
Attribute Evaluation
Attribute Evaluation� Wilhelm/Maurer: Compiler Design, Chapter 9 �Reinhard WilhelmUniversität des Saarlandeswilhelm�s.uni-sb.de

Attribute EvaluationIssues
◮ Separation intoStrategy phase: Evaluation order is determined,Evaluation phase: Evaluation proper of the attribute instanesdireted by this evaluation strategy.
◮ Complexity ofGeneration: Runtime in terms of AG size,Evaluation: Size of evaluator, time optimality of evaluation.
◮ AG sublasses, hierarhy:Expressivity,Membership test,Generation algorithms,Complexity of generation and evaluation,
◮ Implementation issues.

Attribute EvaluationAttribute EvaluationStrategy phase: Determines the evaluation order, many approahes:
◮ Topologial sorting of the individual dependenygraph as in the dynami evaluator,
◮ Fully predetermined at generation time, i.e. thereis one �xed evaluation program for eahprodution,pass oriented: Attributes are assoiated withpasses over the tree,visit oriented: Attributes are assoiated withvisits to prodution (instanes),
◮ Seletion between di�erent preomputedevaluation orders, i.e. several preomputedevaluation programs for eah prodution.

Attribute Evaluation
Evaluation phase: Alternatives,data driven: Attribute instanes are evaluated whenarguments are available,demand driven: demand for attribute values isreursively propagated, values arereturned.Implementation issues: Storage of attribute values:

◮ In the tree,
◮ On staks,
◮ In global variables (shared by several instanes ofone attribute).

Attribute EvaluationAttribute Grammar ClassesMembership test:Dynami: Evaluation for all trees is possible by a de�ningevaluator,Stati: Dependenies of the AG satisfy a de�ning riterium.Example: Nonirular AGs,dynami riterium: de�ning evaluator is the dynami evaluator,AG is nonirular i� topologial sorting is possible forall individual dependeny graphs,stati riterium: no yli graphs result from pasting lower har.graphs onto loal graphs.X�AG lass of AGs with property X .NC-AG lass of nonirular AGs.ANC-AG lass of absolutely nonirular AGs.

Attribute EvaluationStati Membership TestsFor all produtions p:
◮ Paste graphs for X0,X1, . . . ,Xnp onto Dp(p),
◮ Chek for yles.
◮ Graphs (to be pasted) for smaller AG�lasses

◮ ontain more edges, i.e. lead to yles (and rejetion) moreoften,
◮ onstrain more the evaluation strategy.

Attribute EvaluationComplexityMembership test:
◮ NC�AG: exponential,
◮ often same as that of evaluator generation,i.e. omputation of global dependeniesdominates evaluator generation.Evaluation, time:
◮ no. of appliation of semanti rules plus
◮ tree walking e�ort plus
◮ onstrution of evaluation order.
◮ Optimality: at most one evaluation of eahattribute instane + ?

Attribute Evaluation
Evaluation, spae:(stati) size of the evaluator as funtion of the size ofthe AG,(dynami) spae for attribute values and trees et.

Attribute EvaluationSpae Complexity of the Dynami EvaluatorConstrution of evaluation order uses Dt(t)Letmaxattr max. no. of attributes per non�terminal,maxnont be max. no. of non�terminals in prodution right sides.
|Dp(p)| ≤ ((maxnont + 1) × 12maxattr)2Let ap be no. of prod. appliations in tree t,

|Dt(t)| ≤ ap × ((maxnont + 1) × 12maxattr)2Spae omplexity for topol. sorting is O(maxattr2)

Attribute EvaluationDynami Spae
1: 2: 3:S

X X
X

a
XDemand driven evaluation,

◮ attribute values on a stak:needs a stak of depth O(height(t)) and t.Time omplexity O(4height(t)) or O(2|V (t)|).
◮ atttribute values in the tree:Spae omplexity O(|V (t)| + |t|) spae and O(|V (t)|) time.

Attribute EvaluationVisit Oriented Evaluation
◮ Attribute (instane) evaluation happens during a sequene ofvisits to prodution instanes,
◮ a visit

◮ starts by desending from the upper ontext,
◮ reursively visiting subtrees, and
◮ ends by returning to the upper ontext.

