
cycles. Usually it is not necessary that the µops are executed in program
order. The so called out-of-order execution is possible whenever there is no
dependency between the respective x86 instructions or the µops themselves.

1.3 IACA’s Analysis

In order to use IACA the code has to be prepared with the two markers
that are defined in the iacaMarks.h header. As IACA is mostly used to
analyze innermost loops of scientific code, we will show how those markers
are inserted there:

#include "iacaMarks.h"

int main(void) {

while (condition) {

IACA START

//Some code here

}

IACA END

return 0;

}

When writing assembly code one can simply insert the markers that are
defined in the iacaMarks.h header manually.
In the following we will perform a throughput analysis with IACA 2.3. The
throughput is the average number of cycles needed to execute the body of the
loop and is therefore the value a programmer should try to optimize.
The latency is the total number of cycles needed to execute a single iteration
of the program. Unfortunately, the latency analysis support was dropped in
IACA 2.2.
The analyzed program is not of particular interest here, but will be discussed
later on. At the moment the focus is on how IACA’s output should be
understood. For this purpose consider the following example:

5

CHAPTER 1. INTRODUCTION

Throughput Analysis Report

Block Throughput: 2.86 Cycles Throughput Bottleneck: FrontEnd

Port Binding In Cycles Per Iteration:

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

| Cycles | 1.6 0.0 | 1.4 | 0.0 0.0 | 0.0 0.0 | 0.0 | 1.4 | 1.6 | 0.0 |

N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)

D - Data fetch pipe (on ports 2 and 3), CP - on a critical path

F - Macro Fusion with the previous instruction occurred

* - instruction micro-ops not bound to a port

^ - Micro Fusion happened

- ESP Tracking sync uop was issued

@ - SSE instruction followed an AVX256/AVX512 instruction, dozens of cycles penalty is expected

X - instruction not supported, was not accounted in Analysis

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |

| 1 | 0.1 | 0.3 | | | | 0.3 | 0.3 | | | mov rax, 0x1

| 1 | 0.9 | | | | | | 0.1 | | | cmp rcx, 0x0

| 0F | | | | | | | | | | jnz 0x7

| 1 | | 0.3 | | | | 0.5 | 0.2 | | CP | add rbx, rax

| 1 | 0.6 | | | | | | 0.3 | | | jmp 0x5

| 1 | | 0.4 | | | | 0.3 | 0.3 | | CP | add rbx, rax

| 1 | | 0.3 | | | | 0.3 | 0.4 | | CP | add rbx, rbx

Total Num Of Uops: 6

Taking a first look, the example shows that IACA computed a block through-
put of 2.86 cycles for this particular program.
The analysis also shows the bottleneck and the average port bindings. The
port bindings represent the sum of the port pressure values we see in the
bottom table.
A port is pressured whenever a µop is assigned to it. The pressure values
themselves represent the average number of cycles the respective instruction
has used each individual port. Due to port pipelining each µop only pressures
the port it uses for a single cycle. Those pressure values therefore equal the
number of µops that were assigned to the port and will add up to the number
of µops (apart from rounding errors). The divider pipe is an exception to
this, it specialties will be explained in Section 3.6.

1.4 Scope of Work

As already stated we will present a tool that is able to analyze x86 assembler
code with respect to a specific microarchitecture. Just like IACA our tool
is able to find byte markers inside a compiled file and analyze the code in
between. We are using Intel’s x86 Encoder Decoder library [2] to disassemble
said file, which allows us to support files of the ELF, PECOFF and MACHO
format.

6

1.5. MEASUREMENTS

After disassembling, SUACA will perform a dependency analysis on the in-
structions and parse the measurement file. Finally it will perform a simulation
of the code. It will not consider the actual effect of the instructions, only their
latencies, dependencies and port usage. The output will be very similar to
IACA’s and additionally SUACA offers some supplementary options which
can be used to further investigate the given program. During all analyses
the instructions are first considered in program order, although instruction
reordering is still possible as we will see in Section 3.3. For several reasons,
which we will are discussed in the following, our simulation will compute an
estimate of the code’s performance, not total numbers.
We will discuss all available options of SUACA in Chapter 2. In Chapter 3
we will then explain in detail how the most important parts of the simulation
and the dependency analyses are implemented.

1.5 Measurements

As mentioned before a crucial part of SUACA’s functionality are the measure-
ments provided by [1]. Consider this snippet from the XML-measurement-file
file:

<instruction ... iform="ADD_LOCK_MEMv_GPRv" ...>

<operand idx="1" r="1" type="mem" w="1" width="64"/>

<operand idx="2" type="reg" ...>RAX ,RCX ,RDX ,RBX ,...</operand >

<operand idx="3" type="flag" ...>OF</operand >

<operand idx="4" type="flag" ...>SF</operand >

...

<architecture name="NHM">

<measurement port15="2" port2="1" port3="1" port4="1" total_uops="5">

<latency cycles="19" startOp="1" targetOp="3"/>

<latency cycles="19" startOp="1" targetOp="4"/>

...

<\measurement >

</architecture >

<\instruction >

We dotted out some unnecessary or redundant information. As we can see
in the first line this is the information for the instruction with the iform
“ADD LOCK MEMv GPR”. iform is an enum from the XED Library [2] that
is used to identify instructions. We can extract the following information
from our snippet:

• One of the RAX, RCX, RDX, . . . registers is an operand and they
have the id 2. We only need the mapping of id→ register here as the
xed library will tell us which operands are actually used in the analyzed
programs. Similarly, the flags have their ids. The flags are the single
bits of the RFLAGS register in x86.

7

CHAPTER 1. INTRODUCTION

• We have some measurements for the Intel Nehalem (NHM) microarchi-
tecture.

• When simulating Nehalem the instruction consists of 5 µops. Two of
these can use ports 1 and 5 and one each can use port 2, 3 and 4.

• As soon as the operand with id 1 is available it will take 19 cycles to
compute the result for the operand with id 3.

As we do not know which µop is responsible for the computation of which
operand we will ignore the startOp property. More precisely we do know that
it takes 19 cycles to produce the result of operand 3 as soon as operand 1 is
available, but we do not know which of the instruction’s µops would actually
perform this computation. SUACA will therefore always wait until all
operands the instruction needs to read are available.
Most instructions have several latency items, depending on the number and
kind of operands. In this case there is no information for operand 2 as the
instruction will not write to those registers. However, the latency for the
operand with id 4 is 19 cycles as well. Some instructions actually produce
their results in a specific order. It might be the case that one operand is
available after 3 cycles and another one after 5, so an instruction that only
needs the first of those operands has to wait 3 cycles whereas another one that
needs the second operand has to wait 5. SUACA can simulate this behavior
as it knows which operand is causing the dependency. When simulating the
whole instruction, SUACA takes the maximum of those values. Note that
those values are always best case i.e., no port was blocked.
We can already observe a lack of information on the µops. As mentioned
before we do not know which µop is responsible for which computation, so we
cannot know how the above mentioned latency values come about. Probably
those early results are computed by some of the µops, but as we do not know
which ones we can not always precisely compute the correct latency should
an instruction be delayed. If the µops of an instruction do not depend on
each other it is even possible that the order of the results changes, which we
also can not simulate. We also have no information about the dependencies
between the µops themselves which does pose a major problem which we will
further discuss in Section 3.3.

8

1.6. RELATED WORK

1.6 Related Work

One can find general information about IACA at its website [3]. The user’s
guide [4] gives additional information about the usage and provides some
examples.

Andreas Abel [1] provides the measurements which enable us to compute our
results.

Jan Laukemann [6] implemented an open source alternative to IACA called
OSACA [7]. It relies on the measurements provided by Johannes Hofmann [5].
We will discuss the differences between the three tools in Chapter 4.

9

2
Functionality of SUACA

In this chapter we are going to explain and show the full functionality of
SUACA. For each available analysis we will show an example run and analyze
the results. As we want to compare the different runs with each other we will
use the following example code for each of them:

1 mov rax , 1
2 cmp rcx , 0
3 jne else

4 add rbx , rax
5 jmp end

6 else :
7 add rbx , rax
8 end :
9 add rbx , rbx

For the sake of simplicity this code is only designed to be an example which
contains two branches which both have a dependency on the previous and
the following instruction.

2.1 Throughput Analysis

As mentioned above, the major use case of IACA is analyzing an inner-
most loop. While IACA will therefore always assume a loop and somehow
determine its number of iterations, SUACA will give the user the option
to choose them. For the following example SUACA considered 200 loop
iterations and the Sandy Bridge microarchitecture. We will do so for all
future examples except stated otherwise. Now consider the following output
which will demonstrate the basic values SUACA computes.

