
Towards the development
of a VSDG compiler

James Stanier

SSA Seminar, Autrans 2009

Department of InformaticsWild-cat session

Hello

• I’m 6 months into my PhD

• All ideas are subject to change(!)

• Purpose to stimulate ideas and discussion

Value State Dependence
Graph

• A very interesting structure

• Original ideas and implementation by
Johnson [2004]

• Theoretical exploration by Lawrence [2007]

• New implementation [2011?]

Sequentialization

VSDG
Duplication-

free PDG
PDG

variant
CFG

Proceduralization
PDG

sequentialization
Node

scheduling

• Generating code straight from VSDG hard

• Gradual restoration of control information

• Lots of opportunity for optimizations

Phase order revisited

• Which optimizations belong where?

• Possibility that certain VSDG
transformations become antagonistic to this
process

VSDG
Duplication-

free PDG
PDG

variant
CFG

Proceduralization
PDG

sequentialization
Node

scheduling

Is there any other way
this can be done?

VSDG
Duplication-

free PDG
PDG

variant
CFG

Proceduralization
PDG

sequentialization
Node

scheduling

Representing loops

• Recall loops were interpreted as infinite nets

• Need some kind of fix-point notation or
possibly lambda style

• Still unsure about this

PDG variant: RVSDG

• Conjecture by Lawrence

• “Equivalent” to the PDG

• Sharing edges (history and future)

• No infinite loops - recursive calls

• But no construction algorithm.

x x

1 3

+ !

CALL foo CALL foo

+

y

+

y

C

"

if(C)

 y+foo(x+1);

else

 y+foo(x*3);

Reuse-sharing edge

Tail-sharing edge

Where did all the code go?

• VDG: “we are currently implementing...”

• Johnson’s compiler lacks modularity and now
contains out of date ideas

• Lawrence’s work purely theoretical

• An implementation would be nice!

Thesis approach

• LLVM IR as input

• Code generator approach depends on time

• Plethora of possible interesting
optimizations and RVSDG exploration

• Benchmark new VSDG ideas against “real”
compilers and Johnson’s approach

• ...plus some other ideas

Register edges in the
RVSDG

• Less constraining than pre-coloring

• More constraining than affinity edges

• Does this push towards NP-Complete or
not?

Parallelism

• The VSDG is a very loosely constrained
graph

• Partitioning this to exploit parallelism?

Thanks!
j.stanier@sussex.ac.uk

http://www.informatics.sussex.ac.uk/users/js231

• VSDG
• Compiler front-ends (maybe)
• Compilers/optimizations in general

