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Code Scheduling

Instruction Level Parallelism (ILP)

Architectures capable of simultaneous execution of multiple
instructions
> issued at the same time (multiple-issue architectures) or

» issued while preceding instructions still execute (pipelined
architeture)

» combination possible: multiple-issue architecture with pipelined
functional units

Main distinction between multiple-issue architectures: Who decides
when to issue an instruction:

» Compiler statically schedules: VLIW

» Hardware dynamically issues: Superscalar
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Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops
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Code Scheduling

The VLIW Architecture

» Several functional units, ideally homogeneous, in practice not,

» One instruction stream, in each instruction at most 1
operation per FU,

» Jump priority rule for several conditional jumps in 1 instruction,

» FUs connected to register banks, otherwise too many ports
required.

Main Memory

Register set

Instruction
store

u}
L)
1
u
it

DA



Code Scheduling

Pipelining as Architectural Principle

» split operation into a
sequence of
phases/stages of
roughly same duration;

» execute several
consecutive instances in
an overlapped fashion.

» Principle can be applied
to the execution of
instructions as well as
to the execution of
operations in functional
units.

cycle
1 2 3 4 5 6 7
Ppe 1 |B B, By B,
line- 2 Bi By By B
stage 3 Bi B, By B
4 Bi By By B
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Code Scheduling

Instruction Pipeline

Several instructions in different stages of execution
Potential structure:

1. instruction fetch and decode,
2. operand fetch,

3. instruction execution,

4

. write back of the result into target register.
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Code Scheduling

Pipeline hazards

» Data hazards: Needed operand not yet available, cf. true
dependence

» Structural hazards: Resource conflicts, several instructions
need same machine resource, e.g. funcional unit, bus,

» Control hazards: (Conditional) jumps, condition not yet
evaluated.
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Code Scheduling

Phases in dynamically scheduled execution

Assuming a load/store architecture.
Phase

1. fetch & decode

Activity
instruction
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Code Scheduling

Phases in dynamically scheduled execution
Phase

1. fetch & decode

Activity
instruction

detection of structural hazards
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Code Scheduling

Phases in dynamically scheduled execution
Phase

1. fetch & decode

Activity
instruction

operand

detection of structural hazards
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Phases in dynamically scheduled execution
Phase

1. fetch & decode

Activity
instruction

operand

detection of structural hazards

detection of data hazards
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Code Scheduling

Phase

1. fetch & decode

instruction

Phases in dynamically scheduled execution

Activity

operand

2. register operand fetch

detection of structural hazards

detection of data hazards

DA



Code Scheduling

Phase

1. fetch & decode

instruction

Phases in dynamically scheduled execution

Activity

operand

2. register operand fetch

detection of structural hazards
detection of data hazards

dispatch to functional unit
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Code Scheduling

Phases in dynamically scheduled execution

Phase Activity
1. fetch & decode
instruction
detection of structural hazards
operand

2. register operand fetch

3. execute

detection of data hazards

dispatch to functional unit
execute operation or load/store
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Code Scheduling

Phases in dynamically scheduled execution

Phase Activity
1. fetch & decode
instruction
detection of structural hazards
operand

2. register operand fetch

3. execute
4. write back

detection of data hazards

dispatch to functional unit
execute operation or load/store
write to register (or store)
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Code Scheduling

Exploiting Parallelism — The Setting

Hardware offers parallel execution,

Code Selector produced a sequential instruction stream,

Goal Discover inherent parallelism in the sequential
program,
Question: When?

Exploitable Parallelism based on notion of independence.
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Code Scheduling
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Code Scheduling
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Code Scheduling

Architecture Characterization

Compiler Hardware
[ Frontend + seq. Code Generation j
Superscalar
(determination of dependeces ) " determination of independences -
! scheduling
i binding resources
Scheduling
{" - determin. of independence
1 -fixing time :
' - binding resources !
‘ VLIW
lobal O locd i S .
D ge I ! Execution !
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Code Scheduling

Static and Dynamic Scheduling

Static

Dynamic

global dependence analysis:

in each scheduling step:

check non-dep. of candidates
on prev. scheduled instructions;
schedule non-dep. instructions
after appropriate delay

Scope can be:

Basic Block,

Sequence of basic blocks,
Loops.

in each scheduling step:

with local dependence analysis,

check non-dep. of candidates

on curr. executing or delayed instructions;
dispatch or delay non-dep. instructions.