11

CHAPTER 2. FUNCTIONALITY OF SUACA

Block throughput: 2.34 cycles

Block throughput with perfect front-end: 2.34 cycles

Block throughput with infinitely usable ports: 2.00 cycles

Block throughput without dependencies: 2.34 cycles

Microops per cycle: 2.99

Analysis for architecture: SNB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 15.1 || 43.2 || 0.0 || 1.0 || || || || || mov rax, 0x1

1 || 1 || 15.8 || 32.3 || 0.3 || 0.3 || || || || 0.3 || cmp rcx, 0x0

2 || 1 || 16.5 || 20.8 || || || || || || 1.0 || jnz 0x7

3 || 1 || 15.5 || 28.9 || 0.7 || 0.3 || || || || || add rbx, rax

4 || 1 || 16.8 || 20.4 || || || || || || 1.0 || jmp 0x5

5 || 1 || 15.2 || 28.9 || 0.3 || 0.7 || || || || || add rbx, rax

6 || 1 || 15.8 || 43.9 || 1.0 || || || || || || add rbx, rbx

Total number of Uops: 7

At the beginning, the following values are noticed:

• Block throughput is the average number of cycles needed to execute
the program (Total number of cycles

Number of iterations
).

• Block throughput with perfect front-end can be used to see if
the front-end of the processor was the bottleneck of the execution. To
compute this value SUACA will perform a full analysis of the program.
However, it will assume that number of µops loaded per cycle =
capacity of reservation station. If the runtime experiences a speedup,
we conclude that the front-end was indeed the bottleneck. Note that
this does not ignore the maximum capacity of the scheduler.

• Block throughput with infinitely usable ports is computed sim-
ilarly. It will perform a full analysis, but every port can be used
arbitrarily in each cycle. So several µops can use the same port simul-
taneously. Should the runtime improve, we can come to the conclusion
that one of the ports has to be the bottleneck.

• Block throughput without dependencies is as well akin to the
aforementioned values. This time the dependencies are ignored during
the simulation. An improved throughput indicates that the dependencies
between instructions are the bottleneck.

When looking at the block throughput values here we can observe that our
example program runs quite significantly faster with infinitely usable ports.
This makes sense as only ports 0, 1 and 5 can be used by the instructions we
are using. The two jump instructions are the biggest offender since they can
exclusively use port 5.

12

2.1. THROUGHPUT ANALYSIS

In some corner cases it might be possible that both the front-end and the
ports are responsible for a decreased runtime. This can occur if every loaded
instruction is directly computed (front-end bottleneck), but if the front-end
was faster there would be no other port to run the additional loaded instruc-
tions on. In this case, none of the first values would differ from the normal
Block throughput, although they are actually both part of the bottleneck.
Similar behavior can be observed with multiple combinations of the above
mentioned versions of our simulation. For this reason SUACA gives the user
the option to perform these special simulations in all possible combinations.

In the table we can observe the following columns:

• The had to wait column describes the average number of cycles the
instruction experienced a delay from either blocked ports or register
dependencies.

• The caused to wait column describes the average number of cycles the
instruction caused a delay similar to the had to wait value. However,
it will not track transitive dependencies. So consider a program that has
a dependency chain of A→ B → C (where A, B and C are instructions
of your program) and A is not fully computed. A will cause B to be
delayed, resulting in an increased caused to wait value of A. B will
then cause C to be delayed, resulting in an increased caused to wait
value of B.

• The Used Ports columns describe how many cycles the respective port
has been used on average. Due to the port pipelining this is equal to the
number of µops that were assigned to this port in all cases except the
divider pipe (see Section 3.6). If possible, SUACA will always assign
a µop to the port that has been used the least during the analysis (out
of the ports that this particular µop is able to use) in order to achieve
an even distribution of the ports. A detailed description of how those
are computed can be found in Section 3.3.

In SUACA’s output the values of the caused to wait column exceed those of
the had to wait column quite significantly this is due to the fact that multiple
instructions can cause a delay for a single other instruction. We will further
explain this in Section 2.2.
In the Used Ports column we can observe that line 0 has used port 0 0.0
times. This just means that this instruction has used port 0, but to such a
small amount that the rounding resulted in the 0.0 value.

13

CHAPTER 2. FUNCTIONALITY OF SUACA

2.2 Latency Analysis

The latency of a program is the number of cycles needed to execute it once.
SUACA can be used to compute the latency by running its analysis with a
single iteration.

Block throughput: 3.00 cycles

Block throughput with perfect front-end: 3.00 cycles

Block throughput with infinitely usable ports: 3.00 cycles

Block throughput without dependencies: 3.00 cycles

Microops per cycle: 2.33

Analysis for architecture: SNB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || || 1.0 || 1.0 || || || || || || mov rax, 0x1

1 || 1 || || 1.0 || || 1.0 || || || || || cmp rcx, 0x0

2 || 1 || 1.0 || 1.0 || || || || || || 1.0 || jnz 0x7

3 || 1 || 1.0 || 1.0 || 1.0 || || || || || || add rbx, rax

4 || 1 || 1.0 || || || || || || || 1.0 || jmp 0x5

5 || 1 || || 1.0 || || 1.0 || || || || || add rbx, rax

6 || 1 || 1.0 || || 1.0 || || || || || || add rbx, rbx

Total number of Uops: 7

A closer look at the concrete values of this particular run reveals that the
sum of the caused to wait column is 5, whereas the had to wait column only
sums up to 4. This is due to the fact that both line 3 and 5 are responsible
for the delay of line 6 due to the dependency via the rbx register. The exact
dependencies can be found in Figure 2.3. The same behavior arises when an
instruction cannot be executed, because all ports are blocked. When three
different instructions A,B and C block the ports another instruction D would
like to use the caused to wait values of A,B and C are increased while only
D’s had to wait value will increase.
We can also see that the instruction in line 0 has actually used port 0. This
explains the 0.0 average usage value of the throughput analysis.

2.3 Control Flow Graph

The control flow graph is mainly used to compute the correct dependency
graph. The CFG of our example program can be seen in Figure 2.1. The
red edge only appears if the analysis runs in a loop as it represents the “back
jump” to the start of the program that will not appear in a single iteration.
For the sake of readability we dashed the red edge and will do so in future
graphs.

14

2.4. DEPENDENCY GRAPH

0: mov rax, 0x1

1: cmp rcx, 0x0

2: jnz 0x7

3: add rbx, rax

4: jmp 0x5

5: add rbx, rax

6: add rbx, rbx

Figure 2.1: Control flow graph

2.4 Dependency Graph

The dependency graph describes all register dependencies that occur in the
program. An edge from node A to node B indicates that the instruction
represented by B depends on the instruction represented by A. SUACA
will only track read-after-write dependencies, as those are the ones that can
actually cause an instruction to be delayed. Whenever an instruction uses a
memory address, SUACA will try to extract all used registers. Because we
use the XED library [2], we can also consider the suppressed operands that
cannot be seen in the code. One example for those suppressed operands is
the RFLAGS register, but there are several examples where an instruction
has to access a register that does not appear in the code itself. SUACA
will not keep track of the stack as this would often require runtime specific
information. The detailed algorithm that is used to generate this graph can
be found in Section 3.1. First consider the graph shown in Figure 2.2 which
will be generated in the “single loop case”.

This graph was generated with the CFG in mind since there is no edge
from node 3 to node 5. Additionally, we can observe that SUACA does
differentiate between the different flags contained in the RFLAGS register
as the dependence is only reasoned with the zf flag.

15

CHAPTER 2. FUNCTIONALITY OF SUACA

0: mov rax, 0x1

3: add rbx, rax 5: add rbx, rax

6: add rbx, rbx

RAX RAX

RBX RBX

1: cmp rcx, 0x0

2: jnz 0x7

RFLAGS − zf

4: jmp 0x5

Figure 2.2: Dependency graph without loop dependencies

0: mov rax, 0x1

3: add rbx, rax 5: add rbx, rax

6: add rbx, rbx

RAX RAX

RBX
RBX

RBX
RBX

1: cmp rcx, 0x0

2: jnz 0x7

RFLAGS − zf

4: jmp 0x5

Figure 2.3: Dependency graph with loop dependencies

When SUACA is called with at least 2 iterations it will also track all “loop
dependencies”. Figure 2.3 shows the graph with those in consideration. We
can see that our program has two loop dependencies.

