Fast Liveness Checking for SSA-Form Programs

Benoit Boissinot (LIP), Sebastian Hack (Saarland University),
Daniel Grund (Saarland University),
Benoît Dupont de Dinechin (STMicro),
Fabrice Rastello (LIP)

Compsys Team
Laboratoire de l’Informatique du Paralllisme (LIP)
cole normale supérieure de Lyon

SSA Seminar, April 29, 2009, Autrans, France
Outline

1. Liveness checking: what & why
2. Foundations
3. Algorithm
4. Loop Nesting Forest & Depth First Search
5. Experimental Results
6. Conclusion
Outline

1. Liveness checking: what & why
2. Foundations
3. Algorithm
4. Loop Nesting Forest & Depth First Search
5. Experimental Results
6. Conclusion
Why do we need liveness analysis?

Resources analysis
- Scheduling
- Coalescing/Register-allocation
- PRE sensitive to register pressure

\[a = \]
\[b = \]
\[= a \]
\[= b \]
Two approaches

Classical Approach: Liveness Sets (LS)
For *every* block boundary, the set of *all* live variables
- Expensive precomputation (space & time), fast query
- Usually, not all computed information is needed
- Adding, (re-)moving instructions \Rightarrow recompute information

Our Approach: Liveness Checking (LC)
Answer *on demand*: Is variable live at program point?
- Faster precomputation, slower queries
- Information depends only on CFG and def-use chains
- Information invariant to adding, (re-) moving instructions
Foundations

- Control Flow Graph
- SSA with dominance property
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable \(a \) is live-in at a node \(q \) if there exists a path from \(q \) to a node \(u \) where \(a \) is used and that path does not contain its definition \(d \)
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d.
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable \(a \) is live-in at a node \(q \) if there exists a path from \(q \) to a node \(u \) where \(a \) is used and that path does not contain its definition \(d \)
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d.
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d
Liveness

Concept

- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)

A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d.
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d.
Liveness

Concept
- Defined in the past: reaching definition
- Used in the future: upward exposed use

Definition (live-in)
A variable a is live-in at a node q if there exists a path from q to a node u where a is used and that path does not contain its definition d.
Liveness: precomputation versus queries

- Classical liveness (data-flow):
 - Costly precomputation
 - Almost constant queries

- Our solution:
 - Fast precomputation
 - Queries almost linear in the number of uses
Outline

1. Liveness checking: what & why
2. Foundations
3. Algorithm
4. Loop Nesting Forest & Depth First Search
5. Experimental Results
6. Conclusion
Goal:
From all the paths from *query* to *use*, remove those going through *def*.

Highest point
Last point of the path such that all the following points are below.

If the highest point is dominated by *def* then the whole path is.
Principle

Goal:
From all the paths from *query* to *use*, remove those going through *def*.

Highest point
Last point of the path such that all the following points are below.

If the highest point is dominated by *def* then the whole path is.
Principle

Goal:
From all the paths from *query* to *use*, remove those going through *def*.

Highest point
Last point of the path such that all the following points are below.

If the highest point is dominated by *def* then the whole path is.
Principle

- For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.
- From this set, remove the points *above def* (not dominated by def).
- From the remaining *highest points*, test the *descending reachability* to *use*.

Example 1

```
q
```

```python
r=0

1

2

3

4

5

6

7

8

9
```
For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.

From this set, remove the points *above def* (not dominated by def).

From the remaining *highest points*, test the *descending* reachability to *use*.
For each node \(q \) of the CFG, compute the set of potential *highest points* of every path starting at \(q \).

From this set, remove the points *above def* (not dominated by *def*).

From the remaining *highest points*, test the *descending* reachability to *use*.

Example 1

\[
\begin{align*}
\text{r=0} & \\
\text{def} & \\
1 & \\
9 & \\
5 & \\
6 & \\
2 & \\
\text{use} & \\
7 & \\
3 & \\
\text{Example 1} & \\
4 &
\end{align*}
\]
For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.