Scope is a small Window,
6 - 12 instructions.
support by scheduling helpful
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Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops
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Code Scheduling
Instruction Scheduling

» Reorders instruction stream as generated by instruction
selection,

» Goal: Exploitation of intraprocessor parallelism,
» Filling very long instruction words (VLIWs), or
» Avoiding pipeline hazards.

» Must be semantics preserving,

» Basis: Program dependences.
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Code Scheduling

Program Dependences

Dependence constrains the potential for reordering:
S, depends on S; = S; must be executed before S».
51, S, can be operations, instructions, basic blocks.
Two types of dependences:

Data Dependence:

» Relation between definitions and uses of
resources (program variables, memory cells or
blocks, symbolic or real registers),

» Here mainly machine resources, i.e. registers,

memory cells, status words
» Alias problems:

» Address calculation for an index expression
» Dereferencing of a pointer

Control Dependence: Conditions dominating statements
m] = =
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Code Scheduling

Example
S1: read a
S2: if a > 0
S3: then b := a;
S4: c :=b+a
S5: else ¢ := -(a + a);

S6: d := 2 % b;

S2 is data dependent on S1 — it uses the value computed by S1.
S3, S4, S5 are control dependent on S2 — they are only executed
depending on the outcome of the test.

d
- du

du B3 —=
m —_— data dependence
du
S1] ———= S2 6
\ e control dependence
M S5
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Code Scheduling

Definitions and Uses of Machine Resources

Definitions :
» modifications of register contents by loads or operations, pre-,
postincrement/decrement,
» setting carry, overflow, condition bits in status words,
» storing values in memory cells,
» modifying registers as side effects of e.g. pop, push.
Uses :

Using register contents in operations and for addressing,
Storing register contents,

Loading contents of memory cells,

Testing the program status word.

vV Yy VvVvyy
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Code Scheduling

Types of Data Dependences

Definitions (X :=) and uses (:= X) of resource X.

a: X =
b: X =
c: =X
d: X =
Output dependences (dd, WAW): Definitions on definitions,
e.g., bon a,
True dependence (du, RAW): Uses on definitions,
e.g., con b,

Antidependence (ud, WAR): Definitions on uses,
e.g., donc.
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Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops
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Code Scheduling

Data Dependence Graph (DDG) (for a basic block)

Nodes instructions,

Edges

> 3 sets a resource, b uses it,
and the path from a to b is definition free, or
> a uses a resource, b sets it,
and the path from a to b is definition free, or
» aand b set the same resource
and the path from a to b is use and definition free

» describes the degree of freedom for semantics-preserving

reordering of the instructions.
a X.=

=X X =
ini definiti d
% definition free %deﬁmton free é u:e”:‘lre‘:n an
X = X

b =X
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Code Scheduling

Example

DDG
» contains all direct dependencies as edges,
» dependence is transitive, but does not need to be represented,
> transitive closure is an upper approximation due to aliasing,

» direct dependences are enough to prevent non—semantic
preserving reorderings.

Instruction sequence with its DDG

1: (CC,D1) :=MJ[Al + 4].W 'H'
2: (CC,D2) :=MJ[AL + 6].W N\ y
3. (CC,D1) :=DI + D2

4: MIAL +4] :=DLW
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Eliminating non-live dependences

Flags in the condition code/program status word

Before After
dead(F) __(F,..):=
. dd

» are machine resources, dead(F)S (5. = @

» on some machine set in each ddg a
arithmetic instruction, dead(F) > (F...) =

» used in conditional branches. “V:;C(FW_) :@

» Dependences would prevent du du
any reordering due to dead(F) =F
dd-dependences, ud L@

dead(F) > (F) =

» should be eliminated as ddC ud
shown in figure. (F.):=
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Code Scheduling

Basic Block with DDG

© O N>R W

D1
D2

Al

D1
M[A1]
D2

D3

D3
M[A1+6]

= M[A1+4];
= M[A1+6];
= Al42;

= D1+A1;
= Al;

= D2+1;

= M[A1+12];
= D3+D1;
= D3
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Code Scheduling

Basic Block with DDG

© XN W

D1 = M[A1+4];
D2 = M[A1+6];
Al = Al42;

D1 = D1+A1;
M[A1] = Al;

D2 = D2+1;

D3 = M[A1+12];
D3 = D3+D1;

M[A1+6] := D3
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Code Scheduling

