Software Pipelining

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de
– Wilhelm/Maurer: Compiler Design, Chapter 12 –

5. Februar 2008
Scheduling Cyclic Code

So far only scheduling of acyclic code:

- List scheduling of basic blocks
- Trace and superblock scheduling of sequences of basic blocks

What about loops? First approach:

1. Unroll loop a number of times, obtaining an enlarged basic block as new body,
2. list schedule this basic block.
Loop Unrolling

```c
for (i=0; i < N; i++) {
    S(i)
}
```

rewritten into

```c
for (i=0; i+4 < N; i+=4) {
    S(i);
    S(i+1);
    S(i+2);
    S(i+3)
}
for (i = N; i < N; i++) {
    S(i);
}
```

Disadvantages: code growth and no overlapping across back edge.
Software Pipelining

generates a schedule that

- overlaps execution of consecutive iterations,
- initiates a new iteration in a fixed *initiation interval, II*,
- respects dependences
 - within the same iteration and
 - between several iterations — *loop-carried dependences*,
- avoids resource conflicts.

Advantages:

- higher throughput,
- minimal code-size expansion.
Analogy to Hardware Pipelines

Instruction Pipeline: synchronous overlapped execution of consecutive instructions, issue of new instruction in every cycle if no hazards

Software Pipeline: synchronous overlapping execution of several consecutive iterations, one iteration issued every \(II \) cycles.
A Software Pipeline – the Result of our Endeavour

Prolog: initiates the pipeline

Steady state

Kernel

Epilog

finishes remaining iterations

maximal parallelism
Terminology and Generic Names

Operation: Machine Operation, e.g. **Load, Store, Add**
names: a, b, c, \ldots

Instruction: Set of operations scheduled at the same position,
names: A, B, C, \ldots

Latency: Execution time of an operation

Delay: Required distance between the termination of a and the issue of b if ($a \rightarrow b$)
Delays as Functions of Dependence Type

Delay for \((a \rightarrow^{dt} b)\) depends on the latencies of \(a\) and \(b\) and \(dt\). Assumptions:

- **write**-cycle is the last,
- **read**-cycles are any cycle but the last,
- in concurrent **reads** and **writes**, **read** reads old content.

<table>
<thead>
<tr>
<th>delay (\text{du})</th>
<th>(\text{ud})</th>
<th>(\text{dd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{du: latency}(a))</td>
<td>(-1 + \text{latency}(a) - \text{latency}(b))</td>
<td>(1 + \text{latency}(a) - \text{latency}(b))</td>
</tr>
<tr>
<td>(\text{ud: latency}(a))</td>
<td>(0)</td>
<td>(\text{latency}(a))</td>
</tr>
<tr>
<td>(\text{dd: latency}(a))</td>
<td>(\text{latency}(a))</td>
<td>(\text{latency}(a))</td>
</tr>
</tbody>
</table>

conservative
Schedules

Schedule: Mapping from operations to positions (cycles),
names: \(\sigma, \sigma_{flat}, \sigma_{swp}, \ldots \)
Note: We are overloading \(\sigma \) with two different meanings:
- **static**: the schedule as produced by the compiler,
- **dynamic**: the dynamic “unrolling” of this schedule.

SW pipelines: loops scheduled as SW pipelines are graphically represented as a matrix:
- columns for original iterations,
- rows for positions in the SW pipeline.
A Simple Loop and Potentially Parallel Execution

for i:=1 to n do
1: a[i+1] := a[i]+1;
2: b[i] := a[i+1]/2;
3: c[i] := b[i] + 2;
4: d[i] := c[i]
od

Arrows represent dependences between instances of statements in different iterations of the loop.
Inter-iteration Dependencies (Loop Carried Dependencies)

Edges of the DDG are labelled with \((depDist, delay) \)

dependence distance: number of iterations between two dependent accesses (0 for intra-iteration dependencies),

delay: minimal number of cycles between the issue of two dependent operations.
for i := 1 to n do

1: a[i+1] := a[i] + 1;

2: b[i] := a[i+1] / 2;

3: c[i] := b[i] + 2;

4: d[i] := c[i]

od
for $i := 1$ to n do
 1: $a[i+1] := a[i] + 1$
 2: $b[i] := a[i+1] / 2$
 3: $c[i] := b[i] + 2$
 4: $d[i] := c[i]$
od

(1,1)

(0,1)

2

(0,1)

3

(0,1)

