Code Scheduling

Code Scheduling

— Wilhelm/Maurer: Compiler Design, Chapter 12 -
Mooly Sagiv
Tel Aviv University
and
Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-sb.de

19. November 2007

DA



Code Scheduling

Instruction Level Parallelism (ILP)

Architectures capable of simultaneous execution of multiple
instructions
> issued at the same time (multiple-issue architectures) or

» issued while preceding instructions still execute (pipelined
architeture)

» combination possible: multiple-issue architecture with pipelined
functional units

Main distinction between multiple-issue architectures: Who decides
when to issue an instruction:

» Compiler statically schedules: VLIW

» Hardware dynamically issues: Superscalar

u}

L)
1
u
it

DA



R

Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops

u]
i}
1
u
it

DA



Code Scheduling

The VLIW Architecture

» Several functional units, ideally homogeneous, in practice not,

» One instruction stream, in each instruction at most 1
operation per FU,

» Jump priority rule for several conditional jumps in 1 instruction,

» FUs connected to register banks, otherwise too many ports
required.

Main Memory

Register set

Instruction
store

u}
L)
1
u
it

DA



Code Scheduling

Pipelining as Architectural Principle

» split operation into a
sequence of
phases/stages of
roughly same duration;

» execute several
consecutive instances in
an overlapped fashion.

» Principle can be applied
to the execution of
instructions as well as
to the execution of
operations in functional
units.

cycle
1 2 3 4 5 6 7
Ppe 1 |B B, By B,
line- 2 Bi By By B
stage 3 Bi B, By B
4 Bi By By B

DA



Code Scheduling

Instruction Pipeline

Several instructions in different stages of execution
Potential structure:

1. instruction fetch and decode,
2. operand fetch,

3. instruction execution,

4

. write back of the result into target register.

DA



Code Scheduling

Pipeline hazards

» Data hazards: Needed operand not yet available, cf. true
dependence

» Structural hazards: Resource conflicts, several instructions
need same machine resource, e.g. funcional unit, bus,

» Control hazards: (Conditional) jumps, condition not yet
evaluated.

u]
i}
1
u
it

DA



Code Scheduling

Phases in dynamically scheduled execution

Assuming a load/store architecture.
Phase

1. fetch & decode

Activity
instruction

nae



Code Scheduling

Phases in dynamically scheduled execution
Phase

1. fetch & decode

Activity
instruction

detection of structural hazards

nae



Code Scheduling

Phases in dynamically scheduled execution
Phase

1. fetch & decode

Activity
instruction

operand

detection of structural hazards

nae



Code Scheduling

Phases in dynamically scheduled execution
Phase

1. fetch & decode

Activity
instruction

operand

detection of structural hazards

detection of data hazards

nae



Code Scheduling

Phase

1. fetch & decode

instruction

Phases in dynamically scheduled execution

Activity

operand

2. register operand fetch

detection of structural hazards

detection of data hazards

DA



Code Scheduling

Phase

1. fetch & decode

instruction

Phases in dynamically scheduled execution

Activity

operand

2. register operand fetch

detection of structural hazards
detection of data hazards

dispatch to functional unit

DA



Code Scheduling

Phases in dynamically scheduled execution

Phase Activity
1. fetch & decode
instruction
detection of structural hazards
operand

2. register operand fetch

3. execute

detection of data hazards

dispatch to functional unit
execute operation or load/store

DA



Code Scheduling

Phases in dynamically scheduled execution

Phase Activity
1. fetch & decode
instruction
detection of structural hazards
operand

2. register operand fetch

3. execute
4. write back

detection of data hazards

dispatch to functional unit
execute operation or load/store
write to register (or store)

DA



Code Scheduling

Exploiting Parallelism — The Setting

Hardware offers parallel execution,

Code Selector produced a sequential instruction stream,

Goal Discover inherent parallelism in the sequential
program,
Question: When?

Exploitable Parallelism based on notion of independence.