2.5 Architecture Selection

As previously discussed, one of the big advantages of SUACA is that one
can easily add new architectures on which the analysis can be based on.
SUACA gives the user the ability to choose a specific microarchitecture. For
the next example we will use Intel’s Coffee Lake microarchitecture instead of
the Sandy Bridge microarchitecture we used previously (the first two columns
are left out to improve readability):

16

2.6. DETAILED INFORMATION

Block throughput: 2.00 cycles

Block throughput with perfect front-end: 2.00 cycles

Block throughput with infinitely usable ports: 2.00 cycles

Block throughput without dependencies: 1.75 cycles

Microops per cycle: 3.49

Analysis for architecture: CFL

had || caused || Used Ports

to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 ||

--

4.7 || 15.9 || 0.1 || 0.8 || || || || 0.1 || 0.1 || || mov rax, 0x1

5.4 || 13.6 || 0.2 || 0.5 || || || || 0.1 || 0.2 || || cmp rcx, 0x0

6.2 || 9.8 || 0.4 || || || || || || 0.6 || || jnz 0x7

43.2 || 48.9 || 0.1 || 0.2 || || || || 0.7 || 0.0 || || add rbx, rax

5.1 || 9.1 || 0.2 || || || || || || 0.8 || || jmp 0x5

42.8 || 51.6 || 0.7 || 0.1 || || || || 0.2 || 0.0 || || add rbx, rax

43.6 || 90.8 || 0.1 || 0.2 || || || || 0.7 || 0.0 || || add rbx, rbx

Total number of Uops: 7

The most significant change marks the infinitely usable ports analysis which
no longer experiences an improvement in runtime. This is due to the larger
number of ports in the Coffee Lake architecture. Instead, we can now observe
that the three add instructions, or more so their dependencies on each other,
are responsible for most of the delays. We can conclude this from the had to
wait and caused to wait values of these instructions and also the improved
throughput with ignored dependencies.

2.6 Detailed Information

SUACA can also deliver some detailed information about one particular
line. This can be useful to determine how a specific instruction causes and
experiences a delay. The following table shows the result of a run on our
example program with 200 iterations and details for line 0. We are using the
Sandy Bridge architecture again.

17

CHAPTER 2. FUNCTIONALITY OF SUACA

Detailed delay information for instruction: mov rax, 0x1 in line 0

Maximum latency: 1

Latencies for dependencies:

Line || 0 -> Line || Line -> 0

3 || 1 || 0

5 || 1 || 0

Delay caused by dependencies:

Line || was delayed || has delayed

3 || 15.2 || 0.0

5 || 14.5 || 0.0

Delay caused by blocked ports:

Port || was delayed || has delayed

0 || 0.0 || 15.1

1 || 13.5 || 15.1

5 || 0.0 || 15.1

In order to get a better understanding of those values, we will split the output
and explain them step by step.

Maximum latency: 1

Latencies for dependencies:

Line || 0 -> Line || Line -> 0

3 || 1 || 0

5 || 1 || 0

First we can see that this instruction has a maximum latency of one cycle.
This value can differ from those of the table below as we have seen in Sec-
tion 1.5.
The table itself shows the latencies SUACA used for the dependencies. The
second column shows the delay from the analyzed line to the line given in
the first column and the third row shows the delay in the other direction. In
our case, lines 3 and 5 depend on line 0 (see Figure 2.3) and we can see that
those lines actually have to wait one cycle for line 0 to be finished, and line 0
itself is independent of the other two.

18

2.7. BRANCH ANALYSIS

Delay caused by dependencies:

Line || was delayed || has delayed

3 || 15.2 || 0.0

5 || 14.5 || 0.0

This table now shows that lines 3 and 5 actually are delayed by our analyzed
line. On average, line 3 has to wait 15.2 cycles for line 0 to be finished while
line 5 has to wait 14.5 cycles. Of course, both do not cause any delay on
line 0 as there is no dependence.

Delay caused by blocked ports:

Port || was delayed || has delayed

0 || 0.0 || 15.1

1 || 13.5 || 15.1

5 || 0.0 || 15.1

Finally SUACA outputs how much delay was caused by the ports. First
consider that the mov instruction in line 0 can, in theory, use ports 0, 1 and 5.
In our case it causes a delay of 13.5 cycles per iteration on another instruction,
because it uses port 1. It does not cause any delay on the other two ports
that it might use simply because it always uses port 1 in our particular case
(see Section 2.2). The second column exhibits that line 0 experiences a delay
of 15.1 cycles per iteration because all three usable ports were blocked. The
mov instruction we are considering only consists of a single µop which leads
to all three of those values being identical.
More precisely, the mov instruction can only be delayed by blocked ports if
all three of its usable ports are blocked, otherwise it would just select the
free one. So all three of those blocked ports are responsible hence the three
identical values.
However, this is not always the case since an instruction might consist of
more than one µop. We will discuss this further in Section 3.3.

2.7 Branch Analysis

Finally, SUACA is able to analyze different branches. As we have seen in
Figure 2.1 and Figure 2.2, the “normal” analysis already considers branches for
its dependencies. However, as the effect of the instructions will be completely
ignored in the simulation, the branches will not have any other effect.

19

CHAPTER 2. FUNCTIONALITY OF SUACA

The actual branch analysis will perform two simulations, one for each branch.
This will always consider the first jump instruction and this one only. It will
not acknowledge every single possible path through a program with multiple
branches. We will now consider the branch analysis of our example program,
with the Sandy Bridge architecture and 200 iterations:

Left branch analysis:

Block throughput: 2.00 cycles

Block throughput with perfect front-end: 2.00 cycles

Block throughput with infinitely usable ports: 2.00 cycles

Block throughput without dependencies: 2.00 cycles

Microops per cycle: 2.99

Analysis for architecture: SNB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 14.6 || 30.1 || 0.0 || 1.0 || || || || || mov rax, 0x1

1 || 1 || 15.6 || 30.3 || || 1.0 || || || || || cmp rcx, 0x0

2 || 1 || 15.6 || 23.8 || || || || || || 1.0 || jnz 0x7

3 || 1 || 15.6 || 31.2 || 1.0 || || || || || || add rbx, rax

4 || 1 || 16.6 || 22.9 || || || || || || 1.0 || jmp 0x5

6 || 1 || 15.7 || 30.3 || 1.0 || 0.0 || || || || || add rbx, rbx

Total number of Uops: 6

Right branch analysis:

Block throughput: 2.00 cycles

Block throughput with perfect front-end: 2.00 cycles

Block throughput with infinitely usable ports: 2.00 cycles

Block throughput without dependencies: 1.67 cycles

Microops per cycle: 2.49

Analysis for architecture: SNB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 1.0 || 2.8 || 0.5 || 0.5 || || || || || mov rax, 0x1

1 || 1 || 1.5 || 3.4 || 0.2 || 0.7 || || || || 0.1 || cmp rcx, 0x0

2 || 1 || 6.8 || 4.7 || || || || || || 1.0 || jnz 0x7

5 || 1 || 40.0 || 42.2 || 0.5 || 0.3 || || || || 0.2 || add rbx, rax

6 || 1 || 40.7 || 42.9 || 0.4 || 0.2 || || || || 0.4 || add rbx, rbx

Total number of Uops: 5

This kind of information can be useful to determine which of the two branches
is more favorable for the execution. It can as well be used to detect if there
are any significant differences between the two at all.
One can also use this in combination with the detailed analysis as SUACA
will tell you the original line of all instructions in both parts of the branching
analysis.

20

2.8. THE COMMAND LINE INTERFACE (CLI)

2.8 The Command Line Interface (CLI)

The CLI of SUACA works as followed:

suaca [option] path to file

where [option] is one or several of the following:

• -pf triggers the perfect front-end analysis.

• -ip triggers the infinite port analysis.

• -nd triggers the dependency free analysis.

• -cfg will print the control flow graph into a file called controlflow.dot.
The format will be graphviz readable.

• -dg will print the dependency graph into a file called dependency.dot.
The format will also be graphviz readable.

• -p triggers the “performance mode”. More specifically, this will pre-
vent the three extra analyses that are needed to generate the three
additional block throughput values. In most cases however, SUACA’s
performance bottleneck will be the parser for the measurement files
which cannot be deactivated.

• -b triggers the branch analysis.

• --iform is used to print the iforms of all instructions.

• --arch x will consider x as the underlaying microarchitecture of the
analysis. At the time of writing the available options are NHM (Ne-
halem), SNB (Sandy Bridge), IVB (Ivy Bridge), HSW (Haswell), BDW
(Broadwell), SKL (Skylake), KBL (Kaby Lake) and CFL (Coffee Lake).
The default value is SNB.

• --loop x will trigger the loop analysis. The default value of x is 1.

• --detail x will print detailed information about line x.

• --setup x y sets the default values for the architecture (x) and the
number of iterations (y). Note that one always has to use both values.

• --print-default prints the default values for architecture and number of
iterations.

21

3
Implementation

When trying to analyze a program, the user sometimes needs to fully under-
stand how the results were calculated. Especially, if he aims to use them
to improve his code. Therefore, we will discuss SUACA’s most important
algorithms in this chapter. We will first explain the individual steps and fit
them together in the end.

3.1 Dependency Analysis

3.1.1 Single Iteration

Here we want to take a look at the algorithm that computes the dependency
graph.
First we want to discuss a simpler version that ignores the control flow of the
program.

Algorithm 1: Dependency analysis without control flow

1 Function dep analysis(instructionlist inst list):
2 Map := map from register to line;
3 DG := Graph that has the same nodes as CFG, but no edges;
4 foreach instruction i in inst list do
5 foreach register operand r in operands(i) do
6 if is read(r) then
7 DG.add edge(Map[r], line of(i));
8 else
9 Map[r] = line of(i);

10 end

11 end

12 end
13 return DG;

14 end

23

CHAPTER 3. IMPLEMENTATION

Where

• Map maps each register to the last line with a write access.