Algorithm DDG-Graph

Input: basic block

Output: data dependence graph of basic block

Method: backwards traversal

var firstDefs, expUses: set of pair (resource, instrOcc);
actlnstr: instruction;

function conflict(res,instry ,instr, ). conflict Typ;
(* determ. exist. and type of conflict betw. instr; and instry on resource res *
if res is set in instr; then
if resis used in instr, then conflict Typ := def-use
else conflictTyp := def-def fi
else if res is used in instr; and set in instr, then conflictTyp .= use-def fi
fi;
procedure drawEdge(a — b, conflict Typ)
draws a new edge between its arguments if there is none.
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Code Scheduling

begin

actlnstr := last instruction of basic block;

firstDefs := {(r, actinstr)|r € defs(actinstr)};

expUses := {(r, actinstr)|r € uses(actinstr)};

while pred(actinstr) defined do

Invariant:
firstDefs = {(r,i)|i contains first def. of r in actlnstr; 3}
expUses = {(r, i)|i contains use of r not preceded by a def. of r }
actlnstr := pred(actlinstr);

foreach resource r set or used in actinstr do
foreach (r, b) € firstDefs U expUses do
case conflict(r, actinstr, b) is
def-def. if exists no pair (r,.) in expUses
then drawEdge(actinstr — b,dd) fi;
def-use: drawEdge(actinstr — b, du);
use-def: drawEdge(actinstr — b, ud);
end case
od
od;
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Code Scheduling

(* Updating firstDefs and expUses *)

foreach resource r’ set in actlnstr do
firstDefs := firstDefs — {(r',.) € firstDefs} U {(r, actlnstr)};
expUses := expUses — {(r',.) € expUses}
od;

od

foreach resource r’ used in actinstr do

expUses := expUses U{(r', actlnstr)};
Invariant restored!

od

end
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Code Scheduling

Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops
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Code Scheduling

(Simple-) Pipeline Scheduling

Simple pipeline with the following properties:
> instruction pipeline without hazard

detection, i.e., no pipeline
interlocks,

» simple resource model: instruction
uses 1 resource for 1 cycle =
different instructions scheduled on

different cycles do not interfer, w gxz: X:=
> one cyc!e delay for true-dependent Q Y=X  NOP

Instructions, z=Y Yi=X
» goal: hiding latencies to minimize NoP

program length. z=Y

Later, complex resource models: instruction occupies a resource for

more than 1 cycle.
[} [ =



Code Scheduling

Complexity and Heuristics

» Optimal Pipeline Scheduling, even
for simple pipelines, is an
NP-complete problem,

> use topological sorting to convert
partial order into total order

» In the example, several possible @ f
linear order exist, e.g. \ /
{1,2,6,3,5,9,4,7,8,10, 11},
{6,5,1,2,3,7,4,10,11,9,8} X\

> use heuristics for the selection of ©)
candidates next to be scheduled: \ %
» candidates with most (10)
dependences,
» candidates on the longest path. @
=] = = = H] A



Code Scheduling

Algorithm Pipeline Scheduling
(Gibbons/Muchnick 1986)

Input: Basic block with DDG,
set of schedules for preceding basic blocks.
Output: (Possibly) reordered instruction sequence of
the basic block, possibly with inserted NOPs.
Method: topol. sorting constrained by the pipeline conditions

var cands, realCands, potColls: set of instrOcc;

(* cands: instructions without predecessor *)
(* potColls: already scheduled instructions whose delay is not over *)
(* realCands: instructions in cands without conflict with potColls*)

function colliding(cand, potCol)/ : set of instrOcc;
computes the set of instructions in cand,
colliding with those in potColls
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Code Scheduling

begin
cands := set of minimal elements of the DDG;
potColls := set of last instructions in schedules of preceding basic block
repeat
realCands := cands — colliding(cands, potColls);
if realCands # () then
evaluate candidates according to heuristics;
select a best candidate b; schedule b;
remove b from cands,
remove b and all outgoing edges from the DDG;
insert new minimal elements into cands;
potColls := {b}
else schedule a NOP; potColls := ()
fi
until cands = ()
end
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Code Scheduling
:
Example
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Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops
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Code Scheduling

More Complex Architectures

>

>

Parallel functional units,

Complex resource patterns — multi-cycle operations,

Require modifications of algorithm Pipeline Scheduling

>

uses resource usage patterns for instructions and resource
constraints for the architecture,

» may schedule several instructions in the same position,

> keeps list of data-ready instructions, i.e., instructions whose

(dependence) predecessors will have produced their results in
time for the current instruction,

» chooses from the ready list by a priority heuristics,

keeps a global resource table for bookkeeping about occupied
resources and for checking for resource conflicts.

