Instruction Selection on SSA Graphs

Sebastian Hack, Sebastian Buchwald, Andreas Zwinkau

Compiler Construction Course
Winter Term 2009/2010
Instruction Selection

Diagram showing the transformation of a series of instructions from a lower level to a higher level, involving operations such as 'Add', 'Load', and 'Const'.
Instruction Selection on SSA

- “Optimal” instruction selection on trees is polynomial
- SSA programs are directed graphs
 - Data dependence graphs
- Translating back from SSA graphs to trees is not satisfactory
- “Optimal” instruction selection is NP-complete on DAGs
- The problem is common subexpressions
- Doing it on graphs provides more opportunities for complex instructions:
 - Patterns with multiple results
 - DAG-like patterns
Instruction Selection on SSA

- Graph Rewriting
- For every machine instruction specify:
 - A set of graphs (patterns) of IR nodes
 - Every pattern has associated costs

1. Find all matchings of the patterns in the IR graph
2. Pick a correct and optimal matching
3. Replace each pattern by corresponding machine instruction

⇒ Result is an SSA graph with machine nodes
Graphs

- Let $G = (V, E)$ be a directed acyclic graph (DAG)
- Let Op be a set of operators
- Every node has a degree $\text{deg} \; v : V \rightarrow \mathbb{N}_0$
- Every node $v \in V$ has an operator: $\text{op} : V \rightarrow Op$
- Every operator $o \in Op$ has an arity $\# : Op \rightarrow \mathbb{N}_0$
- Let $\Box \in Op$ be an operator with $\# \; \Box = 0$
- Nodes with operator \Box denote “glue” points in the patterns (later)
- Every node’s degree must match the operator’s arity:

$$\# \; \text{op} \; v = \text{deg} \; v$$

Definition (Program Graph)

A graph G is a program graph if it is acyclic and

$$\forall v \in V : \text{op} \; v \neq \Box$$
A graph $P = (V, E)$ is rooted if there exists a node $v \in V_P$ such that there is a path from v to every node v' in P.

If P is a DAG, then there is a unique root called $rt\ P$.

Definition (Pattern Graph, Pattern)

A graph P is a pattern if

- it is acyclic and rooted
- $op\ rt\ P \neq \Box$

Note that we explicitly allow nodes with operator \Box in patterns.
Equivalence of Nodes in Patterns

- Complex patterns often have common sub-patterns

- Shall be treated as equivalent
- Selecting the common sub-pattern at the Add node shall enable selecting the complex instruction at Store and Load
Equivalence of Nodes in Patterns

Definition (Equivalence of nodes)

Consider two patterns P and Q and two nodes $v \in P$, $w \in Q$:

<table>
<thead>
<tr>
<th>$v \sim w$</th>
<th>$v = w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vee (\text{span } v \cong \text{span } w \land \text{rt } P \neq v \land \text{rt } Q \neq w)$</td>
<td></td>
</tr>
</tbody>
</table>

- Either the two nodes are identical
- v, w are no pattern roots and their spanned subgraphs are isomorphic
- span v: induced subgraph that contains all nodes reachable from v
Matching of a Node

- Let \(\mathcal{P} = \{P_1, P_2, \ldots\} \) be a set of patterns
- Let \(G \) be some program graph

Definition (Matching)

A matching \(\mathcal{M}_v \) of a node \(v \in V_G \) with a set of patterns \(\mathcal{P} \) is a family of pairs

\[
\mathcal{M}_v = \left((P_i, \iota_i) \right)_{i \in I} \quad I \subseteq \{1, \ldots, |\mathcal{P}|\}
\]

of patterns and injective graph morphisms \(\iota_i : P_i \rightarrow G \) satisfying

\[
v \in \text{ran} \iota_i \quad \text{and} \quad \text{op } w \neq \Box \implies \text{op } w = \text{op } \iota_i(w) \quad \forall w \in P_i
\]
Matchings

Example

Pattern P_A

Program Graph

Pattern P_B
Selection

- We have computed a covering of the graph
- i.e. instruction selection possibilities
- Now, find a subset of the covering that leads to good and correct code
- Cast the problem as a mathematical optimization problem:

_partitioned Boolean Quadratic Programming (PBQP)
PBQP

Let \(\mathbb{R}_{\infty} = \mathbb{R}_+ \cup \{\infty\} \) and

- \(\vec{c}_i \in \mathbb{R}_{\infty}^{k_i} \) be cost vectors
- \(C_{ij} \in \mathbb{R}_{\infty}^{k_i} \times \mathbb{R}_{\infty}^{k_j} \) be cost matrices

