Lexical Analysis

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de
and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

20. Oktober 2009
Lexical Analysis

Subjects

- Role of lexical analysis
- Regular languages, regular expressions
- Finite automata
- From regular expressions to finite automata
- A language for specifying lexical analysis
- The generation of a scanner
- Flex
“Standard” Structure

source(text) → lexical analysis (7) → tokenized-program → syntax analysis (8) → syntax-tree → semantic-analysis (9) → decorated syntax-tree → optimizations (10) → intermediate rep.

finite automata

pushdown automata

attribute grammar evaluators

abstract interpretation + transformations
“Standard” Structure cont’d

intermediate rep.

code-generation(11, 12)

machine-program

tree automata + dynamic programming + ⋯
Lexical Analysis (Scanning)

- **Functionality**
 - **Input:** program as sequence of characters
 - **Output:** program as sequence of symbols (tokens)
- **Produce listing**
- **Report errors, symbols illegal in the programming language**
- **Screening subtask:**
 - Identify language keywords and standard identifiers
 - Eliminate “white-space”, e.g., consecutive blanks and newlines
 - Count line numbers
 - Construct table of all symbols occurring
Automatic Generation of Lexical Analyzers

- The symbols of programming languages can be specified by regular expressions.

- Examples:
 - program as a sequence of characters.
 - \((\text{alpha}\ (\text{alpha}\ |\ \text{digit})^*)\) for Pascal identifiers
 - \"\(*\"\ until \"\(*\\)\"\ for Pascal comments

- The recognition of input strings can be performed by a finite automaton.

- A table representation or a program for the automaton is automatically generated from a regular expression.
Automatic Generation of Lexical Analyzers cont’d

Lexical Analysis

regular-expression(s)

FLEX

input-program

scanner-program

tokenized-program
Notations

A language, L, is a set of words, x, over an alphabet, Σ.

- $a_1a_2\ldots a_n$, a word over Σ, $a_i \in \Sigma$
- ε, The empty word
- Σ^n, The words of length n over Σ
- Σ^*, The set of finite words over Σ
- Σ^+, The set of non-empty finite words over Σ
- $x.y$, The concatenation of x and y

Language Operations

- $L_1 \cup L_2$, Union
- $L_1L_2 = \{x.y|x \in L_1, y \in L_2\}$, Concatenation
- $\overline{L} = \Sigma^* - L$, Complement
- $L^n = \{x_1\ldots x_n|x_i \in L, 1 \leq i \leq n\}$
- $L^* = \bigcup_{n \geq 0} L^n$, Closure
- $L^+ = \bigcup_{n \geq 1} L^n$
Regular Languages

Defined inductively

- \emptyset is a regular language over Σ
- $\{\varepsilon\}$ is a regular language over Σ
- For all $a \in \Sigma$, $\{a\}$ is a regular language over Σ
- If R_1 and R_2 are regular languages over Σ, then so are:
 - $R_1 \cup R_2$,
 - $R_1 R_2$, and
 - R_1^*
Regular Expressions and the Denoted Regular Languages

Defined inductively

- \emptyset is a regular expression over Σ denoting \emptyset,
- ε is a regular expression over Σ denoting $\{\varepsilon\}$,
- For all $a \in \Sigma$, a is a regular expression over Σ denoting $\{a\}$,
- If r_1 and r_2 are regular expressions over Σ denoting R_1 and R_2, resp., then so are:
 - $(r_1|r_2)$, which denotes $R_1 \cup R_2$,
 - $(r_1 r_2)$, which denotes $R_1 R_2$, and
 - $(r_1)^*$, which denotes R_1^*.

- Metacharacters, \emptyset, ε, $(,)$, $[,]$, \ast don’t really exist, are replaced by their non-underlined versions.
 Attention: Clash between characters in Σ and metacharacters $\{(,), [,]\ast\}$
Example

<table>
<thead>
<tr>
<th>Expression</th>
<th>Language</th>
<th>Example Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \mid b$</td>
<td>${a, b}$</td>
<td>a, b</td>
</tr>
<tr>
<td>ab^*a</td>
<td>${a}{b}^*{a}$</td>
<td>$aa, aba, abba, abbbba, \ldots$</td>
</tr>
<tr>
<td>$(ab)^*$</td>
<td>${ab}^*$</td>
<td>$\varepsilon, ab, abab, \ldots$</td>
</tr>
<tr>
<td>$abba$</td>
<td>${abba}$</td>
<td>$abba$</td>
</tr>
</tbody>
</table>
Regular Expressions for Symbols (Tokens)

Alphabet for the symbol classes listed below:
\[\Sigma = \]

- integer-constant
- real-constant
- identifier
- string
- comments
- matching-parentheses?
Automata

In the following, we will meet different types of automata.