[} [ =
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Code Scheduling

More Complex Architecture — New Terminology

Operation:
Instruction:

Latency:
Delay:

Schedule:

Machine Operation, e.g. Load, Store, Add
generic names: a, b, c, ...

Set of operations scheduled at the same position,
generic names: A, B, C, ...

Execution time of an operation

Required distance between the issue of a and the
issue of b if (a — b)

Mapping from operations to positions (cycles),
generic names: o, Ofiat, Oswps - - -
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Code Scheduling

Delays as Functions of Dependence Type

Delay for (a —9 b) depends on the latencies of a and b and dt.

Assumptions:

> write-cycle is the last,
» read-cycles is any cycle but the last,

» in concurrent reads and writes, read reads old content.

S
du: latency(a) b 1
ud:  —1+ latency(a) — latency(b) ©° 5-
dd: 1+ latency(a) — latency(b) bE-
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Code Scheduling

Algorithm List Scheduling

Input: Basic block with DDG,
set of schedules for preceding basic blocks.

Output: Instruction sequence of the basic block associated with times
(positions in the schedule).

Method: topological sorting constrained by the pipeline conditions

var time: int;

var cands: set of instrOcc;

array GRT[R x ...] of Bool;

(* GRT]r, t] = true iff constructed schedule occupies resource r at time t *)

function resConflict(cand, grt) : bool,

checks whether cand has a resource conflict with the current schedule;
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Code Scheduling

The Global Reservation Table, GRT

Time

woo-“cowoxm




Code Scheduling

begin
time := 0; cands := set of minimal elements of the DDG;
while cands # () then
sort cands in non-decreasing priority order;
while not all candidates have been tried do
check next candidate b for resource conflicts;

if not resConflict(b, GRT) then schedule b at time;
update GRT;

remove b from cands;

remove b and all outgoing edges from the DDG;
od

od
increment time by 1; update cands;

insert instructions whose delay is over into cands,
end
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Structure

Architectural classification

the scheduling problem and dependence

data dependences in basic blocks

basic-block scheduling for a simple pipeline

list scheduling for basic blocks and complex architectures

scheduling for acyclic sequences of basic blocks

A L

software pipelining for loops
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Code Scheduling

Exposing more Instruction Level Parallelism

Degree of ILP in basic blocks is limited — typically to 2
Available ILP in processors grows: better exploitation by

» Scheduling sequences of consecutive basic blocks

» Scheduling loops

» Speculation

how to preserve the semantics

when what

dynamic hardware branch
prediction

static speculative code
motion

on a mispredicted branch — forget-
ting or undoing effects of speculatively
executed instructions

compensation code
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Code Scheduling

Code Motion

>

moves code from a source block to a
target block,

upward code motion: target block is
predecessor of source block,

downward code motion: target block is
successor of source block,

code motion is speculative if the

moved code is executed on some 7 A
control-flow path on which it would U -
not have been executed before. /- 5 c
code motion may require the insertion L,
of duplicates (compensation code), if N /K'v
some moved code were not executed o °
on some control path. —

=] F = E E DAl



Code Scheduling

Trace-/ Super- / Hyperblock Scheduling

What is the total running time of a program?

Z ti X f;

basic block i

where t; is the duration and f; the frequency of execution of basic
block i.

Do we know t; and ;7 — In general, we don't!
Profiling computes an approximation to them.
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Code Scheduling

Trace- / Superblock- / Hyperblock-Scheduling

» Extend scheduling area to sequences of consecutive basic
blocks (traces, superblocks, hyperblocks),

» Select frequently taken paths based on profile data, annotate
program with profiling information: associate each branch of a
conditional with a relative frequency,

» Optimize and schedule frequently taken traces at the cost of
less frequently taken traces.
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Code Scheduling

Traces

Trace is a sequence of consecutive basic blocks not extending
across a loop boundary

Control flow graph of a procedure is partitioned into a disjoint set
of traces
» traces formed in order of decreasing frequency:
1. select available basic block with highest frequency
2. join available predecessors and successors with highest
frequencies until frequency falls below a given threshold
» there are (unlike in basic blocks)
side exits out of traces
side entrances into traces
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Code Scheduling

Example
R1:=0 (*stepping thru A and B *)
R5:=0 (*holds sum *)
R6:=n

fori:=0 upto n do R7:=s
if All=0 Bl | iy N

R2:=M[R1+a]
then B[] := B[i] + s i2 BNER20 i7

else Bi] := All B2 | i3 R3 = M[RL+b] B3
fi . i4 R4 := R3 +R7
sum := sum + BIi] i5 M[R1+b]:=Ra
od i6 BR i9
i8 M[R1+b]:=R2
B4 | i9 R5:=R5+ R4
i10 R1:=R1+4

i11 BLT R1R6 il

a
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Code Scheduling

Basic-Block Schedule for Example

Assumptions: 2-issue processor with 2 integer units,

latency of arithmetic and of store is 1 cycle, of load is 2 cycles, no
stall cycles for a branch.

