Attribute Dependencies

- Wilhelm/Maurer: Compiler Design, Chapter 9 – Reinhard Wilhelm
 Universität des Saarlandes
 wilhelm@cs.uni-sb.de
Attribute Dependencies

Attribute dependencies

- relate attribute occurrences (instances),
- describe which attribute occurrences (instances) depend on which other occurrences (instances),
- constrain the order of attribute evaluation,
- are input to evaluator generators.
Types of Dependencies

Local dependencies between attribute occurrences in a production according to a semantic rule,

Individual dependency graph of attribute instances of a tree obtained by pasting together local dependency graphs of productions (instances)

Global dependencies between attributes of a non-terminal induced by individual dependency graphs.

- An individual dependency graph may contain a cycle. Attribute instances on this cycle cannot be evaluated.
- AG is noncircular if none of its individual dependency graphs contains a cycle.

Theorem

AG is well-formed iff it is noncircular.
Local Dependencies

- **production local dependency relation**
 \[Dp(p) \subseteq O(p) \times O(p) : \]
 \[b_j \ Dp(p) \ a_i \quad \text{iff} \quad a_i = f_{p,a,i}(..., b_j, ...) \]

- Attribute occurrence \(a_i \) at \(X_i \) depends on \(b_j \) at \(X_j \) iff \(b_j \) is argument in the semantic rule of \(a_i \).

- Representation of this relation by its directed graph, the **production local dependency graph**, also denoted by \(Dp(p) \).
Local Dependencies in the Scopes-AG

1: e-env ok
 □ Stms □
 □ Stm □

2: e-env ok
 □ Stms □
 □ Stm □
 □ Decl □
 □ it-env □
 □ st-env □

4: e-env it-env st-env ok
 □ Decl □
 □ Decl □
 □ Decl □

5: e-env it-env st-env ok
 □ Decl □
 □ Stms □
 □ Id □
 □ Ptype □

6: e-env ok
 □ Stm □
 □ Id □
 □ Args □
Attribute Dependencies

Individual Dependency Graph
Attribute Dependencies

Individual Dependency Graphs
A First Attribute Evaluator

Principle:

1. Topological sorting of the individual dependency graph of a tree.
2. Attribute evaluation then done in the resulting order.

Topological sorting

- takes a partial order (an acyclic graph),
- produces a total order compatible with the partial order,
- i.e., resulting total order, an evaluation order.
Topological sorting

- Keeps a set of candidates to be inserted next into the total order, initialized with the minimal elements of the order,
- In each step
 - Selects a candidate and inserts it into the total order,
 - Removes it from the set of candidates,
 - Removes it from the partial order,
 - Makes all elements only depending on this candidate to candidates,
- Until the set of candidates is empty.
- Partial order nonempty \Rightarrow graph acyclic.

Can serve as a dynamic test for well formedness.