- **Automata**
 - process some *input*, e.g. strings or trees,
 - make *transitions* from configurations to configurations;
 - *configurations* consist of (the rest of) the input and some *memory*;
 - the *memory* may be small, just one variable with finitely many values,
 - but the memory may also be able to grow without bound, adding and removing values at one of its ends;
 - the type of memory an automaton has determines its ability to *recognize* a class of languages,
 - in fact, the more powerful an automaton type is, the better it is in *rejecting* input.
Finite State Machine

The simplest type of automaton, its memory consists of only one variable, which can store one out of finitely many values, its states,
A Non-Deterministic Finite Automaton (NFA)

\[M = \langle \Sigma, Q, \Delta, q_0, F \rangle \]

where:
- \(\Sigma \) — finite alphabet
- \(Q \) — finite set of states
- \(q_0 \in Q \) — initial state
- \(F \subseteq Q \) — final states
- \(\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q \) — transition relation

May be represented as a transition diagram
- Nodes — States
- \(q_0 \) has a special “entry” mark
- final states doubly encircled
- An edge from \(p \) into \(q \) labeled by \(a \) if \((p, a, q) \in \Delta\)
Example: Integer and Real Constants

<table>
<thead>
<tr>
<th></th>
<th>Di ∈ {0, 1, …, 9}</th>
<th>.</th>
<th>E</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{1, 2}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>{4}</td>
<td>0</td>
<td>{5}</td>
<td>{7}</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>{6}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>{7}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>∅</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$q_0 = 0$

$F = \{1, 7\}$
Finte Automata — Scanners

Finite automata

- get an input word,
- start in their initial state,
- make a series of transitions under the characters constituting the input word,
- accept (or reject).

Scanners

- get an input string (a sequence of words),
- start in their initial state,
- attempt to find the end of the next word,
- when found, restart in their initial state with the rest of the input,
- terminate when the end of the input is reached or an error is encountered.
Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner — first “non-consumed” character,
- in final state, and exists transition under the next character: make transition and remember position,
- in final state, and exists no transition under the next character: Symbol found,
- actual state not final and no transition under the next character: backtrack to last passed final state
 - There is none: Illegal string
 - Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: Example: (a|a*;)
Other Example Automata

- integer-constant
- real-constant
- identifier
- string
- comments
The Language Accepted by an Automaton

- $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$
- For $q \in Q$, $w \in \Sigma^*$, (q, w) is a configuration
- The binary relation step on configurations is defined by:
 $$(q, aw) \vdash_M (p, w)$$
 if $(q, a, p) \in \Delta$
- The reflexive transitive closure of \vdash_M is denoted by \vdash^*_M
- The language accepted by M
 $$L(M) = \{ w \mid w \in \Sigma^* \mid \exists q_f \in F : (q_0, w) \vdash^*_M (q_f, \varepsilon) \}$$
From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R, there exists an NFA M, such that $L(M) = R$.
(ii) For every regular expression r, there exists an NFA that accepts the regular language defined by r.
A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression r
- Construct an “NFA” with one final state, q_f, and the transition

$$ q_0 \xrightarrow{r} q_f $$

- Decompose r and develop the NFA according to the following rules

$$ q \xrightarrow{r_1} p \quad \Rightarrow \quad q \xrightarrow{r_1} p $$

$$ q \xrightarrow{r_1 r_2} p \quad \Rightarrow \quad q \xrightarrow{r_1} q_1 \xrightarrow{r_2} p $$

$$ q \xrightarrow{r^*} p \quad \Rightarrow \quad q \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{\varepsilon} p $$

until only transitions under single characters and ε remain.
Examples

- $a(a\mid0)^* \text{ over } \Sigma = \{a, 0\}$

- Identifier

- String
Nondeterminism

- Several transitions may be possible under the same character in a given state.
- \(\varepsilon \)-moves (next character is not read) may “compete” with non-\(\varepsilon \)-moves.
- Deterministic simulation requires “backtracking”
Deterministic Finite Automaton (DFA)

- No ε-transitions
- At most one transition from every state under a given character, i.e. for every $q \in Q$, $a \in \Sigma$,

$$|\{q' \mid (q, a, q') \in \Delta\}| \leq 1$$
From Non-Deterministic to Deterministic Automata

Theorem
For every NFA, \(M = \langle \Sigma, Q, \Delta, q_0, F \rangle \) there exists a DFA, \(M' = \langle \Sigma, Q', \delta, q_0', F' \rangle \) such that \(L(M) = L(M') \).

