
Code Sheduling
Code Sheduling� Wilhelm/Maurer: Compiler Design, Chapter 12 �Mooly SagivTel Aviv UniversityandReinhard WilhelmUniversität des Saarlandeswilhelm�s.uni-sb.de19. November 2007

Code ShedulingInstrution Level Parallelism (ILP)Arhitetures apable of simultaneous exeution of multipleinstrutions
◮ issued at the same time (multiple-issue arhitetures) or
◮ issued while preeding instrutions still exeute (pipelinedarhiteture)
◮ ombination possible: multiple-issue arhiteture with pipelinedfuntional unitsMain distintion between multiple-issue arhitetures: Who deideswhen to issue an instrution:
◮ Compiler statially shedules: VLIW
◮ Hardware dynamially issues: Supersalar

Code ShedulingStruture1. Arhitetural lassi�ation2. the sheduling problem and dependene3. data dependenes in basi bloks4. basi-blok sheduling for a simple pipeline5. list sheduling for basi bloks and omplex arhitetures6. sheduling for ayli sequenes of basi bloks7. software pipelining for loops

Code ShedulingThe VLIW Arhiteture
◮ Several funtional units, ideally homogeneous, in pratie not,
◮ One instrution stream, in eah instrution at most 1operation per FU,
◮ Jump priority rule for several onditional jumps in 1 instrution,
◮ FUs onneted to register banks, otherwise too many portsrequired.

FUFUFU
-

666?

666
??????

6
?

6
?

6
?

storeInstrutionunitControl
. . .

Register setMain Memory

Code ShedulingPipelining as Arhitetural Priniple
◮ split operation into asequene ofphases/stages ofroughly same duration;
◮ exeute severalonseutive instanes inan overlapped fashion.
◮ Priniple an be appliedto the exeution ofinstrutions as well asto the exeution ofoperations in funtionalunits.

yle1 2 3 4 5 6 7Pipe- 1 B1 B2 B3 B4line- 2 B1 B2 B3 B4stage 3 B1 B2 B3 B44 B1 B2 B3 B4

Code ShedulingInstrution PipelineSeveral instrutions in di�erent stages of exeutionPotential struture:1. instrution feth and deode,2. operand feth,3. instrution exeution,4. write bak of the result into target register.

Code ShedulingPipeline hazards
◮ Data hazards: Needed operand not yet available, f. truedependene
◮ Strutural hazards: Resoure on�its, several instrutionsneed same mahine resoure, e.g. funional unit, bus,
◮ Control hazards: (Conditional) jumps, ondition not yetevaluated.

Code ShedulingPhases in dynamially sheduled exeutionAssuming a load/store arhiteture.Phase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingPhases in dynamially sheduled exeutionPhase Ativity1. feth & deodeinstrution detetion of strutural hazardsoperand detetion of data hazards2. register operand feth dispath to funtional unit3. exeute exeute operation or load/store4. write bak write to register (or store)

Code ShedulingExploiting Parallelism � The Setting
Hardware o�ers parallel exeution,Code Seletor produed a sequential instrution stream,Goal Disover inherent parallelism in the sequentialprogram,Question: When?Exploitable Parallelism based on notion of independene.

Code ShedulingPower PC Pipeline

Code ShedulingColdFire Pipeline

Code ShedulingArhiteture Charaterization
Scheduling

- determin. of independence
- fixing time
- binding resources

scheduling

determination of independencesdetermination of dependeces

Frontend + seq. Code Generation

Compiler Hardware

binding resources

Execution

Superscalar

VLIW

global local

Code ShedulingStati and Dynami ShedulingStati Dynamiglobal dependene analysis: in eah sheduling step:in eah sheduling step: with loal dependene analysis,hek non-dep. of andidates hek non-dep. of andidateson prev. sheduled instrutions; on urr. exeuting or delayed instrutions;shedule non-dep. instrutions dispath or delay non-dep. instrutions.after appropriate delaySope an be: Sope is a small Window,Basi Blok, 6 - 12 instrutions.Sequene of basi bloks, support by sheduling helpfulLoops.