• operands(i) returns a list of all operands of instruction i. A register
that is first read then written to will be contained twice. The order will
be first read then write access.

• is read(r) returns true if the operand r will be read and false if it will
be written to.

• line of(i) returns the line of instruction i in the original program.

This algorithm will iterate over all instructions in program order. For each
instruction i it will then iterate over all of its operands. For each operand it
will check if it is accessed via read or write. If it is written to, the algorithm
will map the register to the current line. If it is read, the algorithm will add
an edge from the last write access to the current line.

The runtime of this algorithm is O(n ∗m) where n is the number of instruc-
tions and m the maximum number of operands that occur in the program.

Note that we consider every operand as a register. In practice, an operand
can of course be a memory address. In this case SUACA will extract all
registers from that address and treat them as read operands. SUACA does
not support memory dependencies so far as we would need to keep track
of the whole memory. As we have seen in Figure 2.3, SUACA is able to
differentiate between the different flags. For readability we ignore the special
case of the RFLAGS register here.
Now we want to take a look at the control flow sensitive algorithm that
SUACA actually uses.

24

3.1. DEPENDENCY ANALYSIS

Algorithm 2: Control flow sensitive dependency analysis

1 Function dep analysis start(CFG):
2 Map := map from register to line;
3 DG := graph that has the same nodes as CFG, but no edges;
4 Node := startnode of CFG;
5 dep analysis(CFG, DG, Map, Node);
6 return DG;

7 end
8 Function dep analysis(CFG, DG, Father-Map, Node):
9 Map := copy of Father-Map;

10 while true do
11 foreach register operand r in operands(instruction of(Node))

do
12 if is read(r) then
13 DG.add edge(Map[r], line of(i));
14 else
15 Map[r] = line of(i);
16 end

17 end
18 if num successors(CFG, Node) = 0 then
19 return;
20 end
21 Node = successor(CFG, Node, 0);
22 if num successors(CFG, Node) > 1 then
23 dep analysis(CFG, DG, Map, successor(CFG, Node, 1));
24 end

25 end

26 end

Where

• DG has a Node for every instruction in the program. Just like the CFG.

• instruction of(Node) returns the instruction that Node represents.

• num successors(Graph, Node) returns the number of successors of Node
in the Graph.

• successor(Graph, Node, i) returns the ith successor of Node in the
Graph.

This time we will “climb along” the CFG. If we never face a branch i.e.,
num successors() never returns a value greater than 1, this algorithm will do

25

CHAPTER 3. IMPLEMENTATION

exactly the same as the one we have just seen.
In the case of num successors() > 1 we will make another call of dep analysis()
on the “right branch”. From this point on, there will be two analyses, one for
every branch in the CFG. Each analysis has its own Map since there can be
different writes on each branch. Note that we will not join the two analyses
as we would need to find the first mutual descendant.
In the worst case every instruction is a branch, so we would spawn a new
function for each of them. This leads to a runtime of O(n2 ∗m).

We assume no backbranches i.e., no loops, in the program for the above
mentioned algorithm. In practice, SUACA will simply check for each branch
if it is a backbranch, and should the situation arise ignore it.

3.1.2 Multiple Iterations

When ordering SUACA to run the program in multiple loops we need
to adjust the dependency analysis algorithm as this can cause some “loop
dependencies”. In order to solve this, we will simply consider the program
twice. So we will append a copy of the program to itself, compute the CFG
and afterwards run the above mentioned algorithm. Because we know the
original length of our program, we can extract all “loop dependencies” from
the resulting dependency graph.

3.2 Simulation of the Front-End

Although our main task is to simulate the scheduler we still want to consider
the front-end in our analysis. Depending on the microarchitecture, the front-
end is able to produce a certain amount of µops each cycle. For example, the
Sandy Bridge architecture will produce at most 4 µops per cycle. However,
we still have to acknowledge the capacity of the scheduler since the front-end
might be faster than the execution itself. The scheduler of the Sandy Bridge
architecture has a maximum capacity of 54 µops.
We will now briefly discuss how our simulation actually performs those loads.

26

3.3. CHOOSING THE PORTS

Algorithm 3: Load instructions into scheduler

1 Function load instructions(instruction queue queue):
2 Waiting := first element of queue that is not fully loaded;
3 Loadable := max(Loads per cycle, remaining space in station);
4 while Loadable > 0 do
5 loaded := load µops(Waiting, Loadable);
6 Loadable = Loadable − loaded;

7 end

8 end

Where

• queue is a queue of all instructions that still have to be executed.

• Waiting is initially set by searching for the first element in queue that
has not been loaded into the scheduler by the front-end.

• load µops(Waiting, x) loads x µops of Waiting and returns the number
of µops that were actually loaded.

So it is possible that an instruction is partially (i.e., only some of its µops)
loaded into the scheduler.

3.3 Choosing the Ports

In this section we are going to discuss how exactly the ports which an
instruction uses are chosen. As we have seen in Section 1.5 we know of how
many µops an instruction consists and which ports those µops can use. As
seen in Section 3.2, an instruction can be loaded partially, which we will have
to consider here.
The following algorithm contains several crucial details to the simulation.
First we will see how SUACA tries to distribute all µops equally over all
ports. It also demonstrates the exact situations in which we will execute
an instruction. Lastly it explains how the had to wait and caused to wait
columns we introduced in Section 2.1 are computed.

27

CHAPTER 3. IMPLEMENTATION

Algorithm 4: Choose ports for loaded instructions

1 Function choose ports(instruction queue queue):
2 while loaded µops(Instruction) > 0 do
3 if not all dependencies resolved(Instruction) then
4 Instruction.has to wait++;
5 foreach Father ∈ direct predecessors(Instruction) do
6 Father.caused to wait++;
7 Father.caused to wait depedency(Instruction)++;
8 Instruction.had to wait depedency(Father)++;

9 end

10 else
11 Executable := true;
12 if not is fully loaded(Instruction) then
13 Executable = false;
14 end
15 foreach µop µ ∈ loadedµops(Instruction) do
16 Success := assign to ports(µ);
17 if not Success then
18 Executable = false;
19 end

20 end
21 if Executable then
22 add to executionlist(Instruction);
23 else
24 Blamed := Set of instructions;
25 foreach p ∈ blocked ports(Instruction) do
26 if not Blamed.contains(p.using instruction()) then
27 p.using instruction().caused to wait++;
28 p.using instruction().caused to wait port(p);
29 Instruction.had to wait port(p);
30 Blamed.add(p.using instruction());

31 end

32 end
33 Instruction.has to wait++;

34 end

35 end
36 Instruction = queue.next(Instruction);

37 end

38 end

28

3.3. CHOOSING THE PORTS

Algorithm 5: Assign µop to port

1 Function assign to ports(µop µ):
2 foreach p ∈ port queue do
3 if µ.can use(p) and p.is free() then
4 p.uses(µ);
5 return true;

6 end

7 end
8 return false;

9 end

Algorithm 4 iterates over all instructions in program order as long as the
current instruction is at least partially loaded into the scheduler. For each
instruction it will first check if all of its dependencies have been resolved i.e.,
all predecessors in the dependency graph have finished their execution (or at
least produced the needed results). If not, it cannot be executed and the delay
counters have to be increased. Notice that we have separate counters for the
cumulative delays and the special delays (e.g. caused to wait depedency(),
caused to wait port(p)), which are only needed for the detailed analysis (Sec-
tion 2.6). We will see the same behavior for the ports and this explains why
the special delays will not always sum up to the cumulative ones.
If all dependencies have been resolved, SUACA will try to assign all µops of
the instruction to a port. To achieve this the algorithm will iterate over all
µops that have been loaded into the scheduler. Note that this will ignore all
µops that have been put into a port already. So if all µops of an instruction
are currently in the port pipeline this algorithm will basically just put the
instruction into the execution list.
The function assign to ports(µop, Instruction) is described in Algorithm 5.
This function will iterate over all ports in prior usage order and assign the
µop if possible. More precisely port queue contains all ports and is sorted by
usage throughout the whole simulation. If possible it will assign the µop to
the port and return a success. If no usable port was free it will return a fail.
We can observe that this is a greedy algorithm that is obviously not optimal
in regards to the distribution of all µops over the ports. However, we assume
that this greedy algorithm comes close to what the schedulers are doing in
reality.
If the assignment or the load of a single µop failed the flag Executable will be
set to false. As we can see in line 22 the instruction will only be added to
the execution list (which we will further discuss in Section 3.4) if this flag is
set. This means that an instruction will not be executed as soon as a single

29

CHAPTER 3. IMPLEMENTATION

port was blocked. Note that an instruction can not block itself i.e., if all
blocked ports were blocked by a µop of the same instruction this function
will still return true. We did not include this special case here for the sake of
readability.
We have to be this strict, because of our measurements. As we have seen in
Section 1.5 those will always contain the best case for latency. The biggest
problem we face here is the missing information about the µops. We do not
know anything about the dependencies between them and so we do not know
if there is an order in which those have to be executed, or if they can be
executed simultaneously. So we have to assume a delay as soon as a single µop
is denied a port although that might not actually be the case in reality. This
means that we will potentially overestimate the latency of a single instruction
or the whole program. It is possible though that SUACA will actually un-
derestimate the latency of a program as one can note in the following examples.

