Attribute Grammars

- Wilhelm/Maurer: Compiler Design, Chapter 9 – Reinhard Wilhelm
 Universität des Saarlandes
 wilhelm@cs.uni-sb.de
Attribute Grammars

Attributes: containers for static semantic (non-context–free syntactic) information,

Directions: attributes

- **inherit** information from the (upper) context,
- **synthesize** information from information in subtrees,

Semantic rules: define computation of attribute values.
Attributes as Carriers of Context Information

Inherited

Synthesized
Example Grammar: Scoping

Describes nested scopes;

- a statement may be a block, consisting of a declaration apart followed by a statement part,
- declaration parts consist of lists of procedure declarations,
- procedures, declared later in a list, may be called from within procedures declared earlier.

attribute grammar Scopes:
nonterminals Stms, Stm, Decls, Decl, Id, Args, Ptype;
domain Env = String → Types;
attributes syn ok with Decls, Decl, Stms, Stm domain Bool;
inh e-env with Stms, Stm, Decls, Decl domain Env;
inh it-env with Decls, Decl domain Env;
syn st-env with Decls, Decl domain Env;
syn name with Id domain String;
syn type with Ptype, Args domain Types;
ok is true,

- if all used identifiers are declared, and
- if there are no multiple declarations of one identifier in the same scope.

it-env, st-env are “temporary environments”, in which declarative information is collected.

A check for double declarations is made while collecting local declarations in it-env.

e-env is the “effective” environment, in which procedure calls are type checked.

For each nested scope, the effective environment is obtained by over-writing the external effective environment with the locally constructed environment.
rules
0 : \textit{Stms} \rightarrow \textit{Stm}
1 : \textit{Stms} \rightarrow \textit{Stms} ; \textit{Stm}
 \text{Stms}_0.ok = \text{Stms}_1.ok \text{ and } \textit{Stm}.ok
2 : \textit{Stm} \rightarrow \textbf{begin} \textit{Decls} ; \textit{Stms} \textbf{end}
 \text{Decls}.it-env = \emptyset
 \text{Stms}.e-env = \text{Stm}.e-env + \text{Decls}.st-env
 \text{Decls}.e-env = \text{Stm}.e-env + \text{Decls}.st-env
 \textit{Stm}.ok = \text{Decls}.ok \text{ and } \text{Stms}.ok
3 : \textit{Decls} \rightarrow \textit{Decl}
4 : \textit{Decls} \rightarrow \textit{Decls} ; \textit{Decl}
 \text{Decls}_1.it-env = \text{Decls}_0.it-env
 \text{Decl}.it-env = \text{Decls}_1.st-env
 \text{Decls}_0.st-env = \text{Decl}.st-env
 \text{Decls}_0.ok = \text{Decls}_1.ok \text{ and } \text{Decl}.ok
5 : \textit{Decl} \rightarrow \textbf{proc} \textit{Id} : \textit{Ptype} \textbf{is} \textit{Stms}
 \text{Decl}.st-env = \text{Decl}.it-env + \{ \textit{Id}.name \mapsto \textit{Ptype}.type \}
 \text{Stms}.e-env = \text{Decl}.e-env
 \text{Decl}.ok = \text{undef}(\textit{Id}.name, \text{Decl}.it-env) \text{ and } \text{Stms}.ok
6 : \textit{Stm} \rightarrow \textbf{call} \textit{Id} (\textit{Args})
 \text{Stm}.ok = \text{def}(\textit{Id}.name, \text{Stm}.e-env) \text{ and }
 \text{check}(\textit{Args}.type, \text{Stm}.e-env(\textit{Id}.name))
Local Dependencies in the Scopes-AG
Attribute Grammars – Terminology

Let \(G = (V_N, V_T, P, S) \) be a CFG, the underlying CFG. The \(p \)-th production in \(P \) is written as
\[
p : X_0 \rightarrow X_1 \ldots X_{n_p},
\]
\(X_i \in V_N \cup V_T, 1 \leq i \leq n_p, X_0 \in V_N. \)

An attribute grammar (AG) over \(G \) consists of

- two disjoint sets \(\text{Inh} \) and \(\text{Syn} \) of inherited resp. synthesized attributes,
- an association of two sets \(\text{Inh}(X) \subseteq \text{Inh} \) and \(\text{Syn}(X) \subseteq \text{Syn} \) with each symbol in \(V_N \cup V_T; \)
 - \(\text{Attr}(X) = \text{Inh}(X) \cup \text{Syn}(X) \) set of all attributes of \(X; \)
 - \(a \in \text{Attr}(X_i) \) has an occurrence in production \(p \) at occurrence \(X_i \), written \(a_i. \)
 - \(O(p) \) is the set of all attribute occurrences in production \(p. \)
Attribute Grammars – Terminology cont’d

- the association of a **domain** D_a with each attribute a;
- a **semantic rule**

$$a_i = f_{p,a,i}(b_{j_1}^l, \ldots, b_{j_k}^l) \quad (0 \leq j_l \leq n_p) \quad (1 \leq l \leq k)$$

for each **defining occurrence** of an attribute, i.e.,
- $a \in Inh(X_i)$ for $1 \leq i \leq n_p$ or
- $a \in Syn(X_0)$ in each production p,

where $b_{j_l}^l \in Attr(X_{j_l})$ $(0 \leq j_l \leq n_p)$ $(1 \leq l \leq k)$.

$f_{p,a,i}$ is thus a function from $D_{b_1} \times \ldots \times D_{b_k}$ to D_a.
Attributes as Carriers of Context Information

Inherited

Synthesized
More Terminology

> Productions of the *underlying* CFG have **instances** in syntax trees.