Code ShedulingStruture1. Arhitetural lassi�ation2. the sheduling problem and dependene3. data dependenes in basi bloks4. basi-blok sheduling for a simple pipeline5. list sheduling for basi bloks and omplex arhitetures6. sheduling for ayli sequenes of basi bloks7. software pipelining for loops

Code ShedulingInstrution Sheduling
◮ Reorders instrution stream as generated by instrutionseletion,
◮ Goal: Exploitation of intraproessor parallelism,

◮ Filling very long instrution words (VLIWs), or
◮ Avoiding pipeline hazards.

◮ Must be semantis preserving,
◮ Basis: Program dependenes.

Code ShedulingProgram DependenesDependene onstrains the potential for reordering:S2 depends on S1 =⇒ S1 must be exeuted before S2.S1,S2 an be operations, instrutions, basi bloks.Two types of dependenes:Data Dependene:
◮ Relation between de�nitions and uses ofresoures (program variables, memory ells orbloks, symboli or real registers),
◮ Here mainly mahine resoures, i.e. registers,memory ells, status words
◮ Alias problems:

◮ Address alulation for an index expression
◮ Dereferening of a pointerControl Dependene: Conditions dominating statements

Code ShedulingExampleS1: read aS2: if a > 0S3: then b := a;S4: := b + aS5: else := -(a + a);S6: d := 2 * b;S2 is data dependent on S1 � it uses the value omputed by S1.S3, S4, S5 are ontrol dependent on S2 � they are only exeuteddepending on the outome of the test.
du

du

du

du

du

duS1 S2 S3 S4S5 S6 ontrol dependenedata dependene

Code ShedulingDe�nitions and Uses of Mahine ResouresDe�nitions :
◮ modi�ations of register ontents by loads or operations, pre-,postinrement/derement,
◮ setting arry, over�ow, ondition bits in status words,
◮ storing values in memory ells,
◮ modifying registers as side e�ets of e.g. pop, push.Uses :
◮ Using register ontents in operations and for addressing,
◮ Storing register ontents,
◮ Loading ontents of memory ells,
◮ Testing the program status word.

Code ShedulingTypes of Data DependenesDe�nitions (X :=) and uses (:= X) of resoure X .a : X :=b : X := : := Xd : X :=Output dependenes (dd, WAW): De�nitions on de�nitions,e.g., b on a,True dependene (du, RAW): Uses on de�nitions,e.g., on b,Antidependene (ud, WAR): De�nitions on uses,e.g., d on .

Code ShedulingStruture1. Arhitetural lassi�ation2. the sheduling problem and dependene3. data dependenes in basi bloks4. basi-blok sheduling for a simple pipeline5. list sheduling for basi bloks and omplex arhitetures6. sheduling for ayli sequenes of basi bloks7. software pipelining for loops

Code ShedulingData Dependene Graph (DDG) (for a basi blok)Nodes instrutions,Edges
◮ a sets a resoure, b uses it,and the path from a to b is de�nition free, or
◮ a uses a resoure, b sets it,and the path from a to b is de�nition free, or
◮ a and b set the same resoureand the path from a to b is use and de�nition free

◮ desribes the degree of freedom for semantis-preservingreordering of the instrutions.
b:

X :=

X :=

use freede�nition and:= X
X :=

de�nition freeX :=

:= Xde�nition freea:

Code ShedulingExampleDDG
◮ ontains all diret dependenies as edges,
◮ dependene is transitive, but does not need to be represented,
◮ transitive losure is an upper approximation due to aliasing,
◮ diret dependenes are enough to prevent non�semantipreserving reorderings.Instrution sequene with its DDG1 : (CC, D1) := M[A1 + 4℄.W2 : (CC, D2) := M[A1 + 6℄.W3 : (CC, D1) := D1 + D24 : M[A1 + 4℄ := D1.W du1 dd 2

uddudd3du4
ud

Code ShedulingEliminating non-live dependenesFlags in the ondition ode/program status word
◮ are mahine resoures,
◮ on some mahine set in eaharithmeti instrution,
◮ used in onditional branhes.
◮ Dependenes would preventany reordering due todd-dependenes,
◮ should be eliminated asshown in �gure.