4

1

\begin{itemize}
 \item I1: delay 1
 \item I2: delay 2
 \item I3: delay 3
 \item I4: delay 4
 \item I5: delay 4
 \item I6: delay 4
 \item I7: delay 4
\end{itemize}
Another Loop

for $i:=1$ to n do
 1: $a[i+2] := a[i]+1$;
 2: $b[i] := a[i+2]/2$;
 3: $c[i] := b[i] + 2$;
 4: $d[i] := c[i]$
end

ITERATIONS
<table>
<thead>
<tr>
<th></th>
<th>delay</th>
<th>depDist</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2:</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>I3:</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>I4:</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I5:</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I6:</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I7:</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

T I M E
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Prolog

Epilog
Examples of Dependences

Instructions a and b occur consecutively in the loop body. i is the loop control variable.

<table>
<thead>
<tr>
<th>instr. a</th>
<th>instr. b</th>
<th>DDG arc</th>
<th>Dep. type</th>
<th>depDist</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m[i+2] := x; y := m[i];$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y := m[i+3]; m[i] := x;$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m[i] := x; y := m[i-2];$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y := m[i]; m[i-3] := x;$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y := t; t := x + i;$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = x + i; y := t;$</td>
<td>$b \rightarrow a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = x + i; y := t;$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b \rightarrow a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y := x + i; y := t;$</td>
<td>$a \rightarrow b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b \rightarrow a$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples of Dependences

Instructions a and b occur consecutively in the loop body.
i is the loop control variable.

<table>
<thead>
<tr>
<th>instr. a</th>
<th>instr. b</th>
<th>DDG arc</th>
<th>Dep. type</th>
<th>depDist</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m[i+2] := x$; $y := m[i]$;</td>
<td>$a \rightarrow b$</td>
<td>du</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$y := m[i+3]$; $m[i] := x$;</td>
<td>$a \rightarrow b$</td>
<td>ud</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$m[i] := x$; $y := m[i-2]$;</td>
<td>$a \rightarrow b$</td>
<td>du</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$y := m[i]$; $m[i-3] := x$;</td>
<td>$a \rightarrow b$</td>
<td>ud</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$y := t$; $t := x + i$;</td>
<td>$a \rightarrow b$</td>
<td>ud</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$t = x + i$; $y := t$;</td>
<td>$b \rightarrow a$</td>
<td>du</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$y := x + i$; $y := t$;</td>
<td>$a \rightarrow b$</td>
<td>du</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$b \rightarrow a$</td>
<td>ud</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y := x + i$; $y := t$;</td>
<td>$a \rightarrow b$</td>
<td>dd</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$b \rightarrow a$</td>
<td>dd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The General Software-Pipeline Scheduling Problem

Given:

- a loop with body \mathcal{L} and I iterations,
- a p–times parallel architecture.

Wanted: Efficient parallel schedule for \mathcal{L}^I respecting the dependence and resource constraints, conceptually, \mathcal{L}^I (\mathcal{L} unrolled I times) transformed into $\alpha \mathcal{K}^k \omega$

\mathcal{K}, the Kernel, body of a new loop,

α the Prelude,

ω the Postlude.

A new iteration of the new loop is initiated after a fixed number of cycles, called the Initiation Interval, II.
Scheduling Constraints due to Dependences

For a, operation in \mathcal{L}, let a_n be the instance of a in the n–th iteration
Constraint for any schedule σ due to $(a \rightarrow b, \text{depDist}, \text{delay})$:

$$\sigma(b_{m+\text{depDist}}) \geq \sigma(a_m) + \text{delay}$$
Scheduling due to Dependence Constraints 2

- dependence graph is unrolled, loop-carried dependences instantiated,
- operations are moved up while arrows still go downwards (respecting delays).
The Influence of the Dependence Distance
Implications of the Scheduling Constraints

- bigger value of $delay \rightarrow$ later placement of b in the schedule,
- bigger value of $depDist \rightarrow$ later instance of b concerned \rightarrow more freedom to schedule,
- best achievable speedup depends on the $slope = delay/depDist$.
Recurrence

Recurrence is the direct or indirect inter-iteration dependence of an operation on itself (a cycle).

Operation without recurrence: all instances can be executed in parallel to each other.

Let $\Theta = \{d_1, \ldots, d_n\}$ be an elementary cycle of the dependence graph on an operation a.

\[
delay_\Theta = \sum_{i=1}^{n} delay(d_i)
\]

\[
depDist_\Theta = \sum_{i=1}^{n} depDist(d_i)
\]
Strongly-Connected Components in the Dependency Graph

The algorithm will consider strongly-connected components of the dependency graph.
Consequences of cyclic dependence:

- any predecessor is also a successor,
- topological sorting has to be modified to schedule operations without all predecessors being already scheduled,
- scheduling an operation defines a deadline for all its successors
Scheduling Constraints due to Resources

Each instance of an operation has other instances from successive iterations executed II, $2 \times II$, $3 \times II$, ... cycles later.