◮ a (statially omputed) visit sequene desribes theevaluation of all attr. o. of a prodution,
◮ there may be one or more visit sequenes to a prodution,one: desribes evaluation for all instanes of theprodution in all trees,several: the right visit sequene for a prodution instanehas to be determined from the ontext,

Attribute Evaluation
◮ the visit sequenes (of produtions) are omputed from orderedpartitions of the non�terminals ourring in the produtions,
◮ an ordered partition for X splits Attr(X) into a sequene ofsubsets assoiated with onseutive visits,
◮ ordered partitions for X are omputed from a total order onAttr(X),
◮ these total orders are omputed from exat or approximateglobal dependeny relations.

Attribute EvaluationTotal Orders on Attr(X)

◮ The �rst visit oriented evaluator is generated from a set oftotal orders {TX}X∈VN .
◮ A total order TX on Attr(X) �xes the order of evaluation onAttr(X),
◮ Total orders for di�erent non�terminals (nodes in the tree)annot be hosen independently, i.e., total orders at di�erentnodes may be inompatible,X → YInh(X) = Inh(Y) = {a, b},Syn(X) = Syn(Y) = { , d}TX = a b d ,TY = a d b

Attribute Evaluation
◮ An evaluation order T (t) for a tree t indues at all nodes ntotal orders Tn on attributes, iffor all a, b ∈ Attr(symb(n)) a Tn b ⇔ an T (t) bn ,

◮ Finding a set {TX}X∈VN of total orders as indued by trees isan NP�omplete problem.

Attribute Evaluationl�Ordered Attribute GrammarsAG is l�ordered (in l�ordered�AG) by a family of total orders
{TX}X∈VN ifdynami riterium: all trees t have an evaluation order T (t) whihindues TX at nodes labelled with X ,i.e. the dynami evaluator an evaluate the attributeinstanes in all trees in the order given by the TX ,stati riterium: Dp(p)[Tp[0],Tp[1], . . . ,Tp[np]] is ayli for allprodutions p.Testing for membership is as omplex as onstruting the totalorders, namely NP�omplete.

Attribute EvaluationOrdered Attribute GrammarsSubset of the l�ordered�AG.Use a polynomial heuristis to ompute total orders {TX}X∈VNStep 1: Compute partial orders {RX}X∈VN , the smallest relationssatisfying aj Dp(p)[RX0 ,RX1 , . . . ,RXnp]+ bj ⇒ a RXj bstarting with RX = IO (X) ∪OI (X),while hanges do1. Paste the RX to the loal dependeny graphs,2. Chek whether new edges result for a non�terminal,3. Add these new edges to the RX .This proess terminates, sine there are only �nitely manyattributes.

Attribute EvaluationOrdered Attribute Grammars ont'dStep 2: Compute the total orders {TX } from the {RX } bypartitioning Attr(X) into an alternating sequene ι1σ1ι2σ2 . . . ιkσkof sets of inherited and synthesized attributes suh that
◮ ιj is (a total order on) the maximal set of the inheritedattributes whih an be evaluated when the attributes in

ι1σ1ι2σ2 . . . ιj−1σj−1 are evaluated,
◮ σj is (a total order on) the maximal set of synthesizedattributes whih an be evaluated when the attributes in the

ι1σ1ι2σ2 . . . ιj−1σj−1 are evaluated.AG is ordered (is in ordered-AG),if the relations {RX }X∈VN are all ayli, andif for all produtions p:Dp(p)[TX0 ,TX1 , . . . ,TXnp] is ayli,where the {TX}X∈VN are omputed as desribed above.

Attribute EvaluationEvaluator Generation for Ordered AGsGiven: total orders TX on Attr(X),1. Split TX into an ordered partition of subsets of Attr(X) to beevaluated during the same visit,2. Loal dependenies onstrain how the visits at thenon�terminals in a prodution may follow eah other:From the ordered partitions of X0,X1, . . . ,Xnp and the loaldependeny graph of p generate a visit sequene for p,3. From the set of visit sequenes generate a reursive visitoriented evaluator rvE, a program performing the visitsreursively traversing the trees.