du

(F,...) :=

(F,...) :=

(F,...) :=

(F,...) :=

 := F

(F,...) :=

(F,...) :=

dd

dd

dd

dd

du

ud

dead(F)

dead(F)

dead(F)

dead(F)

live(F)

dead(F)

dd

dd

dd

ud

Before After

ud

Code ShedulingBasi Blok with DDG1: D1 := M[A1+4℄;2: D2 := M[A1+6℄;3: A1 := A1+2;4: D1 := D1+A1;5: M[A1℄ := A1;6: D2 := D2+1;7: D3 := M[A1+12℄;8: D3 := D3+D1;9: M[A1+6℄ := D3 •

•9 6•5
•

•
3

•4 7•

1 2
••

8

Code ShedulingBasi Blok with DDG1: D1 := M[A1+4℄;2: D2 := M[A1+6℄;3: A1 := A1+2;4: D1 := D1+A1;5: M[A1℄ := A1;6: D2 := D2+1;7: D3 := M[A1+12℄;8: D3 := D3+D1;9: M[A1+6℄ := D3 •8
•9 6•5

•

•
3

•4 7•

1 2
••

Code ShedulingAlgorithm DDG-GraphInput: basi blokOutput: data dependene graph of basi blokMethod: bakwards traversalvar �rstDefs, expUses: set of pair (resoure, instrO);atInstr: instrution;funtion on�it(res,instr1,instr2): on�itTyp;(* determ. exist. and type of on�it betw. instr1 and instr2 on resoure res *)if res is set in instr1 thenif res is used in instr2 then on�itTyp := def-useelse on�itTyp := def-def �else if res is used in instr1 and set in instr2 then on�itTyp := use-def ��;proedure drawEdge(a → b, on�itTyp)draws a new edge between its arguments if there is none.

Code ShedulingbeginatInstr := last instrution of basi blok;�rstDefs := {(r , atInstr)|r ∈ defs(atInstr)};expUses := {(r , atInstr)|r ∈ uses(atInstr)};while pred(atInstr) de�ned doInvariant:�rstDefs = {(r , i)|i ontains �rst def. of r in atInstr ; β}expUses = {(r , i)|i ontains use of r not preeded by a def. of r }atInstr := pred(atInstr);foreah resoure r set or used in atInstr doforeah (r , b) ∈ �rstDefs ∪ expUses doase on�it(r, atInstr, b) isdef-def: if exists no pair (r , .) in expUsesthen drawEdge(atInstr → b,dd) �;def-use: drawEdge(atInstr → b,du);use-def: drawEdge(atInstr → b,ud);end aseodod;

Code Sheduling
(* Updating �rstDefs and expUses *)foreah resoure r ′ set in atInstr do�rstDefs := �rstDefs − {(r ′, .) ∈ �rstDefs} ∪ {(r ′, atInstr)};expUses := expUses − {(r ′, .) ∈ expUses}od;foreah resoure r ′ used in atInstr doexpUses := expUses ∪{(r ′, atInstr)};odInvariant restored!odend

Code ShedulingStruture1. Arhitetural lassi�ation2. the sheduling problem and dependene3. data dependenes in basi bloks4. basi-blok sheduling for a simple pipeline5. list sheduling for basi bloks and omplex arhitetures6. sheduling for ayli sequenes of basi bloks7. software pipelining for loops

Code Sheduling(Simple-) Pipeline ShedulingSimple pipeline with the following properties:
◮ instrution pipeline without hazarddetetion, i.e., no pipelineinterloks,
◮ simple resoure model: instrutionuses 1 resoure for 1 yle =⇒di�erent instrutions sheduled ondi�erent yles do not interfer,
◮ one yle delay for true-dependentinstrutions,
◮ goal: hiding latenies to minimizeprogram length. Z:= Y

X:=

Y:= X

Z:= Y

du

du

X:=

NOP

Y:= X

NOPLater, omplex resoure models: instrution oupies a resoure formore than 1 yle.

Code ShedulingComplexity and Heuristis
◮ Optimal Pipeline Sheduling, evenfor simple pipelines, is anNP-omplete problem,
◮ use topologial sorting to onvertpartial order into total order
◮ In the example, several possiblelinear order exist, e.g.

