Compiler Construction WS09/10

Exercise Sheet 3

Please hand in the solutions to the theoretical exercises until the beginning of the lecture next Wednesday 2009-11-11, 10:00. Please write the number of your tutorial group or the name of your tutor on the first sheet of your solution. Solutions submitted later will not be accepted.

Exercise 3.1: Item-PDAs Revisited (Points: 4+2)

Let the pushdown automaton \(P = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \Delta, q_0, \{q_3\}) \), where
\[
\Delta = \{(q_0, a, q_0q_1), (q_0, b, q_0q_2), (q_0, \#, q_3), (q_1, a, q_1q_1), (q_1, b, \epsilon), (q_2, a, \epsilon), (q_2, b, q_2q_2)\}
\]
and \(\# \notin \Sigma \) symbolizes the end of the input word, be given.

Provide a context-free grammar that generates the language \(L \) accepted by \(P \). If possible, provide also a regular expression for \(L \). Otherwise provide sufficient arguments why this is not possible.

Exercise 3.2: Grammar Flow Analysis (Points: 3+6)

Let \(G = (\{S', S, A, B, C, D, E, F, G, H, K, L\}, \{a, b, c, d, e\}, P, S') \) be a given grammar with the set of productions \(P \) defined as:

\[
egin{align*}
S' & \rightarrow S \\
S & \rightarrow BH | HA \\
A & \rightarrow SaBC | bcA \\
B & \rightarrow Ba | b \\
C & \rightarrow dS | Bd \\
D & \rightarrow deL \\
E & \rightarrow FG \\
G & \rightarrow b \\
H & \rightarrow cA | A | b \\
K & \rightarrow b \\
L & \rightarrow dD
\end{align*}
\]

1. Remove all unreachable and all non-productive rules.

2. Compute the sets \(FIRST_1(T) \) and \(FOLLOW_1(T) \) for each nonterminal \(T \) of the reduced grammar.

You are to use the algorithms from the lecture and to provide for each subtask the corresponding system of equations.

Exercise 3.3: LL(k) (Points: 2+2+2+2)

A grammar is an LL(k)-grammar for some \(k \in \mathbb{N} \) if whenever there exist \(u, x, y \in V_T^* \) with \(k : x = k : y, Y \in V_N \) and \(\alpha, \beta, \gamma \in (V_T \cup V_N)^* \) such that

\[
\begin{align*}
S & \xrightleftharpoons[+]{lm} uY\alpha \xrightarrow[+]{lm} u\beta\alpha \xrightarrow[+]{lm} u\gamma\alpha \xrightarrow[+]{lm} u\gamma y \\
S & \xrightleftharpoons[+]{lm} u\beta\alpha \xrightarrow[+]{lm} u\gamma\alpha \xrightarrow[+]{lm} u\gamma y
\end{align*}
\]
$\beta = \gamma$

A language L is an $LL(k)$-language if there exists an $LL(k)$-grammar that generates L.

1. Prove that for each $k \in \mathbb{N}$ there exists a grammar which is $LL(k + 1)$ but not $LL(k)$.

2. Prove that for each $k \in \mathbb{N}$ an $LL(k)$-grammar is an $LL(k + 1)$-grammar.

3. Investigate the relationship between $LL(0)$-languages and regular languages.

4. A grammar is left-recursive if it has a production of the form $A \rightarrow A\mu$. Show that a left-recursive grammar is not $LL(k)$ for any k.