DA



Code Scheduling

Power PC Pipeline

Fetch Unit || Branch Processing Unit
FU BPU
Tnstruction Queue
Q

= |

I .4

Dispatch Unit
DU
[Reservation Saation] | Station ] | Saion|  [Rest Station | [Reservation Siation
Reservarion Station
MEFE‘E ‘U““ 'I“EZ[E“;F’“‘ Sptem g Floatinz_Point
k) 5 SR"{‘, Toad/Store Umit Uit
| - . LsU
Wilaply
i
GPRE ] Focen
‘Rename Buffers
(6)
=9
Store Qe
Completion Unit
Reorder Buffer

Memory

= Al



Code Scheduling

L —

ColdFire Pipeline
Tteacon
IAG Address -
eration
Tnstruction IC1 Intruction N
i Fetch Cycle 1
Pipeline .
(IFP) —
IC2 | FetchCyele2 \
faitiickbn
| g
FIFO
[Instruction Buffer
IB i
id
Operan x Data [310]
Pipeline Decode & Select,
(OEP) | DSOC | Gperand Feteh
Gmess L
AGEX| =

Execute

o>



Code Scheduling

Architecture Characterization

Compiler Hardware
[ Frontend + seq. Code Generation j
Superscalar
(determination of dependeces ) " determination of independences -
! scheduling
i binding resources
Scheduling
{" - determin. of independence
1 -fixing time :
' - binding resources !
‘ VLIW
lobal O locd i S .
D ge I ! Execution !

u]

i}
1
u

it



Code Scheduling

Static and Dynamic Scheduling

Static

Dynamic

global dependence analysis:

in each scheduling step:

check non-dep. of candidates
on prev. scheduled instructions;
schedule non-dep. instructions
after appropriate delay

Scope can be:

Basic Block,

Sequence of basic blocks,
Loops.

in each scheduling step:

with local dependence analysis,

check non-dep. of candidates

on curr. executing or delayed instructions;
dispatch or delay non-dep. instructions.

Scope is a small Window,
6 - 12 instructions.
support by scheduling helpful

u}
L)
1
u
it

DA



R

Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops

u]
i}
1
u
it

DA



R
Code Scheduling
Instruction Scheduling

» Reorders instruction stream as generated by instruction
selection,

» Goal: Exploitation of intraprocessor parallelism,
» Filling very long instruction words (VLIWs), or
» Avoiding pipeline hazards.

» Must be semantics preserving,

» Basis: Program dependences.

DA



Code Scheduling

Program Dependences

Dependence constrains the potential for reordering:
S, depends on S; = S; must be executed before S».
51, S, can be operations, instructions, basic blocks.
Two types of dependences:

Data Dependence:

» Relation between definitions and uses of
resources (program variables, memory cells or
blocks, symbolic or real registers),

» Here mainly machine resources, i.e. registers,

memory cells, status words
» Alias problems:

» Address calculation for an index expression
» Dereferencing of a pointer

Control Dependence: Conditions dominating statements
m] = =

DA



T A I R

Code Scheduling

Example
S1: read a
S2: if a > 0
S3: then b := a;
S4: c :=b+a
S5: else ¢ := -(a + a);

S6: d := 2 % b;

S2 is data dependent on S1 — it uses the value computed by S1.
S3, S4, S5 are control dependent on S2 — they are only executed
depending on the outcome of the test.

d
- du

du B3 —=
m —_— data dependence
du
S1] ———= S2 6
\ e control dependence
M S5

u]
i}
1
u
it

DA



Code Scheduling

Definitions and Uses of Machine Resources

Definitions :
» modifications of register contents by loads or operations, pre-,
postincrement/decrement,
» setting carry, overflow, condition bits in status words,
» storing values in memory cells,
» modifying registers as side effects of e.g. pop, push.
Uses :

Using register contents in operations and for addressing,
Storing register contents,

Loading contents of memory cells,

Testing the program status word.

vV Yy VvVvyy

u]
i}
1
u
it

DA



Code Scheduling

Types of Data Dependences

Definitions (X :=) and uses (:= X) of resource X.

a: X =
b: X =
c: =X
d: X =
Output dependences (dd, WAW): Definitions on definitions,
e.g., bon a,
True dependence (du, RAW): Uses on definitions,
e.g., con b,