Attribute EvaluationOrdered Partitions in the sopes�AGAttr(Dels)= Attr(Del)= {it-env, e-env, st-env, ok}The (only possible) total order is:it-env st-env e-env okSplitting it into visits:1. downward visit it-env1. upward visit st-env2. downward visit e-env2. upward visit okOrdered partition:it-env st-env e-env okAttr(Stms) = Attr(Stm) = {e-env, ok}Total order: e-env ok

Attribute EvaluationOrdered Partitions in the sopes�AG ont'd
Splitting it into visits:1. downward visit e-env1. upward visit ok

Attribute EvaluationOrdered PartitionsT total order on Attr(X) seen as a word over Attr(X).An ordered partition for T is a dissetion of T into a sequene
ι1σ1ι2σ2 . . . ιkσk where

◮ ιj ∈ Inh(X)∗, σj ∈ Syn(X)∗ for all 1 ≤ j ≤ k ,
◮ ιj 6= ε for all 1 < j ≤ k ,
◮ σj 6= ε for all 1 ≤ j < k
◮ ιj is the j-th downward visit,
◮ σj the j-th upward visit,
◮ ιjσj the j-th visit.
◮ upper indies on ι and σ are visit numbers.
◮ the onditions ιj 6= ε and σj 6= ε guarantee maximal length ofthe substrings.

Attribute EvaluationVisit Sequenes for the Sopes-AG
2:

Dels
Stm

Stmsst-env
oke-envDp(2)[TStm,TDels ,TStms]

e-env it-env e-env okok

Attribute Evaluation
A visit to prodution 21. starts with a downward visit from Stm, then2. visits the Dels�subtree the �rst time, then either

◮ visits the Dels�subtree the seond time andthen the Stms�subtree, or
◮ visits the Stms�subtree and thenthe Dels�subtree the seond time,3. returns to the parent.

Attribute EvaluationVisit SequenesLet Ti be a total order on Attr(Xi) suh thatD = Dp(p)[T0,T1, . . . ,Tnp] is ayli.Let ι1j σ1j . . . ι
kjj σ

kjj be the ord. partitions of Tj .A visit sequene for p and T0,T1, . . . ,Tnp is an evaluation orderfor D of the following form:V (p;T0,T1, . . . ,Tnp) = ι10δ1σ10 ι20δ2σ20 . . . ιk0δkσk0and δl is a sequene of visits ιmj σmj at right side non�terminals Xj .Thus, a visit sequene onsists of a sequene of triples1. a downward visit ιl0 to X0,2. a sequene δl of visits Xj(1 ≤ j ≤ np), and3. an upwards visit σl0 to X0.

Attribute EvaluationAlgorithm Visit Sequene
Input: loal dependeny graph Dp(p),total orders {Ti}0≤i≤np on {Attr(Xi)})0≤i≤np andtheir ordered partitions.Output: a visit sequene V (p;T0,T1, . . . ,Tnp)

Attribute EvaluationMethod: (1) onstrut a visit graph �D fromD = Dp(p)[T0,T1, . . . ,Tnp]
◮ its verties are:

◮ ιrj σrj (1 ≤ j ≤ np), ιrj σrj is the r -thvisit of Xj (on the right side)
◮ σl0ιl+10 (1 ≤ l < k0) (visit at parent),and
◮ ι10 und σk00 �rst downwards fromresp. last upwards visit to parent;

◮ there is an edge from x to y in �D,if there are attribute ourrenes aiin x and bj in y with ai D bj .(2) Construt V (p;T0,T1, . . . ,Tnp) as anevaluation order for �D, starting with ι10and ending with σk00 .

Attribute EvaluationExeuting Algorithm Visit Sequene
Stms.e-envStms.okDels.e-envDels.it-ok

D̃ = Stm.e-env
Dels.it-envDels.st-env

Stm.ok
One visit sequene is:Stms.e-env Dels.it-env Dels.st-env Dels.e-env Dels.okStms.e-env Stms.ok Stm.ok

Attribute EvaluationReursive Visit Oriented Evaluator
◮ Evaluator as a program,
◮ Reursively traverses the trees,
◮ no. of visits to node n = length of ordered partition ofsymb(n),
◮ At eah prodution instane: exeutes the visits as indiated bythe visit sequene.

Attribute EvaluationThe reursive visit oriented evaluator, rvEprogram rvE;pro visit_1(n : node);...pro visit_i(n : node);beginase prod(n) of...p : Vi (p)...end aseend...beginvisit_1(ε)endNotation:Vi (p) program fragment for the i�th visit at p.