Consider two instructions X and Y. X consists of two µops one of which can
use port 0, and the other can use port 1. Y only consists of one µop which
can use port 1. X is in front of Y in program order, both are fully loaded,
not dependent on each other and have a latency of 2 cycles.
For this example we assume that the second µop (port 1) of X depends on the
first (port 0). The problem is that SUACA does not have this information.
So the simulation will do the following: In the first cycle it will assign X to
ports 0 and 1. There is no port left for Y so it will not be added to the
execution list. This will happen in the second cycle and as Y ’s latency was
two cycles SUACA will compute a total latency of three cycles (as X was
executed in the first and second).
However, in reality X will not block port 1 in the first cycle as this particular
µop depends on the one that uses port 0. So in the first cycle X will only
use port 0. Y can then freely use port 1. In the second cycle X can then
use port 1. No port was ever blocked so there simply will be no delay, both
instructions could be executed simultaneously. So the “real latency” of our
example would be two cycles.

Now we will consider the same example but with switched instruction order
of X and Y. In this case SUACA will first assign Y ’s µop to port 1. It will
then try to assign X, but it will only be able to assign the first µop to port 0
as port 1 is blocked. As discussed before X will therefore not be added to the
execution list. In the second cycle the leftover of X will be assigned to a port
and the execution will start. As the latency was two cycles the simulation
will stop after the third cycle.
Again this is an overestimation of the reality. Due to the dependency of the

30

3.3. CHOOSING THE PORTS

second µop of X it does not matter that Y blocks port 1 in the first cycle.
X only needs port 0 in the first cycle and in the second cycle it can then
freely use port 1. Again the “real latency” of our example would be two cycles.

Finally we will construct an example were our simulation actually underesti-
mates the throughput. We can once more use our two instructions X and Y.
This time we assume that Y cannot be executed in the first cycle, because
of a dependency on an arbitrary third instruction. Our simulation basically
works like in our first case, except for the reason why Y cannot be executed.
So it will compute a latency of three cycles for those two instructions.
In reality Y will be denied port 1 in the second cycle as it will be used by X.
So the execution will start in the third cycle and end in the fourth.

Note that it is still impossible that the latency of a single instruction is
underestimated as we will always simulate the execution of at least as many
cycles as we measured under a best case scenario. Also an important detail is,
that it is impossible for an instruction to block itself. So if multiple µops of a
single instruction need to use the same port this will not cause a delay. This
is again due to the measurements as the delay caused by “inner instructional
port blockings” is already included in the best case runtime. We did not
include this in the pseudo code above for the sake of readability.

Ultimately we will consider the rest of the algorithm starting in line 24. This
part will increase the counters similarly to what we have seen at the start of
the algorithm. Notable here is the function blocked ports(Instruction) that will
return all ports that have been blocked during the assignment phase as well
as the Blamed set which ensures that every instructions is held responsible at
most once. We need this as we want to count the number of cycles that an
instruction caused a delay and not the number of blocked ports in a particular
cycle.

31

CHAPTER 3. IMPLEMENTATION

3.4 Executing Applicable Instructions

Algorithm 6: Execute applicable instructions

1 Function execute instructions(instruction queue queue):
2 foreach I ∈ Executionlist do
3 I.executed cycles++;
4 if I.executed cycles = I.latency then
5 queue.remove(I);
6 end
7 inform children im done(I);

8 end
9 Executionlist.clear();

10 end

This part is rather simple. Every instruction knows its latency and how many
cycles it has been executed. This value gets increased and if the latency is
hit it will be removed from the instructionqueue. The most interesting part
here is the function inform children im done(Instruction). As we have seen
in Section 1.5 the children of an instruction do not necessarily have to wait
for the instruction to finish. Sometimes they only need part of the results,
which are available earlier. So this function will iterate over all children and
check if the execution is advanced enough and if so “release the dependency”
in a way that the all dependencies resolved() function in Algorithm 5 will
consider the instruction as finished. Finally we have to clear the execution
list as we will fill it again in the next cycle.

3.5 Performing a Cycle

Lastly we want to briefly discuss how a whole cycle is performed. SUACA
will run each of the three simulation algorithms we explained above. It will
then free up all ports that were used during the cycle, in order to enable
the port pipelining. It also passes the queue that contains all instructions
that still have to be executed to the three functions. A short pseudo code
representation can be found below.

32

3.6. THE DIVIDER PIPE

Algorithm 7: Perform a whole cycle

1 Function perform cycle(instruction queue queue):
2 load instructions(queue);
3 choose ports(queue);
4 execute instructions(queue);
5 foreach p ∈ Ports do
6 p.clear();
7 end

8 end

The interesting observation here is that an instruction can actually get loaded,
put into a port and then executed within a single cycle, due to the order of
the function calls.
This function will be executed in a loop as long as there are instructions to
be executed. After said loop SUACA will generate its output.

3.6 The Divider Pipe

Instructions that perform a division of some kind have to use the divider pipe,
which is located on port 0. SUACA’s output will only show the divider pipe
if one of the instructions needs it. We have to consider it when choosing the
ports for the instructions during algorithm 5, because the division µops cannot
be pipelined. More precisely our measurements contain a “div-cycle” property
for the corresponding instructions, which tells us how many cycles the divider
pipe will be blocked. Because the divider pipe is located on port 0 each of
those instructions has to have at least one µop that uses port 0 exclusively.
SUACA will block the divider pipe as soon as this particular µop is assigned
to port 0. As long as it is blocked all future division µops are denied port 0.
After “div-cycle” many cycles the divider pipe will be available again.
We did not include this in the algorithms above for two reasons. First is
readability, as the implementation of this behavior would add some otherwise
unnecessary if statements. On the other hand this is a very special case as
using a division is definitely not advised when you are trying to write high
performance code.

33

4
Evaluation

In this chapter we are going to compare SUACA to both IACA and OS-
ACA. We will evaluate the results and differences of the tools and show how
a detailed analysis can be done with SUACA.

4.1 Bottleneck Analysis

Consider the following example run of IACA 2.3 on the Sandy Bridge
architecture:

Throughput Analysis Report

Block Throughput: 2.00 Cycles Throughput Bottleneck: FrontEnd

Port Binding In Cycles Per Iteration:

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 |

| Cycles | 2.0 0.0 | 2.0 | 0.0 0.0 | 0.0 0.0 | 0.0 | 2.0 |

N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)

D - Data fetch pipe (on ports 2 and 3), CP - on a critical path

F - Macro Fusion with the previous instruction occurred

* - instruction micro-ops not bound to a port

^ - Micro Fusion happened

- ESP Tracking sync uop was issued

@ - SSE instruction followed an AVX256/AVX512 instruction, dozens of cycles penalty is expected

X - instruction not supported, was not accounted in Analysis

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |

| 1 | 1.0 | | | | | | CP | mov rax, 0x6

| 1 | | 1.0 | | | | | CP | mov rax, 0x6

| 1 | | | | | | 1.0 | CP | mov rax, 0x6

| 1 | 1.0 | | | | | | CP | mov rax, 0x6

| 1 | | 1.0 | | | | | CP | mov rax, 0x6

| 1 | | | | | | 1.0 | CP | mov rax, 0x6

Total Num Of Uops: 6

Note that we constructed this program exclusively for our purposes. Apart
from the very first instruction the program will not have any effect. This is
fine as it is designed as a toy example.
We can observe that the mov instruction is able to use ports 0, 1 and 5. The

35

CHAPTER 4. EVALUATION

front-end of the Sandy Bridge architecture can deliver up to four µops per
cycle and there are no dependencies as no register is ever read.
So the clear bottleneck of this program are the three ports, because four µops
get loaded but only three ports are available for their execution. Unfortunately
we do not know how the bottleneck analysis of IACA works so we cannot
argue why it believes that the front-end might be the bottleneck. Looking at
the information we do have it does not make sense, though.