Antidependence (ud, WAR): Definitions on uses,
e.g., donc.

u]
i}
1
u
it

DA



R

Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops

u]
i}
1
u
it

DA



Code Scheduling

Data Dependence Graph (DDG) (for a basic block)

Nodes instructions,

Edges

> 3 sets a resource, b uses it,
and the path from a to b is definition free, or
> a uses a resource, b sets it,
and the path from a to b is definition free, or
» aand b set the same resource
and the path from a to b is use and definition free

» describes the degree of freedom for semantics-preserving

reordering of the instructions.
a X.=

=X X =
ini definiti d
% definition free %deﬁmton free é u:e”:‘lre‘:n an
X = X

b =X

u]

i}
1
u
it

DA



Code Scheduling

Example

DDG
» contains all direct dependencies as edges,
» dependence is transitive, but does not need to be represented,
> transitive closure is an upper approximation due to aliasing,

» direct dependences are enough to prevent non—semantic
preserving reorderings.

Instruction sequence with its DDG

1: (CC,D1) :=MJ[Al + 4].W 'H'
2: (CC,D2) :=MJ[AL + 6].W N\ y
3. (CC,D1) :=DI + D2

4: MIAL +4] :=DLW

u}
L)
1
u
it

DA



R

Code Scheduling

Eliminating non-live dependences

Flags in the condition code/program status word

Before After
dead(F) __(F,..):=
. dd

» are machine resources, dead(F)S (5. = @

» on some machine set in each ddg a
arithmetic instruction, dead(F) > (F...) =

» used in conditional branches. “V:;C(FW_) :@

» Dependences would prevent du du
any reordering due to dead(F) =F
dd-dependences, ud L@

dead(F) > (F) =

» should be eliminated as ddC ud
shown in figure. (F.):=

u]
i}
1
u
it

DA



Code Scheduling

Basic Block with DDG

© O N>R W

D1
D2

Al

D1
M[A1]
D2

D3

D3
M[A1+6]

= M[A1+4];
= M[A1+6];
= Al42;

= D1+A1;
= Al;

= D2+1;

= M[A1+12];
= D3+D1;
= D3

nae



Code Scheduling

Basic Block with DDG

© XN W

D1 = M[A1+4];
D2 = M[A1+6];
Al = Al42;

D1 = D1+A1;
M[A1] = Al;

D2 = D2+1;

D3 = M[A1+12];
D3 = D3+D1;

M[A1+6] := D3

nae



Code Scheduling

Algorithm DDG-Graph

Input: basic block

Output: data dependence graph of basic block

Method: backwards traversal

var firstDefs, expUses: set of pair (resource, instrOcc);
actlnstr: instruction;

function conflict(res,instry ,instr, ). conflict Typ;
(* determ. exist. and type of conflict betw. instr; and instry on resource res *
if res is set in instr; then
if resis used in instr, then conflict Typ := def-use
else conflictTyp := def-def fi
else if res is used in instr; and set in instr, then conflictTyp .= use-def fi
fi;
procedure drawEdge(a — b, conflict Typ)
draws a new edge between its arguments if there is none.

u}
L)
1
u
it

DA



R

Code Scheduling

begin

actlnstr := last instruction of basic block;

firstDefs := {(r, actinstr)|r € defs(actinstr)};

expUses := {(r, actinstr)|r € uses(actinstr)};

while pred(actinstr) defined do

Invariant:
firstDefs = {(r,i)|i contains first def. of r in actlnstr; 3}
expUses = {(r, i)|i contains use of r not preceded by a def. of r }
actlnstr := pred(actlinstr);

foreach resource r set or used in actinstr do
foreach (r, b) € firstDefs U expUses do
case conflict(r, actinstr, b) is
def-def. if exists no pair (r,.) in expUses
then drawEdge(actinstr — b,dd) fi;
def-use: drawEdge(actinstr — b, du);
use-def: drawEdge(actinstr — b, ud);
end case
od
od;

u]
i}
1
u
it

DA



Code Scheduling

(* Updating firstDefs and expUses *)

foreach resource r’ set in actlnstr do
firstDefs := firstDefs — {(r',.) € firstDefs} U {(r, actlnstr)};
expUses := expUses — {(r',.) € expUses}
od;

od

foreach resource r’ used in actinstr do

expUses := expUses U{(r', actlnstr)};
Invariant restored!