\implies Conflicts on a resource in a single iteration must be avoided at times that are multiples of II apart.

\implies Total schedule is conflict-free if within a single iteration no resource is used more than once at the same time modulo II.
Identifying a Kernel

Problem: Detect a repeating pattern in a newly made schedule to make it the kernel.

for i:=

1: a[i] := i * i; (0,1)
2: b[i] := a[i] * b[i - 1]; (1,1)
3: c[i] := b[i]/n;
4: d[i] := b[i] % n;

Greedy scheduling, i.e. scheduling operation 1 as early as possible, does not form a kernel.
Stages

Schedule for a single iteration of the original loop, \mathcal{L}, divided into a sequence of *stages* of length II. Number of stages is the *stage count*, SC.
Constraints

1. dependencies and resource constraints
2. all operations from \mathcal{L} occur once in \mathcal{K},
3. width of $\mathcal{K} \leq p$

Goal: $|\mathcal{K}|$ minimal
Properties of the Kernel

- \mathcal{K} contains operations of SC consecutive iterations of \mathcal{L}
- **Initiation Interval**, $II = |\mathcal{K}|$, the distance between two consecutive iterations of the new loop,
- $II = |\mathcal{K}|$ is bounded from below by the slope, $delay/depDist$, where the arc controlling the II is annotated with $(depDist, delay)$.

Observation:

- Prelude starts $SC − 1$ iterations,
- Postlude finishes $SC − 1$ iterations,
- all instructions of the original loop occur once in \mathcal{K}.

Software Pipelining

Dependences
Example (revisited)

Slope is $\text{delay}/\text{depDist} = 1/2$ of loop-carried dependence.
Approaches

move-then-schedule:
move code forwards/backwards over loop backedge to improve schedule;
Problem: which operations to move and in which multiplicity?

schedule-then-move:
find a schedule;
transform code accordingly

- unroll-while-scheduling: **Kernel Recognition**
 complex bookkeeping of scheduling state required
 or
- generate and solve set of modulo constraints: **Modulo Scheduling**
Modulo Scheduling

Treats

- innermost loops
- one iteration of original loop (to start with; later tried with several copies if available parallelism allows)

Basic steps

1. compute lower bound for \parallel
2. find schedule
3. generate kernel code
4. generate prelude and postlude code
Lower Bound \ll_{min}

\ll_{min} to be determined before scheduling; starting value for iteration. Depends on the Resource Consumption of the operations and on Dependences between the operations

\[
\ll_{\text{min}} \geq \max \{ \ll_{\text{res}}, \ll_{\text{dep}} \}
\]

where \(\ll_{\text{res}} = \min\{ |\sigma| \mid \sigma \text{ conflict-free schedule} \} \)

and \(\ll_{\text{dep}} = \max_{\text{cycles}} \Theta \left\{ \left\lceil \frac{\text{delay}_{\Theta}}{\text{depDist}_{\Theta}} \right\rceil \right\} \)

These terms will be explained in the following slides.
Determining II_{res}

Reservation Table for each operation O,
$RT_O : \text{cycles} \times \text{resources} \rightarrow \{0, 1\}$ defines the resource consumption at each cycle relative to issue time 0.

Resources are

- Source and Result Buses,
- Stages of functional units.

Later, during scheduling used: Schedule Reservation Table, (Modulo Reservation Table, MRT),
records which resource is used by which operation at a given time of a schedule under construction.

When an operation is attempted to be scheduled at time t its reservation table is translated by t anded onto the SRT to check for resource conflicts.

If no conflict, RT_O is or’ed onto the current Schedule Reservation Table.
Complexities

Complexity of determining II_{res} depends on the type of resource consumption.

Simple Reservation Tables: single resource in a single cycle at issue cycle

Block Reservation Table: single resource for multiple, consecutive cycles starting at issue cycle

Complex Reservation Table: all others

Alternative Reservation Tables: for operations executable on different functional units

Determining the minimal II_{res} is equivalent to binpacking.
A Heuristics

Ignore dependences.