{1, 2, 6, 3, 5, 9, 4, 7, 8, 10, 11},
{6, 5, 1, 2, 3, 7, 4, 10, 11, 9, 8}

◮ use heuristis for the seletion ofandidates next to be sheduled:
◮ andidates with mostdependenes,
◮ andidates on the longest path. 11

1 2

3

4

5

6

7

8

9

10

Code ShedulingAlgorithm Pipeline Sheduling (Gibbons/Muhnik 1986)Input: Basi blok with DDG,set of shedules for preeding basi bloks.Output: (Possibly) reordered instrution sequene ofthe basi blok, possibly with inserted NOPs.Method: topol. sorting onstrained by the pipeline onditionsvar ands, realCands, potColls: set of instrO;(* ands: instrutions without predeessor *)(* potColls: already sheduled instrutions whose delay is not over *)(* realCands: instrutions in ands without on�it with potColls*)funtion olliding(and, potCol)/ : set of instrO;omputes the set of instrutions in and,olliding with those in potColls

Code Shedulingbeginands := set of minimal elements of the DDG;potColls := set of last instrutions in shedules of preeding basi bloks;repeatrealCands := ands − olliding(ands, potColls);if realCands 6= ∅ thenevaluate andidates aording to heuristis;selet a best andidate b; shedule b;remove b from ands;remove b and all outgoing edges from the DDG;insert new minimal elements into ands;potColls := {b}else shedule a NOP; potColls := ∅�until ands = ∅end

Code ShedulingExample
•8
•9 6•5

•

•
3

•4 7•

1 2
••

Code ShedulingStruture1. Arhitetural lassi�ation2. the sheduling problem and dependene3. data dependenes in basi bloks4. basi-blok sheduling for a simple pipeline5. list sheduling for basi bloks and omplex arhitetures6. sheduling for ayli sequenes of basi bloks7. software pipelining for loops

Code ShedulingMore Complex Arhitetures
◮ Parallel funtional units,
◮ Complex resoure patterns � multi-yle operations,Require modi�ations of algorithm Pipeline Sheduling
◮ uses resoure usage patterns for instrutions and resoureonstraints for the arhiteture,
◮ may shedule several instrutions in the same position,
◮ keeps list of data-ready instrutions, i.e., instrutions whose(dependene) predeessors will have produed their results intime for the urrent instrution,
◮ hooses from the ready list by a priority heuristis,
◮ keeps a global resoure table for bookkeeping about oupiedresoures and for heking for resoure on�its.

Code ShedulingMore Complex Arhiteture � New TerminologyOperation: Mahine Operation, e.g. Load, Store, Addgeneri names: a, b, , . . .Instrution: Set of operations sheduled at the same position,generi names: A,B ,C , . . .Lateny: Exeution time of an operationDelay: Required distane between the issue of a and theissue of b if (a → b)Shedule: Mapping from operations to positions (yles),generi names: σ, σ�at , σswp , . . .

Code ShedulingDelays as Funtions of Dependene TypeDelay for (a →dt b) depends on the latenies of a and b and dt.Assumptions:
◮ write-yle is the last,
◮ read-yles is any yle but the last,
◮ in onurrent reads and writes, read reads old ontent.du: lateny(a) a

bud: −1 + lateny(a) − lateny(b) a

bdd: 1 + lateny(a) − lateny(b) a

b

Code ShedulingAlgorithm List ShedulingInput: Basi blok with DDG,set of shedules for preeding basi bloks.Output: Instrution sequene of the basi blok assoiated with times(positions in the shedule).Method: topologial sorting onstrained by the pipeline onditionsvar time: int;var ands: set of instrO;array GRT[R × . . .℄ of Bool;(* GRT [r , t] = true i� onstruted shedule oupies resoure r at time t *)funtion resCon�it(and, grt) : bool;heks whether and has a resoure on�it with the urrent shedule;