From this set, remove the points *above def* (not dominated by def).

From the remaining *highest points*, test the *descending reachability* to *use*.
For each node q of the CFG, compute the set of potential highest points of every path starting at q.

From this set, remove the points above def (not dominated by def).

From the remaining highest points, test the descending reachability to use.

Example 1

```
q
3
v
7
use
6
def
5
def
1
r=0
9
```
For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.

From this set, remove the points *above* def (not dominated by def).

From the remaining *highest points*, test the descending reachability to use.
For each node \(q \) of the CFG, compute the set of potential highest points of every path starting at \(q \).

From this set, remove the points above \(\text{def} \) (not dominated by \(\text{def} \)).

From the remaining highest points, test the descending reachability to \(\text{use} \).
For each node \(q \) of the CFG, compute the set of potential *highest points* of every path starting at \(q \).

- From this set, remove the points *above def* (not dominated by *def*).
- From the remaining *highest points*, test the *descending reachability* to *use*.
Principle

- For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.
- From this set, remove the points *above def* (not dominated by def).
- From the remaining *highest points*, test the *descending reachability to use*.
Principle

- For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.
- From this set, remove the points *above def* (not dominated by *def*).
- From the remaining *highest points*, test the *descending reachability* to *use*.

Example 2

```
\[ \begin{array}{c}
  r=0 \\
  1 \\
  \downarrow \\
  2 \\
  \downarrow \\
  3 \\
  \downarrow \\
  4 \\
  \downarrow \\
  5 \\
  \downarrow \\
  6 \\
  \downarrow \\
  7 \\
  \downarrow \\
  8 \\
  \downarrow \\
  q \\
  \end{array} \]
```
For each node q of the CFG, compute the set of potential highest points of every path starting at q.

From this set, remove the points above def (not dominated by def).

From the remaining highest points, test the descending reachability to use.
For each node q of the CFG, compute the set of potential *highest points* of every path starting at q.

From this set, remove the points *above* def (not dominated by def).

From the remaining *highest points*, test the *descending* reachability to use.
Algorithm

Precomputation

1. Compute transitive closure on the reduced graph G'
 - $G' = \text{CFG without DFS back edges (cycle-free)}$
 - Simple to compute: post-order traversal

2. For each node q compute a set T_q of possible highest points (back-edge targets)
 - Also simple to compute: pre-order and post-order traversal

Query

For each use:

For each $t \in T_q$ dominated by def:
- Test reachability in the reduced graph
Implementation Tricks

- Reachability and T_q can be efficiently implemented as bitsets.
- For reducible CFGs there is exactly one “highest” back-edge target:
 - dominates all the other back-edge targets
 - sufficient to check from there
- Hence, order nodes according to dominance:
 - “highest” node is first set bit in T_q
Outline

1. Liveness checking: what & why
2. Foundations
3. Algorithm
4. Loop Nesting Forest & Depth First Search
5. Experimental Results
6. Conclusion
Loop Nesting Forest

Use the same idea:

- Pre-compute reachability
- Filter path that does not contain d in constant time

Instead of the highest point, use the loop nesting information to filter.

Loop nesting forest: recursive definition using decomposition in Strongly Connected Components (SCC).
Theorem (loop-edge free path)

Given d, q, and u such that:

- d dominates u
- d dominates q

A path from q to u does not contain d iff it does not contain any loop-edge of any loop containing d
Algorithm

Pre-computation

Compute reachability in the following Directed Acyclic Graph (DAG):

- $G - \{\text{loop-edge}\}$
- replace edge $a \rightarrow b$ into edge $a \rightarrow h$ (h header of the largest loop containing b not a)

Complexity: $O(\#BB)$ operations on bit-sets
Pre-computation

Compute reachability in the following Directed Acyclic Graph (DAG):
- \(G - \{\text{loop-edge}\} \)
- replace edge \(a \rightarrow b \) into edge \(a \rightarrow h \) (h header of the largest loop containing b not a)