od

end



R

Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops

u]
i}
1
u
it

DA



Code Scheduling

(Simple-) Pipeline Scheduling

Simple pipeline with the following properties:
> instruction pipeline without hazard

detection, i.e., no pipeline
interlocks,

» simple resource model: instruction
uses 1 resource for 1 cycle =
different instructions scheduled on

different cycles do not interfer, w gxz: X:=
> one cyc!e delay for true-dependent Q Y=X  NOP

Instructions, z=Y Yi=X
» goal: hiding latencies to minimize NoP

program length. z=Y

Later, complex resource models: instruction occupies a resource for

more than 1 cycle.
[} [ =



Code Scheduling

Complexity and Heuristics

» Optimal Pipeline Scheduling, even
for simple pipelines, is an
NP-complete problem,

> use topological sorting to convert
partial order into total order

» In the example, several possible @ f
linear order exist, e.g. \ /
{1,2,6,3,5,9,4,7,8,10, 11},
{6,5,1,2,3,7,4,10,11,9,8} X\

> use heuristics for the selection of ©)
candidates next to be scheduled: \ %
» candidates with most (10)
dependences,
» candidates on the longest path. @
=] = = = H] A



Code Scheduling

Algorithm Pipeline Scheduling
(Gibbons/Muchnick 1986)

Input: Basic block with DDG,
set of schedules for preceding basic blocks.
Output: (Possibly) reordered instruction sequence of
the basic block, possibly with inserted NOPs.
Method: topol. sorting constrained by the pipeline conditions

var cands, realCands, potColls: set of instrOcc;

(* cands: instructions without predecessor *)
(* potColls: already scheduled instructions whose delay is not over *)
(* realCands: instructions in cands without conflict with potColls*)

function colliding(cand, potCol)/ : set of instrOcc;
computes the set of instructions in cand,
colliding with those in potColls

o
]
1
u
it

DA



Code Scheduling

begin
cands := set of minimal elements of the DDG;
potColls := set of last instructions in schedules of preceding basic block
repeat
realCands := cands — colliding(cands, potColls);
if realCands # () then
evaluate candidates according to heuristics;
select a best candidate b; schedule b;
remove b from cands,
remove b and all outgoing edges from the DDG;
insert new minimal elements into cands;
potColls := {b}
else schedule a NOP; potColls := ()
fi
until cands = ()
end

u}
L)
1
u
it

DA



T A I R
Code Scheduling
:
Example

va



R

Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops

u]
i}
1
u
it

DA



Code Scheduling

More Complex Architectures

>

>

Parallel functional units,

Complex resource patterns — multi-cycle operations,

Require modifications of algorithm Pipeline Scheduling

>

uses resource usage patterns for instructions and resource
constraints for the architecture,

» may schedule several instructions in the same position,

> keeps list of data-ready instructions, i.e., instructions whose

(dependence) predecessors will have produced their results in
time for the current instruction,

» chooses from the ready list by a priority heuristics,

keeps a global resource table for bookkeeping about occupied
resources and for checking for resource conflicts.

[} [ =

DA



Code Scheduling

More Complex Architecture — New Terminology

Operation:
Instruction:

Latency:
Delay:

Schedule:

Machine Operation, e.g. Load, Store, Add
generic names: a, b, c, ...

Set of operations scheduled at the same position,
generic names: A, B, C, ...

Execution time of an operation

Required distance between the issue of a and the
issue of b if (a — b)

Mapping from operations to positions (cycles),
generic names: o, Ofiat, Oswps - - -

u]
i}
1
u
it

DA



Code Scheduling

Delays as Functions of Dependence Type

Delay for (a —9 b) depends on the latencies of a and b and dt.

Assumptions:

> write-cycle is the last,
» read-cycles is any cycle but the last,

» in concurrent reads and writes, read reads old content.