Now consider SUACA’s output of the same program with 200 iterations:

Block throughput: 2.00 cycles

Block throughput with perfect front-end: 2.00 cycles

Block throughput with infinitely usable ports: 1.50 cycles

Block throughput without dependencies: 2.00 cycles

Microops per cycle: 3.00

Analysis for architecture: SNB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 15.6 || 46.7 || 1.0 || || || || || || mov rax, 0x6

1 || 1 || 15.6 || 46.7 || || 1.0 || || || || || mov rax, 0x6

2 || 1 || 15.5 || 46.7 || || || || || || 1.0 || mov rax, 0x6

3 || 1 || 15.6 || 46.7 || 1.0 || || || || || || mov rax, 0x6

4 || 1 || 15.6 || 46.7 || || 1.0 || || || || || mov rax, 0x6

5 || 1 || 15.6 || 46.7 || || || || || || 1.0 || mov rax, 0x6

Total number of Uops: 6

One can easily see that the port information and the block throughput is
identical to IACA’s output. The major difference lies in the bottleneck
analysis. SUACA tells you that the throughput improves quite drastically
with infinitely usable ports. The two cycles make sense with the ports in
consideration as we have three usable ports and six instructions, but when
each port can be used to an infinite amount each cycle this is no longer
relevant. Without the port problem we only need one and a half cycle for
each iteration as we have six µops and a front-end that produces four of them
each cycle.
We can also tell SUACA to analyze a specific line for us:

Detailed delay information for instruction: mov rax, 0x6 in line 0

Maximum latency: 1

Latencies for dependencies:

This instruction doesn’t have any dependencies!

Delay caused by blocked ports:

Port || was delayed || has delayed

0 || 46.7 || 15.6

1 || 0.0 || 15.6

5 || 0.0 || 15.6

This detailed analysis shows that each line suffered a delay of 15.6 cycles
from each of its usable ports. This value is equal for all ports, because

36

4.2. COMPLETE ANALYSIS

this instruction only consists of a single µop and is therefore only delayed
if all three ports are blocked (see algorithm 5), which will then all be held
responsible. As this program does not contain any dependencies, this is also
why the delay suffered from the ports equals the had to wait value of the
original output. Additionally each instruction causes a delay on the port it
used.
The caused to wait value in the original output is thrice as high as the had to
wait value. This is due to the fact that there are always three instructions
that are responsible for a single other instruction’s delay.

Unfortunately, OSACA does not offer a bottleneck analysis which makes
this comparison obsolete.

4.2 Complete Analysis

Now we are going to analyze the example provided by the OSACA thesis [6].
First consider the underlaying C code which represents a 2D-5pt stencil:

for (j = 1 ; j < M−1; ++j) {
#pragma vecto r a l i gned
for (int i = 1 ; i < N−1; ++i) {

IACA START
b [j] [i] = (a [j] [i −1] + a [j] [i +1] + a [j −1] [i] + a [j +1] [i]) ∗ s ;

}
IACA END

}

In the following we will analyze the resulting machine code and compare the
results of IACA, OSACA and SUACA. We will do so with the Ivy Bridge
microarchitecture in mind. First consider OSACA’s analysis in Example 1.
We can observe a different approach to the port bindings here. OSACA
always tries to distribute the port pressure evenly across all ports to an extent
where it does not take previous instructions into account. This basically
means that every instruction will always have the same port bindings no
matter how the rest of the program looks like. The idea is to give the user
more information about possible bindings which are hard to observe when
using IACA. However, this leads to an overestimation of the throughput as
the pressure on port 1 is much higher than it needs to be. The incq and cmpq
instructions do not need to use port 1 at all as they could instead use port 0
and even more so the very underused port 5.

37

CHAPTER 4. EVALUATION

Throughput Analysis Report

X - No information for this instruction in data file

" - Instruction micro-ops not bound to a port

Port Binding in Cycles Per Iteration:

| Port | 0 | 1 | 2 | 3 | 4 | 5 |

| Cycles | 1.67 | 3.67 | 2.5 | 2.5 | 1.0 | 0.67 |

Ports Pressure in cycles

| 0 | 1 | 2 | 3 | 4 | 5 |

| | | 0.50 | 0.50 | | | vmovsd (%r14,%r15,8), %xmm2

| | 1.00 | 0.50 | 0.50 | | | vaddsd 16(%r14,%r15,8), %xmm2, %xmm3

| | 1.00 | 0.50 | 0.50 | | | vaddsd 8(%rax,%r15,8), %xmm3, %xmm4

| | 1.00 | 0.50 | 0.50 | | | vaddsd 8(%rdx,%r15,8), %xmm4, %xmm5

| 1.00 | | | | | | vmulsd %xmm5, %xmm1, %xmm6

| | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm6, 8(%r12,%r15,8)

| 0.33 | 0.33 | | | | 0.33 | incq %r15

| 0.33 | 0.33 | | | | 0.33 | cmpq %r13, %r15

| | | | | | | jb ..B1.17

Total number of estimated throughput: 4.67

Example 1: OSACA run

The OSACA thesis states, that we can conclude that port 1 is the bottleneck
of this program, which makes sense looking at the given analysis. We will
now look into the program a bit further.
Example 2 displays the output of IACA 2.3 which shows the expected
behavior regarding the overused port 1 i.e., the incq and cmpq instructions
exclusively use port 5.

Throughput Analysis Report

Block Throughput: 3.00 Cycles Throughput Bottleneck: FrontEnd

Port Binding In Cycles Per Iteration:

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 |

| Cycles | 1.0 0.0 | 3.0 | 2.5 2.0 | 2.5 2.0 | 1.0 | 2.0 |

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |

| 1 | | | 1.0 1.0 | | | | | vmovsd xmm2, qword ptr [r14+r15*8]

| 2 | | 1.0 | | 1.0 1.0 | | | CP | vaddsd xmm3, xmm2, qword ptr [r14+r15*8+0x10]

| 2 | | 1.0 | 1.0 1.0 | | | | CP | vaddsd xmm4, xmm3, qword ptr [rax+r15*8+0x8]

| 2 | | 1.0 | | 1.0 1.0 | | | CP | vaddsd xmm5, xmm4, qword ptr [rdx+r15*8+0x8]

| 1 | 1.0 | | | | | | | vmulsd xmm6, xmm1, xmm5

| 2 | | | 0.5 | 0.5 | 1.0 | | | vmovsd qword ptr [r12+r15*8+0x8], xmm6

| 1 | | | | | | 1.0 | | inc r15

| 1 | | | | | | 1.0 | | cmp r15, r13

Total Num Of Uops: 12

Example 2: IACA run

Two properties of this analysis remain unclear. On the one hand, we do not
know why those two instructions do not use port 0 as well. It is a possible
port for both of those and it is clearly pressured less. On the other hand the
distribution of ports 2 and 3 are very strict for the first four instructions and
are split for the 6th. IACA may have some internal information that would
explain this behavior, but as far as we know this seems odd.

38

4.2. COMPLETE ANALYSIS

IACA declares the front-end as the bottleneck. The front-end of the Ivy
Bridge architecture delivers up to four µops per cycle. The example program
contains 12 µops and the throughput is exactly three cycles. So the throughput
is certainly lower bounded by the front-end. However, port 1 is still pressured
for three cycles. So even if the front-end was faster the throughput would
not improve as it is also lower bounded by the three vaddsd instructions that
have to use port 1.
This analysis does not show the dependencies at all. If we take a closer look at
the first six instructions we can see that those have a dependency chain over
the xmm registers. We will now consider SUACA’s analysis in order to take
a closer look at the interactions between front-end, ports and dependencies
of our program. We shortened the instructions in the output for the sake of
readability.

Block throughput: 3.00 cycles

Block throughput with perfect front-end: 3.00 cycles

Block throughput with infinitely usable ports: 3.00 cycles

Block throughput without dependencies: 3.00 cycles

Microops per cycle: 3.99

Analysis for architecture: IVB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 0.3 || 1.3 || || || 0.5 || 0.5 || || || vmovsd xmm2, ...

1 || 2 || 2.0 || 5.0 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm3, ...

2 || 2 || 5.0 || 7.7 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm4, ...

3 || 2 || 7.0 || 10.3 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm5, ...

4 || 1 || 10.0 || 14.0 || 1.0 || || || || || || vmulsd xmm6, ...

5 || 2 || 14.0 || 0.3 || || || 0.5 || 0.5 || 1.0 || || vmovsd qword ...

6 || 1 || || 1.0 || 0.2 || || || || || 0.8 || inc r15

7 || 1 || 1.0 || || 0.3 || || || || || 0.7 || cmp r15, r13

Total number of Uops: 12

Example 3: SUACA run - 3000 iterations

For the most part this looks pretty similar to the other two analyses. We can
observe that the incq and cmpq instructions are now distributed over ports
0 and 5 in a way that both of those ports experience an equal pressure and
that ports 2 and 3 are evenly used just like in Example 1.
The throughput is equal to IACA’s output and the throughput values of the
special analyses do not differ, because of the properties we explained above.
We will now use SUACA’s runtime options to gain a better picture of the
program’s problems. First consider the run with only a single iteration in
Example 4. We can see that the throughput (which would also be the latency
in this particular case) is drastically higher and more important, that the
dependencies are the biggest offender. This is due to the long dependency
chain from the first to the sixth instruction. So in a single iteration of this
program almost every instruction has to wait for its predecessor to be finished.

39

CHAPTER 4. EVALUATION

Block throughput: 16.00 cycles

Block throughput with perfect front-end: 16.00 cycles

Block throughput with infinitely usable ports: 16.00 cycles

Block throughput without dependencies: 6.00 cycles

Microops per cycle: 0.75

Analysis for architecture: IVB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || || 1.0 || || || 1.0 || || || || vmovsd xmm2, ...