1. Sort operations of loop body in increasing order of number of alternatives

2. Take next operation a from the list; for each resource r: add the number of times a uses r to $usageCount(r)$, choose alternative with lowest (partial) maximal usage count over all resources

Usage count for most heavily used resource constitutes the approximated $\|l_{res}$
Determining II_{dep}

Let $\Theta = \{d_1, \ldots, d_n\}$ be an elementary cycle of the dependence graph

$$delay_\Theta = \sum_{i=1}^{n} delay(d_i)$$

$$depDist_\Theta = \sum_{i=1}^{n} depDist(d_i)$$

Property of each schedule σ and each operation a from \mathcal{L}

$$\sigma(a_{m+i}) - \sigma(a_m) = II \times i$$
Determining II_{dep} (cont’d)

Resulting Constraint for II_{dep}: $\forall \Theta. \ depDist_\Theta \times II_{dep} \geq delay_\Theta$

Transformed into:

$\forall \Theta. \ II_{dep} \geq \left\lceil \frac{delay_\Theta}{depDist_\Theta} \right\rceil$

Choose:

$II_{dep} = \max_\Theta \left\{ \left\lceil \frac{delay_\Theta}{depDist_\Theta} \right\rceil \right\}$
Computing II_{dep}

Alternatives:
- Enumerate all elementary cycles and determine
 $\max_{\Theta} \left\{ \frac{delay_\Theta}{depDist_\Theta} \right\}$
- shortest-path algorithm
- minimal cost-to-time ratio cycle problem
Algorithm for the minimal cost-to-time ratio cycle problem

Input: II_{\min}

MinDist$[i, j]$ is the smallest legal interval between $\sigma(i)$ and $\sigma(j)$ in the same iteration.

Initialize

$$MinDist[i, j] = \begin{cases} -\infty & \text{if no edge from } i \text{ to } j \\ \max(\max\{d | (a \rightarrow b, 0, d)\}, \\ \max\{delay(a) - depDist(e) \times II | \ depDist(e) > 0\}) & \end{cases}$$

Iterate the minimal cost-to-time ratio cycle algorithm with increasing II_{\min}:

- $MinDist[i, i] > 0$: impossible \implies increase II
- $MinDist[i, i] < 0$ for all i: \implies slack around every cycle \implies decrease II;
- Termination, if at least for one i $MinDist[i, i] = 0$.
Iterative Modulo Scheduling

procedure ModuloSchedule
 II = IImin; found := false;
 (* some heuristic control *)
 (* to enforce termination *)
do
 if iterativeSchedule(II,...)
 then found := true
 else II := II + 1
until found

Scheduling Priority: Basis is Height-based priority (assumes acyclicity) extended for inter-iteration dependences.
Instruction Scheduling vs. Operation Scheduling

Difference: what is the subject of scheduling?

<table>
<thead>
<tr>
<th>Instruction Scheduling</th>
<th>Operation Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>instruction to be filled</td>
<td>operation to be scheduled</td>
</tr>
<tr>
<td>at each point in time: select max. number of candidate</td>
<td>select an operation:</td>
</tr>
<tr>
<td>operations that can be scheduled and schedule them</td>
<td>schedule it at a legal and profitable position</td>
</tr>
</tbody>
</table>

Modulo scheduling uses operation scheduling, since operations may have to be scheduled several times.
Difference of Modulo Scheduling to Acyclic List Scheduling

- Operation can be unscheduled by backtracking → operation can be scheduled several times → modulo scheduling uses operation scheduling.
- Modulo Schedule Reservation Table,
 \(MRT[t \mod \ II, r] \) records use of resource \(r \) at time \(t \) → length of \(MRT = \ II \)
- conflict at time \(t \) → conflict at all times \(t \pm n \times \ II \) → scheduling only for a candidate interval
 \([MinTime, MaxTime]\) where \(MaxTime = MinTime + \ II - 1 \)
- List Scheduling always finds a time slot.
 Procedure TimeSlot might not find a legal schedule of the current operation in the interval \([MinTime, MaxTime]\) → backtracking.
function IterativeSchedule(...)

function IterativeSchedule(II, ...) boolean;
 var Op, Estart, MinTime, MaxTime, TimeSlot: int;
begin
 schedule(START, 0); (* START pseudooperation *)

 while list of non-scheduled operations is not empty and ... do
 begin
 Op := highestPriorityOperation;
 Estart := CalculateEarliestStart(Op);
 MinTime := Estart;
 MaxTime := MinTime + II -1;
 TimeSlot := TimeSlot(Op, MinTime, MaxTime);
 Schedule(Op, TimeSlot); (* may unschedule conflicting operations *)
 end;
 IterativeSchedule := (list of non-scheduled operations empty?)
end;
function TimeSlot(...)