Attribute Evaluation
Let ιi0ιi1j1σi1j1 . . . ι

iljlσiljl σi0 desribe the i-th visit.The following ase-omponent Vi(p) is onstruted:eval (ιnj1); visit_i1(nj1);eval (ιnj2); visit_i2(nj2);...eval (ιnjl); visit_il(njl);eval (σi0)Notation:eval α is the sequene of semanti rules for the attribute ourrenes in α.

Attribute EvaluationrvE for the Sopes AGprogram rvE_sopes;pro visit_1(n : node);beginase prod(n) of...2 : begineval(it-envn1); visit_1(n1);eval(e-envn1); visit_2(n1);eval(e-envn2); visit_1(n2);eval(okn);end4 : begineval(it-envn1); visit_1(n1);eval(it-envn2); visit_1(n2);eval(st-envn);end...end aseend ;

Attribute Evaluation
pro visit_2(n : node);beginase prod(n) of...2 : begineval(e-envn1); visit_2(n1);eval(e-envn2); visit_2(n2);eval(okn);end...end aseend ;beginvisit_1(ε)end .

Attribute EvaluationThe reursive visit oriented evaluator, rvEprogram rvE;pro visit_1(n : node);...pro visit_i(n : node);beginase vs(n) of...V (p;T0,T1, . . . ,Tnp) : Vi (p;T0,T1, . . . ,Tnp)...end aseend...beginvisit_1(ε)endNotation:Vi (p) program fragment for the i�th visit at p.

Attribute EvaluationParser Direted Attribute EvaluationMethod:
◮ Parser ations trigger attribute evaluation,
◮ Attribute values on a stak,
◮ No tree built.Restritions:
◮ Only �one pass� dependenies,
◮ �Horizontal� dependenies must orrespond to parsingdiretion, i.e. no right-to-left dependenies,
◮ Inherited attributes and bottom up�parsing?

Attribute EvaluationL�Attributed Grammars
◮ Parsers read/expand/redue from left to right,
◮ Cannot trigger atttribute evaluation along right-to-leftdependenies,

Xi Xj Xnp
X0

X1Right-to-Left Dependeny

Attribute EvaluationL�AG
◮ Superlass of all AGs with parser direted evaluation,
◮ Attributes an be evaluated in one left-to-right traversal of thetree,
◮ S�AG allow only synthesized attributes

◮ sublass of L�AG,
◮ �ts bottom up parsing, e.g. BISON

Attribute EvaluationL�AG, De�ning Evaluatorprogram L-AE;pro visit (n : node)ase prod (n) of...p : begineval (Inh (X1)); visit (n1);eval (Inh (X2)); visit (n2);...eval (Inh (Xnp)); visit (nnp);eval (Syn (X0));end ;...endaseend ;beginvisit(ε) (∗Start at root; inh. attr. of the root,if existing, must have given values∗)end .

Attribute EvaluationL�AG De�nitiondynami riterium: all attributes instanes must be evluable by thede�ning interpreter,stati riterium: �no right-to-left dependenies�,formally for eah p : X0 → X1 . . .Xnpand eah semanti rule ai = fp,a,i(b1j1 , . . . , bkjk):a ∈ Inh(Xi) and 1 ≤ i ≤ np, implies jl < i for all l
(1 ≤ l ≤ k),inherited attributes on the right side may only dependon

◮ inherited attributes of the left side and
◮ synthesized attributes on the right side ourring�before� them.

Attribute EvaluationShort-Ciruit Evaluation of Boolean ExpressionsThe C language standard is very onsequent about the order ofevaluation of expressions:
◮ the order is unde�ned for most operators
◮ the order is left-to-right for && , ||, and ,.
◮ evaluation of Boolean expressions formed with && , ||terminates as soon as the value of the whole (sub-)expressionis determined, short-iruit evaluation.The following attribute grammar desribes optimal ode generationfor short-iruit evaluation.