A Scheme of a Constructive Proof (Powerset Construction)
Construct a DFA whose states are sets of states of the NFA. The DFA simulates all possible transition paths under an input word in parallel.

Set of new states
\[
\{ \{q_1, \ldots, q_n\} \mid n \geq 1 \land \exists w \in \Sigma^* : (q_0, w) \vdash^*_M (q_i, \varepsilon) \}\]
The Construction Algorithm

Used in the construction: the set of ε-Successors,
\[\varepsilon-SS(q) = \{ p \mid (q, \varepsilon) \vdash^*_{M} (p, \varepsilon) \} \]

- Starts with $q'_0 = \varepsilon-SS(q_0)$ as the initial DFA state.
- Iteratively creates more states and more transitions.
- For each DFA state $S \subseteq Q$ already constructed and character $a \in \Sigma$,
 \[\delta(S, a) = \bigcup_{q \in S} \bigcup_{(q, a, p) \in \Delta} \varepsilon-SS(p) \]
 if non-empty
 - add new state $\delta(S, a)$ if not previously constructed;
 - add transition from S to $\delta(S, a)$.
- A DFA state S is accepting (in F') if there exists $q \in S$ such that $q \in F$
Example: $a(a|0)^*$
DFA minimization

DFA need not have minimal size, i.e. minimal number of states and transitions.

q and p are undistinguishable iff

for all words w $(q, w) \vdash^*_M$ and $(p, w) \vdash^*_M$ lead into either F' or $Q' - F'$.

After termination merge undistinguishable states.
DFA minimization algorithm

- Input a DFA $M = \langle \Sigma, Q, \delta, q_0, F \rangle$
- Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.
- Start with the partition $\Pi = \{F, Q - F\}$
- Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_1, q_2 \in S$ and $a \in \Sigma$ such that
 - $\delta(q_1, a) \in S_1$ and $\delta(q_2, a) \in S_2$ and $S_1 \neq S_2$
- Merge sets of undistinguishable states into a single state.
Example: $a(a|0)^*$
A Language for specifying lexical analyzers

\[(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*\]
\[(\varepsilon.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*)\]
\[(\varepsilon|E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))]\]
Descriptional Comfort

Character Classes:

Identical meaning for the DFA (exceptions!), e.g.,
\[le = a - z \ A - Z \]
\[di = 0 - 9 \]
Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:

Identical meaning for the parser, e.g.,
Identifiers
Comparison operators
Strings
Descriptional Comfort cont’d

Sequences of regular definitions:

\[A_1 = R_1 \]
\[A_2 = R_2 \]
\[\ldots \]
\[A_n = R_n \]
Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides
2. Create an NFA for every regular expression separately;
3. Merge all the NFAs using ε transitions from the start state;
4. Construct a DFA;
5. Minimize starting with partition

$$\{F_1, F_2, \ldots, F_n, Q - \bigcup_{i=1}^{n} F_i\}$$
Flex Specification

Definitions
%%%
Rules
%%%
C-Routines
Lexical Analysis

Flex Example

```c
{%
extern int line_number;
extern float atof(char *);
%}

DIG    [0-9]
LET    [a-zA-Z]
%

[=#<>+-*]  { return(*yytext); }
({DIG}+)  { yylval.intc = atoi(yytext); return(301); }
({DIG}.*{DIG}+(E(\+|\-)?{DIG}+)?)
    {yylval.realc = atof(yytext); return(302); }
"(\\.|[\^"\\])\"  { strcpy(yylval.strc, yytext); return(303); }
"<="     { return(304); }
:=        { return(305); }
\./.      { return(306); }
```
Lexical Analysis

Flex Example cont’d

ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); }
{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);
 return(310); }
[\t]+ { /* White space */ }
\n { line_number++; }
. { fprintf(stderr,
 "WARNING: Symbol '%c' is illegal, ignored!\n", *yytext);}
%%