B1

B2

B3

B4

R1:=0 (*stepping thru A and B *)

R5:=0 (* holds sum *)

R6:=n

R7:=s
i R2:=M[R1+a] Time) Int. Unit 1 Int. Unit 2
i2 BNER20 i7 0 i1 R2:=M[R1+a]

1
i3 R3:=M[R1+b] 2 i2 BNE R2 0 i7
i4 R4 :=R3 +R7 3 i3 R3:=M[R1+b]
i5 M[R1+b]:=R4 4
i6 BR i9 5 i4 R4 :=R3+R7
- 6 i5 M[RL1+b]:=R4 i6 BR i9
i7 R4 :=R2
i8 M[RL+b]:=R2 3 i7 R4 :=R2 i8 M[R1+b]:=R2
i9 R5:=R5+ R4 7(4)| i9 R5:=R5 + R4 i10 R1:=R1+4
i10 R1:=R1+4
! ) 8 (5)| i1l | BLT RLR6 il
i11 BLT R1R6 il
[m] = = =
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Code Scheduling

Trace Scheduling

List scheduling applied to a trace — Problems
» code motion past side exits

» code motion past side entrances
may destroy semantics.

Compensation code inserted on off-trace paths.
Problems:

» Code growth

» Exceptions raised by compensation code moved in front of side
exits
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Trace Schedule for Example

Basic-Block Schedule

Trace Schedule

Time| Int. Unit 1 Int. Unit 2 Time| Int. Unit 1 Int. Unit 2

0 i1 R2:=M[Rl1+a] 0 i1 R2:=M[R1+a] i3 | R3:=M[R1+b]

1 1

2 i2 | BNER20 i7 2 i2 | BNER20 i7 i4 | R4:=R3+R7

3 i3 R3:=M[R1+b] 3 i5 M[R1+b]:=R4

4 ) 4(5)| 9 R5:=R5+R4 i10 | R1:=R1+4

5 4 | R4:=R3+R7 5(6)| i11 | BLT R1R6 i1

6 i5 | M[Rl+b]:=R4 i6 | BR 9 6 (7| i12 | BR out

3 i7 | R4:=R2 i8 | M[R1+b]:=R2 3 i7 | R4:=R2 i8 | M[Rl+b]:=R2
4 i12 | BR i9

7(@)|i9 | R5:=R5+R4 i10 | RL=R1+4

8(5)| i11 | BLT R1R6 i1




Code Scheduling

Speculative Upward Code Motion

correct

wrong

Solution: Register renaming

DA



Code Scheduling

Downward Code Motion with Insertion of Compensation
Code

>\< X live at sp >
)
0 F B

T

S1

X not live at s /

**** dependence

777777

no dependence
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Code Scheduling

Moving a Statement past a Side Entrance

(b).

» Upwards move of a statement over a side entrance in (a) and

» rule for these moves in (c)

nae
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Code Scheduling

Superblocks

Avoiding code motion past side entrances by tail duplication:
copying code starting with side entrance and redirecting the
branches.

Superblock formation

> starts with a trace,

» produces a trace without
side entrances,

> only one entry, but
potentially several exits.
Compensation code only for downward code motion past side exits.

o = =
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Code Scheduling

Enlarging Superblocks to increase the available ILP

Branch Target Expansion: “Expands” the last branch of a superblock by copying and
appending the target superblock
Loop Peeling and Unrolling: Unroll several iterations of the loop;
» remove control transfer if safe

» extend superblock by predecessors and/or successors if possible
Removal of Dependencies:

register renaming removes artificial dependencies
operation migration moves an operation from a superblock which does not use the
result to another one which does
introduces a new instance of an induction variable for every
unrolled iteration of a loop;
removes dependencies of induction variables on themselves;
requires initialization and finalization code.

induction variable expansion
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