S
du: latency(a) b 1
ud:  —1+ latency(a) — latency(b) ©° 5-
dd: 1+ latency(a) — latency(b) bE-

DA



Code Scheduling

Algorithm List Scheduling

Input: Basic block with DDG,
set of schedules for preceding basic blocks.

Output: Instruction sequence of the basic block associated with times
(positions in the schedule).

Method: topological sorting constrained by the pipeline conditions

var time: int;

var cands: set of instrOcc;

array GRT[R x ...] of Bool;

(* GRT]r, t] = true iff constructed schedule occupies resource r at time t *)

function resConflict(cand, grt) : bool,

checks whether cand has a resource conflict with the current schedule;

u}
L)
1
u
it

DA



Code Scheduling

The Global Reservation Table, GRT

Time

woo-“cowoxm




Code Scheduling

begin
time := 0; cands := set of minimal elements of the DDG;
while cands # () then
sort cands in non-decreasing priority order;
while not all candidates have been tried do
check next candidate b for resource conflicts;

if not resConflict(b, GRT) then schedule b at time;
update GRT;

remove b from cands;

remove b and all outgoing edges from the DDG;
od

od
increment time by 1; update cands;

insert instructions whose delay is over into cands,
end

DA



R

Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops

u]
i}
1
u
it

DA



Code Scheduling

Exposing more Instruction Level Parallelism

Degree of ILP in basic blocks is limited — typically to 2
Available ILP in processors grows: better exploitation by

» Scheduling sequences of consecutive basic blocks

» Scheduling loops

» Speculation

how to preserve the semantics

when what

dynamic hardware branch
prediction

static speculative code
motion

on a mispredicted branch — forget-
ting or undoing effects of speculatively
executed instructions

compensation code

u}
L)
1
u
it

DA



Code Scheduling

Code Motion

>

moves code from a source block to a
target block,

upward code motion: target block is
predecessor of source block,

downward code motion: target block is
successor of source block,

code motion is speculative if the

moved code is executed on some 7 A
control-flow path on which it would U -
not have been executed before. /- 5 c
code motion may require the insertion L,
of duplicates (compensation code), if N /K'v
some moved code were not executed o °
on some control path. —

=] F = E E DAl



Code Scheduling

Trace-/ Super- / Hyperblock Scheduling

What is the total running time of a program?

Z ti X f;

basic block i

where t; is the duration and f; the frequency of execution of basic
block i.

Do we know t; and ;7 — In general, we don't!
Profiling computes an approximation to them.

u]

i}
1
u
it

DA



Code Scheduling

Trace- / Superblock- / Hyperblock-Scheduling

» Extend scheduling area to sequences of consecutive basic
blocks (traces, superblocks, hyperblocks),

» Select frequently taken paths based on profile data, annotate
program with profiling information: associate each branch of a
conditional with a relative frequency,

» Optimize and schedule frequently taken traces at the cost of
less frequently taken traces.

u]
i}
1
u
it

DA



Code Scheduling

Traces

Trace is a sequence of consecutive basic blocks not extending
across a loop boundary

Control flow graph of a procedure is partitioned into a disjoint set
of traces
» traces formed in order of decreasing frequency:
1. select available basic block with highest frequency
2. join available predecessors and successors with highest
frequencies until frequency falls below a given threshold
» there are (unlike in basic blocks)
side exits out of traces
side entrances into traces

DA



Code Scheduling




T A I R
Code Scheduling

Example
R1:=0 (*stepping thru A and B *)
R5:=0 (*holds sum *)
R6:=n

fori:=0 upto n do R7:=s
if All=0 Bl | iy N

R2:=M[R1+a]
then B[] := B[i] + s i2 BNER20 i7

else Bi] := All B2 | i3 R3 = M[RL+b] B3
fi . i4 R4 := R3 +R7
sum := sum + BIi] i5 M[R1+b]:=Ra
od i6 BR i9
i8 M[R1+b]:=R2
B4 | i9 R5:=R5+ R4
i10 R1:=R1+4

i11 BLT R1R6 il

a
i}
1
[
it
S
o
?