Complexity: \(O(\#BB) \) operations on bit-sets
Algorithm

Pre-computation

Compute reachability in the following Directed Acyclic Graph (DAG):

- $G - \{\text{loop-edge}\}$
- replace edge $a \rightarrow b$ into edge $a \rightarrow h$ (h header of the largest loop containing b not a)

Complexity: $O(\#BB)$ operations on bit-sets
Algorithm

Pre-computation

Compute reachability in the following Directed Acyclic Graph (DAG):

- $G - \{\text{loop-edge}\}$
- replace edge $a \rightarrow b$ into edge $a \rightarrow h$ (h header of the largest loop containing b not a)

Complexity: $O(\#BB)$ operations on bit-sets
Algorithm

Query ($O(\#\text{uses})$ operations on bit-sets)

For each use u:
- h: the largest loop containing q and not not d
- test if u is reachable from h
Algorithm

Query ($O(\#\text{uses})$ operations on bit-sets)

For each use u:
- h: the largest loop containing q and not not d
- test if u is reachable from h
Algorithm

Query ($O(\#\text{uses})$ operations on bit-sets)

For each use u:
- h: the largest loop containing q and not d
- test if u is reachable from h
Algorithm

Query ($O(\#\text{uses})$ operations on bit-sets)

For each use u:

- h: the largest loop containing q and not not d
- test if u is reachable from h
Algorithm

Query \(O(\#\text{uses})\) operations on bit-sets

For each use \(u\):
- \(h\): the largest loop containing \(q\) and not not \(d\)
- test if \(u\) is reachable from \(h\)
Algorithm

Query \((O(\#uses) \text{ operations on bit-sets})\)

For each use \(u\):
- \(h\): the largest loop containing \(q\) and not \(d\)
- test if \(u\) is reachable from \(h\)
Outline

1. Liveness checking: what & why
2. Foundations
3. Algorithm
4. Loop Nesting Forest & Depth First Search
5. Experimental Results
6. Conclusion
Evaluation

Setup

- Implemented in LAO, code generator developed by STMicroelectronics
- Benchmarked with a subset of SPEC2000 (CINT)
- Liveness-analysis used during SSA deconstruction

The main factors influencing the speed of our algorithm are:

- the number of uses per variable (\#uses)
- the number of basic blocks (\#BB)
- the number of CFG edges (\#edges)
Quantitative Evaluation

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Maximum</th>
<th>% ≤ 1</th>
<th>% ≤ 2</th>
<th>% ≤ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.gzip</td>
<td>51</td>
<td>65.64</td>
<td>86.38</td>
<td>92.81</td>
</tr>
<tr>
<td>175.vpr</td>
<td>75</td>
<td>70.36</td>
<td>88.90</td>
<td>93.93</td>
</tr>
<tr>
<td>176.gcc</td>
<td>422</td>
<td>73.99</td>
<td>87.81</td>
<td>92.42</td>
</tr>
<tr>
<td>181.mcf</td>
<td>46</td>
<td>66.91</td>
<td>83.50</td>
<td>89.33</td>
</tr>
<tr>
<td>186.crafty</td>
<td>620</td>
<td>72.98</td>
<td>90.09</td>
<td>93.85</td>
</tr>
<tr>
<td>197.parser</td>
<td>96</td>
<td>65.12</td>
<td>86.75</td>
<td>94.26</td>
</tr>
<tr>
<td>254.gap</td>
<td>156</td>
<td>70.46</td>
<td>85.95</td>
<td>91.26</td>
</tr>
<tr>
<td>255.vortex</td>
<td>254</td>
<td>65.99</td>
<td>90.80</td>
<td>95.02</td>
</tr>
<tr>
<td>256.bzip2</td>
<td>36</td>
<td>69.89</td>
<td>89.89</td>
<td>94.47</td>
</tr>
<tr>
<td>300.twolf</td>
<td>165</td>
<td>69.71</td>
<td>87.59</td>
<td>93.23</td>
</tr>
<tr>
<td>Total</td>
<td>620</td>
<td>71.30</td>
<td>87.85</td>
<td>92.76</td>
</tr>
</tbody>
</table>
Quantitative Evaluation