Definition (PBQP)

Minimize

\[
\sum_{1 \leq i < j \leq n} \vec{x}_i^\top \cdot C_{ij} \cdot \vec{x}_j + \sum_{1 \leq i \leq n} \vec{x}_i^\top \cdot \vec{c}_i
\]

with respect to

- \(\vec{x}_i \in \{0, 1\}^{k_i} \)
- \(\vec{x}_i^\top \cdot \vec{1} = 1, \quad 1 \leq i \leq n \)
- \(\vec{x}_i^\top \cdot C_{ij} \cdot \vec{x}_j < \infty, \quad 1 \leq i < j \leq n \)
- \tilde{x}_i are selection vectors
- Exact one component is 1
- This selects the component
- Cost matrices relate selection of made in different selection vectors
- Can be modelled as a graph:
 - cost vectors are nodes
 - matrices are edges
 - only draw non-null matrix edges
PBQP as a Graph

Colors indicate selection vectors $\vec{x}_i = (0 \ 1 \ 0)^\top$ and $\vec{x}_j = (1 \ 0)^\top$

This selection contribute the cost of 6 to the global costs

Edge direction solely to indicate order of ij in the matrix subscript
Mapping Instruction Selection to PBQP

Add

Add

Add + Const

Const

 Const

Const

Const

Add

Add

Add + Const

\[
\begin{bmatrix}
50 \\
0 \\
\infty \\
\infty \\
0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
\infty \\
\infty \\
0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
100 \\
100 \\
\end{bmatrix}
\]
Cost vectors are defined by node coverings:

- Let C_v be a node covering of v
- The alternatives of the node are given by partitioning the coverings by equivalence:
 \[C_v / \sim \]
- Common sub-patterns have to result in the same choice
- Costs come from an external specification
Mapping Instruction Selection to PBQP

- Matrices have to maintain selection correctness
- Consider two alternatives

\[A_u = (P_u, \iota_u) \quad A_v = (P_v, \iota_v) \]

at two nodes \(u, v \)

- The matrix entry for those alternatives is

\[
c(A_u, A_v) = \begin{cases}
\infty & \text{op } \iota_u^{-1}(v) = \Box \text{ and } \iota_v^{-1}(v) \neq \text{rt } P_v \\
\infty & \text{op } \iota_u^{-1}(v) \neq \Box \text{ and } \iota_u^{-1}(v) \not\sim \iota_v^{-1}(v) \\
0 & \text{else}
\end{cases}
\]

Id est:

- If \(A_u \) selects a leaf at \(v \), \(A_v \) has to select a root
- If \(A_u \) does not select a leaf, both subpatterns have to be equivalent
Example
Program Graph

![Program Graph Diagram]

- Phi
- Const
- Add
- Load
- Load

18
Example

Patterns

LAC (Load+Add+Const) LA (Load+Add) AC (Add+Const)

C (Const) P (Phi) L (Load) A (Add)
Example

Matchings

\[
P, \text{Phi} \quad \text{Load} \quad \text{Add} \quad \text{Const} \quad C, AC, LAC_1, LAC_2
\]

\[
A, AC, LA_1, LAC_1, LA_2, LAC_2 \quad L_1, LA_1, LAC_1 \quad L_2, LA_2, LAC_2
\]
Example

PBQP Instance
Reducing the Problem

Optimality-preserving reductions of the problem:

- Independent edges (e.g. matrix of zeroes):

 ![Diagram of independent edges]

- Nodes of degree 1:

 ![Diagram of nodes of degree 1]

- Nodes of degree 2:

 ![Diagram of nodes of degree 2]
Reducing the Problem

- Heuristic Reduction:
 - Chose the local minimum at a node
 - Leads to a linear algorithm
 - Each reduction eliminates at least one edge
 - If all edges are reduced, minimizing nodes separately is easy
Map instruction selection to an optimization problem

SSA graphs are sparse \(\implies\) reductions often applied

In practice: heuristic reduction rarely happens

Efficiently solvable

Convenient mechanism:
- Implementor specifies patterns and costs
- maps each pattern to a machine node
- Rest is automatic

Criteria for pattern sets that allow for correct selections in every program not discussed here!
Literature

Sebastian Buchwald and Andreas Zwinkau.
Befehlsausswahl auf expliziten Abhängigkeitsgraphen.

Erik Eckstein, Oliver König, and Bernhard Scholz.
Code Instruction Selection Based on SSA-Graphs.

Hannes Jakschitsch.
Befehlsausswahl auf SSA-Graphen.