Code ShedulingThe Global Reservation Table, GRT
T i m e

R
e
s
o
u
r
c
e
s

Code Shedulingbegintime := 0; ands := set of minimal elements of the DDG;while ands 6= ∅ thensort ands in non-dereasing priority order;while not all andidates have been tried dohek next andidate b for resoure on�its;if not resCon�it(b, GRT) then shedule b at time;update GRT;remove b from ands;remove b and all outgoing edges from the DDG;ododinrement time by 1; update ands;insert instrutions whose delay is over into ands;end

Code ShedulingStruture1. Arhitetural lassi�ation2. the sheduling problem and dependene3. data dependenes in basi bloks4. basi-blok sheduling for a simple pipeline5. list sheduling for basi bloks and omplex arhitetures6. sheduling for ayli sequenes of basi bloks7. software pipelining for loops

Code ShedulingExposing more Instrution Level ParallelismDegree of ILP in basi bloks is limited � typially to 2Available ILP in proessors grows: better exploitation by
◮ Sheduling sequenes of onseutive basi bloks
◮ Sheduling loops
◮ Speulationwhen what how to preserve the semantisdynami hardware branhpredition on a mispredited branh � forget-ting or undoing e�ets of speulativelyexeuted instrutionsstati speulative odemotion ompensation ode

Code ShedulingCode Motion
◮ moves ode from a soure blok to atarget blok,
◮ upward ode motion: target blok ispredeessor of soure blok,
◮ downward ode motion: target blok issuessor of soure blok,
◮ ode motion is speulative if themoved ode is exeuted on someontrol-�ow path on whih it wouldnot have been exeuted before.
◮ ode motion may require the insertionof dupliates (ompensation ode), ifsome moved ode were not exeutedon some ontrol path.

A

B C

D

I

II

III

IV

KIII

IV KIV

Code ShedulingTrae-/ Super- / Hyperblok ShedulingWhat is the total running time of a program?
∑basi blok i ti × fiwhere ti is the duration and fi the frequeny of exeution of basiblok i .Do we know ti and fi? � In general, we don't!Pro�ling omputes an approximation to them.

Code ShedulingTrae- / Superblok- / Hyperblok-Sheduling
◮ Extend sheduling area to sequenes of onseutive basibloks (traes, superbloks, hyperbloks),
◮ Selet frequently taken paths based on pro�le data, annotateprogram with pro�ling information: assoiate eah branh of aonditional with a relative frequeny,
◮ Optimize and shedule frequently taken traes at the ost ofless frequently taken traes.

Code ShedulingTraesTrae is a sequene of onseutive basi bloks not extendingaross a loop boundaryControl �ow graph of a proedure is partitioned into a disjoint setof traes
◮ traes formed in order of dereasing frequeny:1. selet available basi blok with highest frequeny2. join available predeessors and suessors with highestfrequenies until frequeny falls below a given threshold
◮ there are (unlike in basi bloks)side exits out of traesside entranes into traes

Code ShedulingA Partitioning into Traes

7

42

1

3

5

6

Code ShedulingExample
od

R5 := 0 (* holds sum *)
R6 := n
R7 := s

R2 := M[R1 + a]i1
i2

i3
i4
i5
i6

i7
i8

i9
i10
i11

R3 := M[R1 + b]
R4 := R3 + R7
M[R1 + b] := R4
BR i9

R4 := R2
M[R1 + b] := R2

R5 := R5 + R4
R1 := R1 + 4

BNE R2 0 i7

BLT R1 R6 i1

R1 := 0 (* stepping thru A and B *)

B1

B2

B3

B4

B1

B2 B3

B4

for i := 0 upto n do

if A[i] = 0

then B[i] := B[i] + s

else B[i] := A[i]
fi
sum := sum + B[i]

Code ShedulingBasi-Blok Shedule for ExampleAssumptions: 2-issue proessor with 2 integer units,lateny of arithmeti and of store is 1 yle, of load is 2 yles, nostall yles for a branh.
4

0 R2 := M[R1 + a]

R3 := M[R1 + b]i3

i4 R4 := R3 + R7
i5 M[R1 + b] := R4

3 i7 i8 M[R1 + b] := R2R4 := R2

i5 i66 BR i9M[R1 + b] := R4

i45 R4 := R3 + R7

R5 := 0 (* holds sum *)
R6 := n
R7 := s

i1
i2

i6

i8

i11

BR i9

M[R1 + b] := R2

BNE R2 0 i7

BLT R1 R6 i1

R1 := 0 (* stepping thru A and B *)