Code Scheduling

Basic-Block Schedule for Example

Assumptions: 2-issue processor with 2 integer units,

latency of arithmetic and of store is 1 cycle, of load is 2 cycles, no
stall cycles for a branch.

B1

B2

B3

B4

R1:=0 (*stepping thru A and B *)

R5:=0 (* holds sum *)

R6:=n

R7:=s
i R2:=M[R1+a] Time) Int. Unit 1 Int. Unit 2
i2 BNER20 i7 0 i1 R2:=M[R1+a]

1
i3 R3:=M[R1+b] 2 i2 BNE R2 0 i7
i4 R4 :=R3 +R7 3 i3 R3:=M[R1+b]
i5 M[R1+b]:=R4 4
i6 BR i9 5 i4 R4 :=R3+R7
- 6 i5 M[RL1+b]:=R4 i6 BR i9
i7 R4 :=R2
i8 M[RL+b]:=R2 3 i7 R4 :=R2 i8 M[R1+b]:=R2
i9 R5:=R5+ R4 7(4)| i9 R5:=R5 + R4 i10 R1:=R1+4
i10 R1:=R1+4
! ) 8 (5)| i1l | BLT RLR6 il
i11 BLT R1R6 il
[m] = = =

DA



Code Scheduling

Trace Scheduling

List scheduling applied to a trace — Problems
» code motion past side exits

» code motion past side entrances
may destroy semantics.

Compensation code inserted on off-trace paths.
Problems:

» Code growth

» Exceptions raised by compensation code moved in front of side
exits

DA



Code Scheduling

Trace Schedule for Example

Basic-Block Schedule

Trace Schedule

Time| Int. Unit 1 Int. Unit 2 Time| Int. Unit 1 Int. Unit 2

0 i1 R2:=M[Rl1+a] 0 i1 R2:=M[R1+a] i3 | R3:=M[R1+b]

1 1

2 i2 | BNER20 i7 2 i2 | BNER20 i7 i4 | R4:=R3+R7

3 i3 R3:=M[R1+b] 3 i5 M[R1+b]:=R4

4 ) 4(5)| 9 R5:=R5+R4 i10 | R1:=R1+4

5 4 | R4:=R3+R7 5(6)| i11 | BLT R1R6 i1

6 i5 | M[Rl+b]:=R4 i6 | BR 9 6 (7| i12 | BR out

3 i7 | R4:=R2 i8 | M[R1+b]:=R2 3 i7 | R4:=R2 i8 | M[Rl+b]:=R2
4 i12 | BR i9

7(@)|i9 | R5:=R5+R4 i10 | RL=R1+4

8(5)| i11 | BLT R1R6 i1




Code Scheduling

Speculative Upward Code Motion

correct

wrong

Solution: Register renaming

DA



Code Scheduling

Downward Code Motion with Insertion of Compensation
Code

>\< X live at sp >
)
0 F B

T

S1

X not live at s /

**** dependence

777777

no dependence

nae



Code Scheduling

Moving a Statement past a Side Entrance

(b).

» Upwards move of a statement over a side entrance in (a) and

» rule for these moves in (c)

nae



R

Code Scheduling

Superblocks

Avoiding code motion past side entrances by tail duplication:
copying code starting with side entrance and redirecting the
branches.

Superblock formation

> starts with a trace,

» produces a trace without
side entrances,

> only one entry, but
potentially several exits.
Compensation code only for downward code motion past side exits.

o = =

DA



Code Scheduling

Enlarging Superblocks to increase the available ILP

Branch Target Expansion: “Expands” the last branch of a superblock by copying and
appending the target superblock
Loop Peeling and Unrolling: Unroll several iterations of the loop;
» remove control transfer if safe

» extend superblock by predecessors and/or successors if possible
Removal of Dependencies:

register renaming removes artificial dependencies
operation migration moves an operation from a superblock which does not use the
result to another one which does
introduces a new instance of an induction variable for every
unrolled iteration of a loop;
removes dependencies of induction variables on themselves;
requires initialization and finalization code.

induction variable expansion

u]

i}
1
u
it

DA