function TimeSlot(Op, MinT, MaxT: int) int;
 var CurrTime, SchedSlot: int;
begin
 CurrTime := minT; SchedSlot := 0;
 while SchedSlot = 0 and CurrTime < MaxT do
 if ResourceConflict(Op, CurrTime) then
 CurrTime := CurrTime + 1;
 else SchedSlot := CurrTime
 fi;
 if SchedSlot = 0 then
 if (NeverScheduled(Op) or MinT > PrevSchedTime[Op]) then
 SchedSlot := MinT
 else SchedSlot := prevSchedTime[Op]+1
 fi;
 TimeSlot := SchedSlot
 end
end
Height-based Priority and Earliest Start

Priority function: height-based extended to cyclic and inter-iteration dependences.
Uses effective delay.

\[\text{EffDelay}(p \rightarrow q) = \text{delay}(p \rightarrow q) - II \ast \text{depDist}(p \rightarrow q) \]

\[\text{HeightR}(p) = \begin{cases}
0 & \text{if } p \text{ is STOP} \\
\max_{q \in \text{succ}(p)}(0, \text{HeightR}(q) + \text{delay}(p \rightarrow q) - II \ast \text{depDist}(p \rightarrow q)) & \text{otherwise}
\end{cases} \]

Warning: Recursion difficult to resolve!

\[\text{Estart}(p) = \max_{q \in \text{pred}(p)} \begin{cases}
0 & \text{if } q \text{ is non-scheduled} \\
\max(0, \text{SchedTime}(q) + \\
\text{delay}(q \rightarrow p) - II \ast \text{depDist}(q \rightarrow p)) & \text{otherwise}
\end{cases} \]
Candidate Time Slots

Correctness of schedule

- as for resource usage: guaranteed by MRT
- as for dependences: uses E_{start}, earliest time slot for operation to be scheduled

Peculiarity in iterative modulo scheduling:
not all predecessors may have been scheduled or may have remained scheduled

Constraints for scheduling the current operation:

- dependences on predecessors: E_{start} yields earliest slot
- dependences on successors: conflicts solved by unscheduling
Unscheduling

- slot in \([Min\ Time, Max\ Time]\) found without resource conflict: unschedule operation with dependence conflict
- no slot in \([Min\ Time, Max\ Time]\) found without resource conflict: choose time slot + choose operation to unschedule
Increase Exploitable Parallelism

- IF-conversion to eliminate forward branches
- Elimination of pseudo dependences introduced by register allocation
- Rotating registers or variable expansion
Predicated Execution

Motivation

- costs of speculation:
 - processor speed is growing
 - issue width is growing

static speculation: more code moved past branches – more
 - compensation code inserted

dynamic speculation: higher costs of misprediction

- branches limit ILP
Predicated Instructions

Predicated instruction \(\text{add } r1, r1, 1\) (P)
conditionally executed depending on the value in predicate register \(P\)

Execution

- Normal instruction fetch
- predicate true: normal execution
- predicate false: instruction nullified – no effect on the state
Predicate-register setting instruction

\[\text{pred}_< \text{comp}> P_{out,1}(boolop_1), P_{out,2}(boolop_2), s_1, s_2, (P_{in}) \]

1. Compares \(s_1 \) with \(s_2 \) according to \(< \text{comp}> \),
2. combines the value of \(P_{in} \) with the result
 - using boolean operation \(boolop_1 \) to compute \(P_{out,1} \)
 - using boolean operation \(boolop_2 \) to compute \(P_{out,2} \)

Available boolean operations: Unconditional (U), conditional, NOT, AND, ANDNOT, ...
If-Conversion

Conditionals translated into predicated code

outermost conditional:
if-conv(if \text{comp}(a,b) \text{ then } e_1 \text{ else } e_2 , \text{true}) =
 \text{pred_comp } q_1(U), q_2(\text{NOT } U), a, b;
 \text{if-conv}(e_1, q_1);
 \text{if-conv}(e_2, q_2);
 \text{where } q_1 \text{ and } q_2 \text{ are unused predicates}

nested conditionals:
if-conv(if \text{comp}(a,b) \text{ then } e_1 \text{ else } e_2 , \text{p}) =
 \text{pred_comp } q_1(\text{AND}), q_2(\text{ANDNOT}), a, b, p;
 \text{if-conv}(e_1, q_1);
 \text{if-conv}(e_2, q_2);
 \text{where } q_1 \text{ and } q_2 \text{ are unused predicates}