B1

B2

B3

B4

i3

Time Int. Unit 1 Int. Unit 2

1

3

R2 := M[R1 + a]

i7 R4 := R2

i9 R5 := R5 + R4

R1 := R1 + 4i10

i22 BNE R2 0 i7

R3 := M[R1 + b]

8 (5) i11 BLT R1 R6 i1

7 (4) i9 R5 := R5 + R4 R1 := R1 + 4i10

i1

Code ShedulingTrae ShedulingList sheduling applied to a trae � Problems:
◮ ode motion past side exits
◮ ode motion past side entranesmay destroy semantis.Compensation ode inserted on o�-trae paths.Problems:
◮ Code growth
◮ Exeptions raised by ompensation ode moved in front of sideexits

Code ShedulingTrae Shedule for Example
BLT R1 R6 i1

0 R2 := M[R1 + a]

3 i7 i8 M[R1 + b] := R2R4 := R2

Trace ScheduleBasic−Block Schedule

i1 R2 := M[R1 + a]

i2 BNE R2 0 i7

Time Int. Unit 1 Int. Unit 2
0
1
2

3

4

R3 := M[R1 + b]

R4 := R3 + R7

i5 M[R1 + b] := R4

i9 R5 := R5 + R44 (5)

i4

i3

i12

i10 R1 := R1 + 4

BR i9

i3

Time Int. Unit 1 Int. Unit 2

1

3

i22 BNE R2 0 i7

R3 := M[R1 + b]

8 (5) i11 BLT R1 R6 i1

7 (4) i9 R5 := R5 + R4 R1 := R1 + 4i10

4
i4 R4 := R3 + R7

i5 i66 BR i9M[R1 + b] := R4
5

3 i7 R4 := R2 i8 M[R1 + b] := R2

6 (7) i12 BR out

5 (6) i11

i1

Code ShedulingSpeulative Upward Code Motion
orret 	

?

?

?

-

?

-

?

?
if

X :=

e
s1

s2 s2s1e
ifX :=

X not live at s2

wrong X live on entry to s2
?

?

?

-

?

-

?

?
if

X :=

e
s1

s2 s2s1e
ifX :=Solution: Register renaming

Code ShedulingDownward Code Motion with Insertion of CompensationCode
	

	
-

?

?

? ?

-

?

?

X := X not live at s2ife F s2s1T
ife F s2TX :=s1-

-
dependeneno dependene

?

?

?

-
?

?

?

-

?X := X live at s2ife Ts1 F s2 ife FTX :=s1
X :=s2

Code ShedulingMoving a Statement past a Side Entrane
◮ Upwards move of a statement over a side entrane in (a) and(b).
◮ rule for these moves in ()

X := X := ��

?

?

? s2s3
s1

?

�

?

?

s3X :=

s2s1
()

?

?

�

?

i := l + 1j := i + 1(b)
??

?

�

?

?

i := l + 1j := i + 1(a)

Code ShedulingSuperbloksAvoiding ode motion past side entranes by tail dupliation:opying ode starting with side entrane and redireting thebranhes.Superblok formation
◮ starts with a trae,
◮ produes a trae withoutside entranes,
◮ only one entry, butpotentially several exits. B4’

B1

B2 B3

B4Compensation ode only for downward ode motion past side exits.

Code ShedulingEnlarging Superbloks to inrease the available ILPBranh Target Expansion: �Expands� the last branh of a superblok by opying andappending the target superblokLoop Peeling and Unrolling: Unroll several iterations of the loop;
◮ remove ontrol transfer if safe
◮ extend superblok by predeessors and/or suessors if possibleRemoval of Dependenies:register renaming removes arti�ial dependeniesoperation migration moves an operation from a superblok whih does not use theresult to another one whih doesindution variable expansion introdues a new instane of an indution variable for everyunrolled iteration of a loop;removes dependenies of indution variables on themselves;requires initialization and �nalization ode.

