Code Placement, Code Motion

Compiler Construction Course

Winter Term 2009/2010
Why?

- Loop-invariant code motion
- Global value numbering destroys block membership
- Remove redundant computations
GVN Recap

- SSA GVN treats the program as a graph
- Nodes are computations \equiv SSA values
- Edges are data dependences
- Graph can be seen as finite state automaton
- Minimized automaton merges multiple congruent SSA values
GVN Recap

- GVN destroys block membership
- Some nodes are **pinned**
 - Cannot be moved outside the block
 - They cannot be congruent to a node in a different block
 - (non-functional) Calls, Stores, ϕs
- All other nodes do not have side effects and are **floating**
- Need to place floating computations of minimized program
- Issues:
 - Correctness
 - Efficiency of placed code
A Simple Heuristic

Idea

1. Place nodes as early as possible
 - Earliest point: All operands have to dominate the node
 - Place all operands before
 - Placing a node as early as possible leaves most freedom for its users
 - Gives a correct placement

2. Modify placement and place nodes as late as possible
 - Reduces partial deadness of the computation (Efficiency)
 - Latest point:
 * A node has to dominate all its users
 * Lowest common dominator of all users
 - Might end up in a loop
 - Hence: search for latest node between earliest and latest with lowest loop nesting
Early Placement

- Perform DFS on the reversed SSA graph
- We assume, there is a unique data dependence source (in Firm, there is the End node)
- Place node n when returning from operands
- Each operand is either a pinned node or has then been placed

- All operands have to dominate the node to be placed
 - All operands lie on a branch in the dominance tree
 - Hence, there is a lowest one
 - This is the earliest block to place the node in

- Example on black board
Late Placement

- Inverse order as early placement
- Forward DFS on the SSA graph
- Place all users of a node first
- Then place the node
- Latest possible placement of the node is the lowest common dominator of all users
- Earliest dominates latest
- Node can be placed everywhere on the dominance branch between earliest and latest
- Search for the latest (lowest) block on that branch with the lowest loop nesting level
- Hoists loop-invariant computations out of loops
- Example on black board
Drawback

Definition

An variable v is dead along a path $P : \text{def}(v) \rightarrow^+ \text{end}$, if P does not contain a use of v.
An variable v is fully (partially) dead if it is dead along every (some) path.

- The latest placement might still lead to a partial dead code
- Would need to duplicate computations
- Example on black board
- See `ir/opt/code_placement.c` in libFirm
Partial Redundancy Elimination

- GVN merges congruent computations
- Regardless of redundancy
- Sometimes it eliminates (partially) redundant computations
- Might create partial dead code

- PRE considers placement of computations
 - to remove partially redundant computations
 - Does not create partial dead code
 - But has no concept of congruence
 - Few SSA-based algorithms exist
- Here: First part of “Lazy Code Motion”
Redundancy of Computations

Definition

Consider a program point ℓ with a statement

$$\ell : z \leftarrow \tau(x_1, \ldots, x_n)$$

The computation $\tau(x_1, \ldots, x_n)$ is redundant along a path P to ℓ iff there exists $\ell' \in P$ in front of ℓ with

$$\ell' : z \leftarrow \tau(x_1, \ldots, x_n)$$

and no (re-)definition to the x_i.

Definition (full and partial redundancy)

A computation $\tau(x_1, \ldots, x_n)$ is fully (partially) redundant if every (some) path to ℓ contains $\tau(x_1, \ldots, x_n)$.
Partial Redundant Computations

Example

- Left figure: \(a + b \) is partially redundant on right path
- Right figure: Insertion of computation on left branch makes computation below fully redundant
Partial Redundant Computations

Loop-Invariant Code

\[a \leftarrow b + c \]

- Loop-invariant code is partial redundant
Consider an expression $\tau(a, b)$

- A statement $z \leftarrow \tau(a, b)$ is a computation of $\tau(a, b)$
- Code Placement for an expression $\tau(a, b)$ comprises:
 - Insert statements of the form $t \leftarrow \tau(a, b)$ with a new temporary h
 - Rewrite some of the original computations of $\tau(a, b)$ to h
Critical Edges

- Redundancies cannot be removed safely in arbitrary graphs
- Moving $a + b$ from 3 to 2 might create new redundancies there
- This is because the edge $2 \rightarrow 3$ is critical

We need to be able to put code on every edge

- Split every edge from blocks with **multiple successors** to blocks with **multiple predecessors**
Anticipability

Aka Down-Safety

- We want to find program points that make computations of t fully redundant
- A program point n is an anticipator of t if a computation of t lies on every path from n to \textit{end}.
Anticipability
Aka Down-Safety

- We want to find program points that make computations of t fully redundant.
- A program point n is an anticipator of t if a computation of t lies on every path from n to \textit{end}.
- This is expressed by the following data-flow equation of a backward flow problem:

$$A_\bullet (\ell) = \bigcap_{s \in \text{succ}(\ell)} A_\circ (s)$$

$$A_\circ (\ell) = \text{UEExpr}(\ell) \cup (A_\bullet (\ell) \cap \text{ExprKill}(\ell))$$

- \text{UEExpr}(\ell) are the upward exposed expressions of ℓ:
 - All variables used before defined in ℓ.
- \text{ExprKill}(\ell) is the set of all variables killed in ℓ:
 - All variables defined in ℓ.
Earliestness

- A placement of t at a node n is earliest if there exists a path from r to n such that no node on P prior to n
 - anticipates t at n
 - or does not produce the same value when evaluating t at m

- Can also be cast as a flow problem:

$$E_\circ(\ell) = \bigcup_{p \in \text{pred}(\ell)} E_\bullet(p)$$

$$E_\bullet(\ell) = \text{ExprKill}(\ell) \cup \left(A_\circ(\ell) \cap E_\circ(\ell) \right)$$
Example
The Transformation

For every expression $t \equiv \tau(a, b)$, compute E and A.

Insert $h \leftarrow t$ at the beginning of every n with $t \in A_\circ(n)$ and $t \in E_\circ(n)$

Replace every original computation of t by h

This placement is computationally optimal!

Every other down-safe placement has at least as many computations of t on every possible control flow path from r to e

Proof sketch: Look at paths from computation points to uses and show that they do not contain redundant computations
Example