Attribute Evaluationattribute grammar BoolExp
nonterminals IFSTAT, STATS, E, T, F;attributes inh tsu, fsu with E,T,F domain string;syn jond with E,T,F domain bool;syn ode with IFSTAT, E,T,F domain string;

Attribute EvaluationrulesIFSTAT → if E then STATS else STATS �E.tsu = tE.fsu = eIFSTAT.ode = E.ode ++ genjump (not E.jond, e) ++t: ++ STATS1.ode ++ genujump (f) ++ e: ++ STATS2.ode ++ f:E → TE → E or TE1.fsu = tE0.jond = T.jondE0.ode = E1.ode ++ genjump (E1.jond, E0.tsu) ++ t: ++ T.ode T → FT → T and FT1.tsu = fT0.jond = F.jondT0.ode = T1.ode ++ genjump (not T1.jond, T0.fsu) ++ f: ++ F.odeF → (E)F → not FF1.tsu = F0.fsuF1.fsu = F0.tsuF0.jond = not F1.jondF → idF.jond = trueF.ode = LOAD id.identi�erAG BoolExp is in L�AG.

Attribute EvaluationParser Direted EvaluationThe neessary funtions for attribute evaluation:1. eval(Inh(X)) when starting to analyze a word for X ,2. eval(Syn(X)) after �nishing to analyze a word for X ,i.e. when reduing to X ,3. get(Syn(X)) when reading a terminal X .Can be triggered by an LL�parser1. upon expansion,2. upon redution,3. upon reading.An AG in L�AG is LL�AG if the underlying CFG is LL-grammar.AG BoolExp is not in LL�AG, sine the underlying CFG is leftreursive.

Attribute EvaluationImplementation of LL�Attributed GrammarsFor the assignment of stak addresses we list the sets Attr(X).LInh(X) List of inherited attributes of X .LSyn(X) List of synthesized attributes of X .Two Staks,
◮ Parse stak, PS,
◮ Attribute stak, AS.Invariant(PS,AS):Contents(PS) = [A1 → α1.β1] [A2 → α2.β2] . . . [An → αn.βn]

⇒ ontents(AS) =values(LInh(A1) LSyn(α1) LInh(A2) LSyn(α2) . . . LInh(An)LSyn(αn))

Attribute EvaluationStak Situations
PS

AS

PS

PS

AS

AS

before after

before

before

after

after

[B → .γ]

Redution by B → γ

Reading a terminal symbol a
Expansion of a non�terminal B

LInh(A)

LInh(A)

LInh(A)

[A → α.Bβ]

[A → α.aβ]

[A → α.Bβ] [A → α.Bβ]LSyn(α) LInh(A) LSyn(α) LInh(B)

LSyn(α) LSyn(α)LInh(A) LSyn(a)
LInh(A) LSyn(α) LSyn(B)LSyn(γ)LInh(B)LSyn(α)

[A → αa.β]

[A → αB.β][B → γ.]

Attribute EvaluationLR�Parser Direted Attribute Evaluation
◮ Calls to semati rules triggered by redutions,
◮ Su�es for S�attributed grammars,
◮ For inherited attributes: Grammar transformation introdues�trigger non�terminals�.Trigger non�terminals N
◮ have one prodution N → ε,
◮ are inserted in right prodution sides before a non�terminalwith inherited attributes,
◮ this may hange the grammar properties, e.g. LR(k),
◮ redution to N triggers the evaluation of these attributes,AG is LR�Attributed (is in LR�AG) if the underlying CFG of thetransformed AG is LR.AG BoolExp is not LR�attributed, i.e. the transformation makes theunderlying CFG non�LR.

Attribute EvaluationLoal Dependenies in the Sopes-AG
Stms1:

Stms Stm

oke-env

2:

Decls

Stm

Stms

e-env ok

it-env st-env

4: Decls

Decls Decl

st-env okit-enve-env

5: Decl

Id StmsPtype

st-env oke-env it-env

6: Stm

Id Args

e-env ok

Attribute EvaluationGeneration Time � Evaluation Time
Gen. Time Eval. Timetot. orders TX on Attr(X) tree t mit {Tn}n∈nodes (t)for all X ∈ VN prod(n) = p, (T0,T1, . . . ,Tnp)

↓ ⇓ordered partition for Attr(X) B(p;Tn0,Tn1, . . . ,Tnnp)
↓visit sequenes B(p;T0,T1, . . . ,Tnp) :

:∨for p ∈ P , Ti tot. order on Attr (p[i]) → rbA, reursive visit-oriented evaluatorB → A stands for � A omputed from B at gen. time�,A ⇒ B stands for � A uniquely determines B �,A · · ·> B stands for � A is used in B �.

