
Code Placement, Code Motion

Compiler Construction Course

Winter Term 2009/2010

computer science

saarland
university

Why?

Loop-invariant code motion

Global value numbering destroys block membership

Remove redundant computations

2

GVN Recap

SSA GVN treats the program as a graph

Nodes are computations ≡ SSA values

Edges are data dependences

Graph can be seen as finite state automaton

Minimized automaton merges multiple congruent SSA values

3

GVN Recap

GVN destroys block membership

Some nodes are pinned
I Cannot be moved outside the block
I They cannot be congruent to a node in a different block
I (non-functional) Calls, Stores, φs

All other nodes do not have side effects and are floating

Need to place floating computations of minimized program

Issues:
I Correctness
I Efficiency of placed code

4

A Simple Heuristic
Idea

1 Place nodes as early as possible
I Earliest point: All operands have to dominate the node
I Place all operands before
I Placing a node as early as possible leaves most freedom for its users
I Gives a correct placement

2 Modify placement and place nodes as late as possible
I Reduces partial deadness of the computation (Efficiency)
I Latest point:

F A node has to dominate all its users
F Lowest common dominator of all users

I Might end up in a loop
I Hence: search for latest node between earliest and latest with lowest

loop nesting

5

Early Placement

Perform DFS on the reversed SSA graph

We assume, there is a unique data dependence source
(in Firm, there is the End node)

Place node n when returning from operands

Each operand is either a pinned node or has then been placed

All operands have to dominate the node to be placed
I All operands lie on a branch in the dominance tree
I Hence, there is a lowest one
I This is the earliest block to place the node in

Example on black board

6

Late Placement

Inverse order as early placement

Forward DFS on the SSA graph

Place all users of a node first

Then place the node

Latest possible placement of the node is the lowest common
dominator of all users

Earliest dominates latest

Node can be placed everywhere on the dominance branch between
earliest and latest

Search for the latest (lowest) block on that branch with the lowest
loop nesting level

Hoists loop-invariant computations out of loops

Example on black board

7

Drawback

Definition

An variable v is dead along a path P : def (v)→+ end , if P does not
contain a use of v .
An variable v is fully (partially) dead if it is dead along every (some) path.

The latest placement might still lead to a partial dead code

Would need to duplicate computations

Example on black board

See ir/opt/code_placement.c in libFirm

8

Partial Redundancy Elimination

GVN merges congruent computations

Regardless of redundancy

Sometimes it eliminates (partially) redundant computations

Might create partial dead code

PRE considers placement of computations

to remove partially redundant computations

Does not create partial dead code

But has no concept of congruence

Few SSA-based algorithms exist

Here: First part of “Lazy Code Motion”

9

Redundancy of Computations

Definition

Consider a program point ` with a statement

` : z ← τ(x1, . . . , xn)

The computation τ(x1, . . . , xn) is redundant along a path P to ` iff there
exists `′ ∈ P in front of ` with

`′ : z ← τ(x1, . . . , xn)

and no (re-)definition to the xi .

Definition (full and partial redundancy)

A computation τ(x1, . . . , xn) is fully (partially) redundant if every (some)
path to ` contains τ(x1, . . . , xn)

10

Partial Redundant Computations
Example

← b + c

← b + c

← b + c ← b + c

← b + c

Left figure: a + b is partially redundant on right path

Right figure: Insertion of computation on left branch makes
computation below fully redundant

11

Partial Redundant Computations
Loop-Invariant Code

a← b + c

Loop-invariant code is partial redundant

12

Code Placement

Consider an expression τ(a, b)

A statement z ← τ(a, b) is a computation of τ(a, b)

Code Placement for an expression τ(a, b) comprises:
I Insert statements of the form t ← τ(a, b) with a new temporary h
I Rewrite some of the original computations of τ(a, b) to h

13

Critical Edges

Redundancies cannot be removed safely in arbitrary graphs

Moving a + b from 3 to 2 might create new redundancies there

This is because the edge 2→ 3 is critical

ACM SIGPLAN 464 Best of PLDI 1979-1999

We need to be able to put code on every edge

Split every edge from blocks with multiple successors to blocks with
multiple predecessors

14

Anticipability
Aka Down-Safety

We want to find program points that make computations of t fully
redundant

A program point n is an anticipator of t if a computation of t lies on
every path from n to end .

This is expressed by following data-flow equation of a backward flow
problem

A•(`) =
⋂

s∈succ(`)

A◦(s)

A◦(`) = UEExpr(`) ∪
(
A•(`) ∩ ExprKill(`)

)
UEExpr(`) are the upward exposed expressions of `:
All variables used before defined in `

ExprKill(`) is the set of all variables killed in `:
All variables defined in `

15

Anticipability
Aka Down-Safety

We want to find program points that make computations of t fully
redundant

A program point n is an anticipator of t if a computation of t lies on
every path from n to end .

This is expressed by following data-flow equation of a backward flow
problem

A•(`) =
⋂

s∈succ(`)

A◦(s)

A◦(`) = UEExpr(`) ∪
(
A•(`) ∩ ExprKill(`)

)
UEExpr(`) are the upward exposed expressions of `:
All variables used before defined in `

ExprKill(`) is the set of all variables killed in `:
All variables defined in `

15

Earliestness

A placement of t at a node n is earliest if there exists a path from r
to n such that no node on P prior to n

I anticipates t at n
I or does not produce the same value when evaluating t at m

Can also be cast as a flow problem:

E◦(`) =
⋃

p∈pred(`)

E•(p)

E•(`) = ExprKill(`) ∪
(
A◦(`) ∩ E◦(`)

)

16

Example

ACM SIGPLAN 467 Best of PLDI 1979-1999

17

The Transformation

For every expression t ≡ τ(a, b), compute E and A.

Insert h← t at the beginning of every n with t ∈ A◦(n) and t ∈ E◦(n)

Replace every original computation of t by h

This placement is computationally optimal!

Every other down-safe placement has at least as many computations
of t on every possible control flow path from r to e

Proof sketch: Look at paths from computation points to uses and
show that they do not contain redundant computations

18

Example

ACM SIGPLAN 467 Best of PLDI 1979-1999

ACM SIGPLAN 467 Best of PLDI 1979-1999

19

Literature

Jens Knoop, Oliver Rüthing, and Bernhard Steffen.
Lazy code motion.
In PLDI ’92: Proceedings of the ACM SIGPLAN 1992 conference on
Programming language design and implementation, pages 224–234,
New York, NY, USA, 1992. ACM.

E. Morel and C. Renvoise.
Global optimization by suppression of partial redundancies.
Commun. ACM, 22(2):96–103, 1979.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computations.
In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 12–27,
New York, NY, USA, 1988. ACM.

20