1 || 2 || 1.0 || 4.0 || || 1.0 || || 1.0 || || || vaddsd xmm3, ...

2 || 2 || 4.0 || 6.0 || || 1.0 || 1.0 || || || || vaddsd xmm4, ...

3 || 2 || 6.0 || 9.0 || || 1.0 || || 1.0 || || || vaddsd xmm5, ...

4 || 1 || 9.0 || 13.0 || 1.0 || || || || || || vmulsd xmm6, ...

5 || 2 || 13.0 || || || || 1.0 || || 1.0 || || vmovsd qword ...

6 || 1 || || 1.0 || 1.0 || || || || || || inc r15

7 || 1 || 1.0 || || || || || || || 1.0 || cmp r15, r13

Total number of Uops: 12

Example 4: SUACA run - single iteration

However, there is only a single dependency between consecutive iterations.
The inc instructions writes to r15 which will be read by the following iteration
multiple times, so we can simply interpret this as the start of our “single
iteration dependency chain”. Those chains make sense as the program is
iterating over an array.
When this program runs in a loop the different iterations will run “side by
side”, which explains why the throughput ultimately reaches a value that
is lower bounded by the front-end and port 1. This is also the reason why
we chose to run Example 3 with 3000 iterations as it takes a while until the
average ultimately reaches this lower bound.
Now that we know which role the dependencies play in our program we can
take a closer look at the front-end and the ports. In Example 5 one can
see the analysis with 200 iterations which has several interesting results in
comparison to Example 3.

Block throughput: 3.07 cycles

Block throughput with perfect front-end: 3.06 cycles

Block throughput with infinitely usable ports: 3.06 cycles

Block throughput without dependencies: 3.02 cycles

Microops per cycle: 3.91

Analysis for architecture: IVB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 0.3 || 1.3 || || || 0.5 || 0.5 || || || vmovsd xmm2, ...

1 || 2 || 2.0 || 5.0 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm3, ...

2 || 2 || 5.0 || 7.7 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm4, ...

3 || 2 || 7.0 || 10.3 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm5, ...

4 || 1 || 10.0 || 14.0 || 1.0 || || || || || || vmulsd xmm6, ...

5 || 2 || 14.0 || 0.3 || || || 0.5 || 0.5 || 1.0 || || vmovsd qword ...

6 || 1 || || 1.0 || 0.2 || || || || || 0.8 || inc r15

7 || 1 || 1.0 || || 0.3 || || || || || 0.7 || cmp r15, r13

Total number of Uops: 12

Example 5: SUACA run - 200 iterations

We can observe that the throughput values have not reached the 3.00 mark
yet, like we discussed above. But more importantly the had to wait and
caused to wait values did not change at all. Usually those increase when the

40

4.2. COMPLETE ANALYSIS

number of iterations is increased. This is the case when the front-end works
faster than the execution, because our simulation will only count those values
for the instructions that have been loaded into the scheduler already. So if
a lot of instructions are waiting inside the scheduler the had to wait and
caused to wait values will be very high. As this is clearly not the case here
we can conclude that (after a few iterations) the scheduler is always filled to
an equal amount. This actually supports IACA’s claim that the front-end is
the bottleneck. We argued that, should the front-end’s performance improve,
the ports will prevent a faster execution.
In Example 6 we can see a run of the perfect front-end analysis. We used 3000
iterations for this and all the following example runs. The only difference are
the two delay values which are a bit higher.

Block throughput: 3.00 cycles

Microops per cycle: 4.00

Analysis for architecture: IVB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 1.3 || 1.7 || || || 0.5 || 0.5 || || || vmovsd xmm2, ...

1 || 2 || 12.0 || 18.3 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm3, ...

2 || 2 || 15.0 || 20.3 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm4, ...

3 || 2 || 17.0 || 24.6 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm5, ...

4 || 1 || 20.0 || 24.7 || 1.0 || || || || || || vmulsd xmm6, ...

5 || 2 || 24.7 || 1.3 || || || 0.5 || 0.5 || 1.0 || || vmovsd qword ...

6 || 1 || 0.0 || 1.7 || 0.2 || || || || || 0.8 || inc r15

7 || 1 || 1.0 || || 0.3 || || || || || 0.7 || cmp r15, r13

Total number of Uops: 12

Example 6: SUACA run - perfect front-end

The details of line three (Example 7) show that this is actually due to
dependencies for the most part.

Maximum latency: 3

Latencies for dependencies:

Line || 3 -> Line || Line -> 3

2 || 0 || 3

4 || 3 || 0

6 || 0 || 1

Delay caused by dependencies:

Line || was delayed || has delayed

2 || 0.0 || 17.0

4 || 20.0 || 0.0

6 || 0.0 || 0.0

Delay caused by blocked ports:

Port || was delayed || has delayed

1 || 4.0 || 0.0

2 || 0.3 || 0.0

3 || 0.3 || 0.0

Example 7: Details of line 3 with perfect front-end

In order to prove our port claim we will run SUACA with both a perfect
front-end and disabled dependencies in Example 8. We can exactly observe

41

CHAPTER 4. EVALUATION

the above described behavior. The throughput does not improve and the
three vaddsd instructions are heavily delayed by port 1, whereas all the other
instructions experience very little to no delay. The reason why those delay
values are so small is the massive delay of the vaddsd instructions as those
will continue to be executed for so many cycles that the average delay values
of the other instructions are neglected almost completely.

Block throughput: 3.00 cycles

Microops per cycle: 4.00

Analysis for architecture: IVB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 0.2 || 1.5 || || || 0.5 || 0.5 || || || vmovsd xmm2, ...

1 || 2 || 48.4 || 50.9 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm3, ...

2 || 2 || 49.4 || 48.9 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm4, ...

3 || 2 || 49.4 || 49.9 || || 1.0 || 0.5 || 0.5 || || || vaddsd xmm5, ...

4 || 1 || 0.0 || 0.0 || 1.0 || || || || || || vmulsd xmm6, ...

5 || 2 || 0.3 || 0.5 || || || 0.5 || 0.5 || 1.0 || || vmovsd qword ...

6 || 1 || 0.0 || 0.0 || || || || || || 1.0 || inc r15

7 || 1 || 0.0 || 0.0 || 1.0 || || || || || 0.0 || cmp r15, r13

Total number of Uops: 12

Example 8: SUACA run with pf and nd

Finally Example 9 shows what happens when only the dependencies are taken
into consideration and it displays a much higher throughput that is probably
only bounded by the capacity of the scheduler (54 µops in Ivy Bridge). As
discussed above the program basically has no loop dependencies which leads
to the results we are seeing.

Block throughput: 1.50 cycles

Microops per cycle: 7.98

Analysis for architecture: IVB

Line || Num || had || caused || Used Ports

|| Uops || to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 ||

--

0 || 1 || 1.0 || 2.0 || || || 0.5 || 0.5 || || || vmovsd xmm2, ...

1 || 2 || 2.0 || 4.5 || || 1.0 || 0.0 || 1.0 || || || vaddsd xmm3, ...

2 || 2 || 4.5 || 7.5 || || 1.0 || 1.0 || 0.0 || || || vaddsd xmm4, ...

3 || 2 || 7.5 || 10.0 || || 1.0 || 0.0 || 1.0 || || || vaddsd xmm5, ...

4 || 1 || 10.0 || 14.5 || 1.0 || || || || || || vmulsd xmm6, ...

5 || 2 || 14.5 || || || || 1.0 || 0.0 || 1.0 || || vmovsd qword ...

6 || 1 || 0.0 || 4.0 || 0.5 || || || || || 0.5 || inc r15

7 || 1 || 1.0 || || || || || || || 1.0 || cmp r15, r13

Total number of Uops: 12

Example 9: SUACA run with pf and ip

All in all we can conclude that this program is very tricky and takes some
serious thought to fully understand its issues. SUACA delivers various tools
to gain insight into it and using SUACA we were able to get a good idea of
the program’s performance.

42

4.3. FLAG DEPENDENCIES

4.3 Flag Dependencies

For our final example we will use IACA 3.0 and consider the following code
snippet:

1 adc rax , 0x1
2 adc rbx , 0x1
3 adc rcx , 0x1
4 adc rdx , 0x1
5 adc r8 , 0x1
6 adc r9 , 0x1
7 adc r10 , 0x1
8 adc r11 , 0x1

At first this program seems to be free of dependencies. However, the adc
instruction is the “add with carry” instruction which reads and writes to
the cf bit (carry flag) of the RFLAGS register. So there actually is a huge
dependency loop that prevents any parallel execution as well as instruction
reordering. Figure 4.1 shows SUACA’s dependency graph for this program,
which of course also includes a self loop for every instruction.
Unfortunately, we do not know which dependencies IACA 3.0 uses exactly
for its computations, but as it computes a throughput of 3.95 cycles we can
conclude that it definitely does not know about the cf bit. This also leads to
the back-end being held responsible for being the bottleneck. The full output
can be seen in Example 10. We used the Skylake microarchitecture for this
example.