> Node \(n \) labelled with \(X \in V_N \cup V_T \) has an **instance** \(a_n \) of attribute \(a \in Attr(X) \).

> Hence, there are

- **attributes** associated with non-terminals (and terminals),
- **attribute occurrences** in productions, and
- **attribute instances** at nodes of syntax trees.

> The semantic rule for a def. attribute occurrence in a production determines the values of all corresponding attribute instances in instances of the production.

> **Attribute Evaluation** is the process of computing the values of attribute instances in a tree using the semantic rules.
Attribute Occurrences and Attribute Instances

attribute occurrences
\[a_0, a_1 \]

attribute instances
\[a_n, a_{n1} \]

A production and one of its instances
The p–n–q Situation

Attribute evaluation at node \(n \) labelled \(X \) is determined by productions

\[
p \text{ } \text{applied at } parent(n) \text{ for the inherited attributes of } X \\
q \text{ } \text{applied at } n \text{ for the synthesized attributes of } X.
\]
Semantics of an Attribute Grammar

Let t be a syntax tree to AG G, $symb(n) \in V_N$, $prod(n)$ be the production applied at n. Attribute instance a_n of attribute $a \in Attr(symb(n))$ at n has to be given a value from D_a. Semantic rule $a_i = f_{p,a,i}(b^1_{j_1}, \ldots, b^k_{j_k})$ of $prod(n) = p$ induces the relation on the values of the attribute instances of the instance of $prod(n)$:

$$val(a_{ni}) = f_{p,a,i}(val(b^1_{nj_1}), \ldots, val(b^k_{nj_k}))$$

G induces a system of equations for t:

- variables are the attribute instances at the nodes of t,
- equations are defined by the above relation,
- recursion would in general not permit an evaluation of all attribute instances.
- AG, which never induces a recursive system of equations, is called well formed.
Normal Form

- Attribute occurrences a_i where $a \in \text{Lnh}(X_i)$ and $1 \leq i \leq n_p$ or $a \in \text{Syn}(X_0)$ are defining occurrences.
- All others are applied occurrences.
- AG is in normal form, if all arguments of semantic functions are applied occurrences.

Consequences of Normal Form:

- Semantic rules define values of def. occurrences in terms of appl. occurrences.
- Computation of the value of an attribute in one instance of a production (in a tree) requires the previous evaluation of an attribute in a neighbouring instance of a production.
- For later: Chains of attribute dependences inside a production have at most length one.
Short Circuit Evaluation of Boolean Expressions

The generated code:

- only load-instructions and conditional jumps;
- no instructions for **and**, **or** and **not**;
- subexpressions evaluated from left to right;
- for each (sub)expression, only the smallest subexpression is evaluated, which determines the value of the whole (sub)expression.
Code for the Boolean expression \((a \text{ and } b) \text{ or } \text{not } c\):

\begin{align*}
\text{LOAD } a \\
\text{JUMPF L1} & \quad \text{jump-on-false} \\
\text{LOAD } b \\
\text{JUMPT L2} & \quad \text{jump-on-true} \\
\text{L1:} & \quad \text{LOAD } c \\
\text{JUMPT L3} \\
\text{L2:} & \quad \text{Code for true–successor} \\
\text{L3:} & \quad \text{Code for false–successor}
\end{align*}
Attribute grammar **BoolExp** describes

- code generation for short circuit evaluation,
- label generation for subexpressions,
- transport of labels for true– and false–successors to primitive subexpressions translated into jumps.
Synthesized attribute $jcond$ computes the correlation of the values of an expression with that of its rightmost identifier x.

Value of $jcond$ at expression e

- **true**: The loaded value of x equals value of e,
- **false**: The loaded value of x is negation of value of e.

Means for code generation:
Instruction following **LOAD x** is conditional jump to true–successor

- **JUMPT** if $jcond = true$,
- **JUMPF** if $jcond = false$.
attribute grammar BoolExp

nonterminals IFSSTAT, STATS, E, T, F;

attributes inh tsucc, fsucc with E,T,F domain string;
syn jcond with E,T,F domain bool;
syn code with IFSSTAT, E,T,F domain string;
rules

IFSTAT \rightarrow if E then $STATS$ else $STATS$ fi

E.tsucc = t
E.fsucc = e

IFSTAT.code = E.code ++ genjump(\textbf{not} E.jcond, e) ++
t: ++ $STATS_1$.code ++ genujump(f) ++ e: ++ $STATS_2$.code ++ f:

$E \rightarrow T$

$E \rightarrow E$ or T

E_1.fsucc = t
E_0.jcond = T.jcond

E_0.code = E_1.code ++ genjump(E_1.jcond, E_0.tsucc) ++ t: ++ T.code

$T \rightarrow F$

$T \rightarrow T$ and F

T_1.tsucc = f
T_0.jcond = F.jcond

T_0.code = T_1.code ++ genjump(\textbf{not} T_1.jcond, T_0.fsucc) ++ f: ++ F.code

$F \rightarrow (E)$

$F \rightarrow \textbf{not} F$

F_1.tsucc = F_0.fsucc
F_1.fsucc = F_0.tsucc
F_0.jcond = \textbf{not} F_1.jcond

$F \rightarrow \textbf{id}$

F.jcond = true
F.code = LOAD id.identifier
Auxiliary functions:

\[
\text{genujump}(l) = \text{JUMP } | \\
\text{gencjump}(jc, l) = \text{if jc = true} \\
\text{then JUMPT } | \\
\text{else JUMPF } | \\
\text{fi}
\]