Efficient Alias Set Analysis
Using SSA Form

Ondřej Lhoták Nomair Naeem
How can **aliases** be represented in **SSA** form?

Not this talk.

How can **SSA** form help **alias** analysis?

This talk.

Observe some interesting SSA properties along the way...
Range of Pointer Analyses

Legend:
- Green circle: Concrete (run-time) object
- Blue square: Abstract (static) object

Points-to Analysis

Shape Analysis

Efficient analysis

Precise analysis

Efficient Alias Set Analysis Using SSA Form | Ondrej Lhotak, Nomair Naeem | University of Waterloo
Range of Pointer Analyses

Legend:
- Green: Concrete (run-time) object
- Blue: Abstract (static) object

Points-to Analysis
- p
- q
- r

Alias Set Analysis
- p
- q
- r

Shape Analysis
- p
- q

Efficient analysis
- Precise analysis
Why Alias Sets: Object Tracking

Efficient Alias Set Analysis Using SSA Form | Ondrej Lhotak, Nomair Naeem | University of Waterloo
Each element of the abstract domain is a set of abstract objects. Each abstract object is a set of pointer variables.

p,q represents the object (if any) pointed by p and q and no other local variables.
Each element of the abstract domain is a set of abstract objects. Each abstract object is a set of pointer variables.

\(p, q \) represents the object (if any) pointed by \(p \) and \(q \) and no other local variables.
Transfer Functions

\[
p = \text{new}
\]

\[
r = q
\]

\[
q = s.f
\]

\[
\{p\}, o^\# \setminus \{p\}
\]

\[
\begin{cases}
 o^\# \setminus \{r\} & \text{if } q \not\in o^\#

 o^\# \cup \{r\} & \text{if } q \in o^#
\end{cases}
\]

\[
o^\# \setminus \{q\}, o^\# \cup \{q\}
\]
Benefits of SSA Form for Alias Set Analysis

IF

- Convert code to SSA form
- Represent each alias set by sorted list, ordered by dominance of (unique) definitions

THEN

😊 All inserts into set are at head of list
😊 All removals from set are at head of list
😊 All removals are at \(\phi \) nodes
😊 Tails of lists can be shared (hash consing)
Since r is not live at π, it is irrelevant.

\[
[s]_2(o^\#) = [s]_1(o^\#) \cap \text{live-out}(s)
\]
Definition: Given statement π, dom-vars(π) is the set of all variables whose (unique) definition dominates π.
Filtering by Liveness

• Since \(r \) is not live at \(\pi \), it is irrelevant.
• Since \(p \) and \(q \) are live at \(\pi \), their defs must dominate \(\pi \).

\[[s]^2(o^\#) = [s]^1(o^\#) \cap \text{live-out}(s) \]
\[[s]^3(o^\#) = [s]^1(o^\#) \cap \text{dom-vars}(s) \]
\[[s]^1(o^\#) \supseteq [s]^3(o^\#) \supseteq [s]^2(o^\#) \]

SSA Property 1:

\(\text{live-out}(s) \subseteq \text{dom-vars}(s) \).
Filtering by Liveness

Since r is not live at π, it is irrelevant.

Since p and q are live at π, their defs must dominate π.

Since defs of p and q dominate π, one must dominate the other.

\[
[s]^2(\#) = [s]^1(\#) \cap \text{live-out}(s)
\]

\[
[s]^3(\#) = [s]^1(\#) \cap \text{dom vars}(s)
\]

\[
[s]^1(\#) \supseteq [s]^3(\#) \supseteq [s]^2(\#)
\]

SSA Property 2:
If \{p_1, p_2, \ldots\} are simultaneously live, then the \(p_i\) are totally ordered by dominance of their definitions.
Fact: $[s]_1(o^\#) \subseteq o^\# \cup \text{def}(s)$ for all s.

Therefore, if $o^\# \subseteq \text{dom-vars}(\pi)$, then def of p is dominated by defs of all variables in $o^\#$. Thus, insertion of p occurs at head of list.

SSA Property 3:
If a transfer function adds only the variable being defined to a set S, it preserves the property that $S \subseteq \text{dom-vars}$.
Removal from Head of List

Fact: $[s]^1(o^\#) \supseteq o^\# \setminus \text{def}(s)$ for all s.

Thus, if $o^\# \subseteq \text{dom-vars(pred(\pi))}$, then $p \not\in o^\#$. Thus, the \setminus operation in $[s]^1$ is unnecessary.

The only removal necessary is intersection with dom-vars(\pi).

SSA Property 4:
If $S \subseteq \text{dom-vars(pred(\pi))}$, then the variable defined at π is not in S.
Removal from Head of List

If \text{pred}(\pi) is the only predecessor of \pi, then \(\text{dom-vars}(\pi) = \text{dom-vars}(\text{pred}(\pi)) \cup \{p\}\).

If \(o^\# \subseteq \text{dom-vars}(\text{pred}(\pi))\), and \([s]^{-1}(o^\#) \subseteq o^\# \cup \{p\}\), then \([s]^{-1}(o^\#) \subseteq \text{dom-vars}(\pi)\).

So no intersection is necessary.
If π has multiple predecessors, then $\text{dom-vars}(\pi) = \text{dom-vars}(\text{idom}(\pi)) \cup \{p\}$.

Every var in $o^\# \setminus \text{dom-vars}(\text{idom}(\pi))$ is dominated by every var in $\text{dom-vars}(\text{idom}(\pi))$. Therefore, the variables to be removed are at the head of the list $o^\#$.

Thus, $[\phi]^6(o^#) = [\phi]^1(\text{prune}(o^#))$, where prune removes vars from the head of the list until the def of the head of the list strictly dominates π.

So intersection is removal from head of list.
SSA Property 5:
To maintain the property that $S \subseteq \text{dom-vars}(\pi)$, it suffices to intersect S with $\text{dom-vars(idom}(\pi))$ only at control flow merge points.

It is convenient to arrange for all control flow merge points to be (possibly vacuous) ϕ nodes.
The Alias Set Analysis and the Typestate Analysis are each an instantiation of the IFDS algorithm:
• Interprocedural
• Context-Sensitive
• Precise
• Expensive
Summary of SSA Properties

1. live-out(s) \(\subseteq \) dom-vars(s).

2. If \(\{p_1, p_2, \ldots\} \) are simultaneously live, then the \(p_i \) are totally ordered by dominance of their definitions.

3. If a transfer function adds only the variable being defined to set S, it preserves the property that \(S \subseteq \) dom-vars.

4. If \(S \subseteq \) dom-vars(pred(\(\pi \))), then the variable defined at \(\pi \) is not in S.

5. To maintain the property that \(S \subseteq \) dom-vars(\(\pi \)), it suffices to intersect S with dom-vars(idom(\(\pi \))) only at control flow merge points.