Throughput Analysis Report

Block Throughput: 3.95 Cycles Throughput Bottleneck: Backend

Loop Count: 22

Port Binding In Cycles Per Iteration:

--

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

--

| Cycles | 4.0 0.0 | 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 | 0.0 | 4.0 | 0.0 |

--

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

| 1 | 1.0 | | | | | | | | adc rax, 0x1

| 1 | | | | | | | 1.0 | | adc rbx, 0x1

| 1 | 1.0 | | | | | | | | adc rcx, 0x1

| 1 | | | | | | | 1.0 | | adc rdx, 0x1

| 1 | 1.0 | | | | | | | | adc r8, 0x1

| 1 | | | | | | | 1.0 | | adc r9, 0x1

| 1 | 1.0 | | | | | | | | adc r10, 0x1

| 1 | | | | | | | 1.0 | | adc r11, 0x1

Total Num Of Uops: 8

Analysis Notes:

Backend allocation was stalled due to unavailable allocation resources.

Example 10: IACA 3.0’s output

43

CHAPTER 4. EVALUATION

0: adc rax, 0x1

1: adc rbx, 0x1

2: adc rcx, 0x1

3: adc rdx, 0x1

4: adc r8, 0x1

5: adc r9, 0x1

6: adc r10, 0x1

7: adc r11, 0x1

RAX

RBX

RCX

RDX

R8

R9

R10

R11

RFLAGS − cf

RFLAGS − cf

RFLAGS − cf

RFLAGS − cf

RFLAGS − cf

RFLAGS − cf

RFLAGS − cf

RFLAGS − cf

Figure 4.1: Dependency graph

44

4.3. FLAG DEPENDENCIES

As one can see in Example 11 SUACA’s results are identical for the port
pressure, but as it does include the dependency loop it computes a throughput
of 8.0 cycles. The throughput without dependencies is measured with 4.0
cycles which makes sense the example contains 8 µops and two usable ports.
We have again cut the first two columns for the sake of readability.

Block throughput: 8.00 cycles

Block throughput with perfect front-end: 8.00 cycles

Block throughput with infinitely usable ports: 8.00 cycles

Block throughput without dependencies: 4.00 cycles

Microops per cycle: 1.00

Analysis for architecture: SKL

had || caused || Used Ports

to wait || to wait || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 ||

--

92.2 || 177.5 || 1.0 || || || || || || || || adc rax, 0x1

92.3 || 177.6 || || || || || || || 1.0 || || adc rbx, 0x1

92.3 || 177.7 || 1.0 || || || || || || || || adc rcx, 0x1

92.4 || 177.8 || || || || || || || 1.0 || || adc rdx, 0x1

92.4 || 177.9 || 1.0 || || || || || || || || adc r8, 0x1

92.5 || 178.1 || || || || || || || 1.0 || || adc r9, 0x1

92.5 || 178.2 || 1.0 || || || || || || || || adc r10, 0x1

92.6 || 177.8 || || || || || || || 1.0 || || adc r11, 0x1

Total number of Uops: 8

Example 11: SUACA’s output for SKL with 200 iterations

This seems to be a problem introduced in IACA 3.0 as IACA 2.3 com-
putes a throughput of 7.62 cycles and declares the dependency chains as the
bottleneck.

45

5
Conclusion and Future Work

This work introduced SUACA, a tool that is able to compute the port
bindings, latency and throughput of an x86 assembly program. It will also
give hints at the bottleneck as well as several ways to further investigate what
the bottleneck might be. Read-After-Write dependencies between instructions
are tracked for all register operands, including the suppressed ones and those
that are used to access memory, and with respect to the control flow. It
supports most currently available Intel microarchitectures and can easily be
updated to support future ones.

One thing that SUACA does not support yet are macro and micro op fusions
as well as the data fetch pipes of certain ports.
Macro op fusion usually “eliminates” the last jump instruction of a loop
body by merging it into the prior instruction. This would probably require
some hard coded information about the macro-fusible instructions of each
microarchitecture.
IACA displays the data fetch pipes on (usually) ports 2 and 3. Those pipes
are used when the respective instructions loads from memory. At the moment
it remains unclear when and if those values have an impact on the throughput
of a program. This is why we have not implemented it so far.
What could be considered is an improved simulation of the front-end as well
as support for zero latency instructions. At the moment we are always loading
the maximum number of µops into the scheduler. This is most certainly not
perfectly accurate, but this improvement would require measurements of the
front-end. Some instructions are so called “zero latency instructions” in x86.
Those can be eliminated by the front-end and will therefore not affect the
execution. So far SUACA executes them with a latency of a single cycle.
The simulation of AMD microarchitectures could also be considered, but it
would require fundamental changes both to the measurements and SUACA
itself.
The bottleneck analyses could also be extended. One example would be

47

CHAPTER 5. CONCLUSION AND FUTURE WORK

increasing the amount of µops a certain port can handle each cycle instead of
simply setting this amount to infinite for all ports.
In most microarchitectures a floating point operation followed by an integer
operation on the same register (or vice versa) causes a so called “bypass
delay”. The exact delay depends on the specific architecture. At the time of
writing SUACA does not consider these delays.

SUACA also has some limitations that either cannot be overcome without in-
ternal information or high additional effort. The most important one is precise
information about the µops. We could remarkably improve our computations
as we would eliminate the issues described in Section 3.3. Another integral
part of our computations is the algorithm of the scheduler. We assumed a
greedy algorithm, which might not be perfectly accurate. Implementing the
correct algorithm would also bring our results closer to reality.
In some corner cases it would be possible to keep track of the memory during
the dependency analysis. However, this is impossible most of the time, be-
cause a memory access usually uses a register and we would therefore need to
know the actual values inside the registers. Since SUACA performs a static
analysis, and therefore does not know the initial values of most registers,
acknowledging memory dependencies becomes unattainable.

48

Bibliography

[1] Andreas Abel and Jan Reineke. “Characterizing Latency, Throughput,
and Port Usage of Instructions on Intel Microarchitectures”. Unpublished.
2018.

[2] Mark Charney. X86 Encoder Decoder. Apr. 13, 2018. url: https://
intelxed.github.io/ref-manual/index.html.

[3] Israel Hirsh and Gideon S. IACA homepage. June 4, 2018. url: https:
//software.intel.com/en- us/articles/intel- architecture-

code-analyzer.

[4] Israel Hirsh and Gideon S. IACA userguide. June 4, 2018. url: https://
software.intel.com/sites/default/files/managed/3d/23/intel-

architecture-code-analyzer-3.0-users-guide.pdf.

[5] Johannes Hofmann. ibench - Instruction Benchmarks. 2017. url: https:
//github.com/hofm/ibench.

[6] Jan Laukemann. OSACA Thesis. June 7, 2018. url: https://github.
com/RRZE-HPC/OSACA/blob/master/doc/Design_and_Implementation_

For_a_Framework_Predicting_Instruction_Throughput.pdf.

[7] Jan Laukemann. OSACA Website. June 7, 2018. url: https://github.
com/RRZE-HPC/OSACA.

49

https://intelxed.github.io/ref-manual/index.html
https://intelxed.github.io/ref-manual/index.html
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/sites/default/files/managed/3d/23/intel-architecture-code-analyzer-3.0-users-guide.pdf
https://software.intel.com/sites/default/files/managed/3d/23/intel-architecture-code-analyzer-3.0-users-guide.pdf
https://software.intel.com/sites/default/files/managed/3d/23/intel-architecture-code-analyzer-3.0-users-guide.pdf
https://github.com/hofm/ibench
https://github.com/hofm/ibench
https://github.com/RRZE-HPC/OSACA/blob/master/doc/Design_and_Implementation_For_a_Framework_Predicting_Instruction_Throughput.pdf
https://github.com/RRZE-HPC/OSACA/blob/master/doc/Design_and_Implementation_For_a_Framework_Predicting_Instruction_Throughput.pdf
https://github.com/RRZE-HPC/OSACA/blob/master/doc/Design_and_Implementation_For_a_Framework_Predicting_Instruction_Throughput.pdf
https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA

	Introduction
	Motivation
	Intel's Microarchitectures
	IACA's Analysis
	Scope of Work
	Measurements
	Related Work

	Functionality of SUACA
	Throughput Analysis
	Latency Analysis
	Control Flow Graph
	Dependency Graph
	Architecture Selection
	Detailed Information
	Branch Analysis
	The Command Line Interface (CLI)

	Implementation
	Dependency Analysis
	Single Iteration
	Multiple Iterations

	Simulation of the Front-End
	Choosing the Ports
	Executing Applicable Instructions
	Performing a Cycle
	The Divider Pipe

	Evaluation
	Bottleneck Analysis
	Complete Analysis
	Flag Dependencies

	Conclusion and Future Work