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Average</th>
<th>% ≤ 32</th>
<th>% ≤ 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.gzip</td>
<td>33.35</td>
<td>69.51</td>
<td>85.36</td>
</tr>
<tr>
<td>175.vpr</td>
<td>34.45</td>
<td>68.88</td>
<td>84.44</td>
</tr>
<tr>
<td>176.gcc</td>
<td>38.96</td>
<td>72.85</td>
<td>86.03</td>
</tr>
<tr>
<td>181.mcf</td>
<td>20.31</td>
<td>84.61</td>
<td>100.00</td>
</tr>
<tr>
<td>186.crafty</td>
<td>69.28</td>
<td>59.63</td>
<td>76.14</td>
</tr>
<tr>
<td>197.parser</td>
<td>23.60</td>
<td>84.82</td>
<td>93.49</td>
</tr>
<tr>
<td>254.gap</td>
<td>32.89</td>
<td>67.60</td>
<td>87.44</td>
</tr>
<tr>
<td>255.vortex</td>
<td>26.46</td>
<td>77.57</td>
<td>90.68</td>
</tr>
<tr>
<td>256.bzip2</td>
<td>22.97</td>
<td>78.37</td>
<td>91.89</td>
</tr>
<tr>
<td>300.twolf</td>
<td>56.97</td>
<td>59.47</td>
<td>77.36</td>
</tr>
<tr>
<td>Total</td>
<td>35.21</td>
<td>72.71</td>
<td>87.18</td>
</tr>
</tbody>
</table>
Runtime Experiments

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Precomputation</th>
<th>Queries</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.gzip</td>
<td>3.12</td>
<td>0.53</td>
<td>1.16</td>
</tr>
<tr>
<td>175.vpr</td>
<td>2.17</td>
<td>0.48</td>
<td>1.41</td>
</tr>
<tr>
<td>176.gcc</td>
<td>3.03</td>
<td>0.26</td>
<td>1.00</td>
</tr>
<tr>
<td>181.mcf</td>
<td>1.85</td>
<td>0.44</td>
<td>1.39</td>
</tr>
<tr>
<td>186.crafty</td>
<td>2.78</td>
<td>0.49</td>
<td>0.73</td>
</tr>
<tr>
<td>197.parser</td>
<td>2.13</td>
<td>0.49</td>
<td>1.54</td>
</tr>
<tr>
<td>254.gap</td>
<td>3.45</td>
<td>0.52</td>
<td>2.08</td>
</tr>
<tr>
<td>255.vortex</td>
<td>1.67</td>
<td>0.45</td>
<td>1.32</td>
</tr>
<tr>
<td>256.bzip2</td>
<td>3.45</td>
<td>0.51</td>
<td>2.32</td>
</tr>
<tr>
<td>300.twolf</td>
<td>4.76</td>
<td>0.49</td>
<td>1.92</td>
</tr>
<tr>
<td>Total</td>
<td>2.94</td>
<td>0.36</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Bonus: Liveness under SSI

- Proof that the interference graph is an interval graph
- The linearization of the CFG doesn't respect the dominance relation
- We can do liveness query in constant time
 - q included in the interval?
Proof that the interference graph is an interval graph
- The linearization of the CFG doesn’t respect the dominance relation
- We can do liveness query in constant time
 - q included in the interval?
- Still not sure of the usefulness of SSI
Outline

1. Liveness checking: what & why
2. Foundations
3. Algorithm
4. Loop Nesting Forest & Depth First Search
5. Experimental Results
6. Conclusion
Contributions

- Novel approach for liveness checking relying only on the CFG
- Uses information available from the loop nesting forest
- Fast construction algorithm
- Overall speedup in most cases
Future Work

- Dynamic update for CFG transformations
- Memory efficient reachability
Thank you!

My topics of interest

- Graph algorithms
- CFG properties, dominance/post-dominance
- SSI and other SSA extensions