Principles of Program Analysis:

Data Flow Analysis

Transparencies based on Chapter 2 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.

Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.

Example Language

Syntax of While-programs
a = x| n|a1 op, as
;= true | false | not b | by Oopy bo | a1 Op, as

S = [z := a]’| [skip]‘ | S1;52 |
if [b]¢ then Si else S | while [b]¢ do S

Example: [z:=1]1;while [x>0]2 do ([z:=z*y]3: [x:=x-1]%)

Abstract syntax — parentheses are inserted to disambiguate the syntax

Building an “Abstract Flowchart”

Example: [z:=1];while [x>0]2 do ([z:=z*y]3; [x:=x-1]%)

|

() — 1 [Z:=1]1
() = {2} N
() = {1,2,3,4} [x>0)2)
YeS
() — {(172)7(273)7 [o]3
(3,4), (4,2)} =
() — {(271)7(274)7 [X:=X—1]4
(372)7(473)} ‘

Initial labels

(S) is the label of the first elementary block of S:

- Stmt — Lab

([z := a]¥) = ¢
([skip]®) = ¢
(51;52) = (S1)

(if [b]e then Sy else Sy) =
(while [b]¢ do S)

Example:

([z:=1]%;while [x>0]° do ([z:=z*y]>; [x:=x-1]%)) =1

Final labels

(S) is the set of labels of the last elementary blocks of S:

. Stmt — P(Lab)

([z :==al®) = {€
([skip]®) = {¢}
(51;82) = (52)
(if [b]¢ then Sy else So) = (51) U (S5)
(while [b])f do S) = {¢}

Example:

([z:=1]%;while [x>0]° do ([z:=z*y]3; [x:=x-1]%)) = {2}

Labels

(S) is the entire set of labels in the statement S:

: Stmt — P(Lab)

([:==dl") = {¢
([skip]) = {¢}
(S1;82) = (S1) U (52)
(if [b]¢ then Sy else S) = {¢} U (S51) U (S5)
(while [b]° do S) = {{}U (S)

Example

([z:=1]%; while [x>0]° do ([z:=z*y]3; [x:=x-1]%)) = {1,2,3,4}

Flows and reverse flows

(S) and (S) are representations of how control flows in S:

, : Stmt — P(Lab x Lab)

([:==a]*) = 0
([skip]®) = 0
(S1,82) = (51)U (S2)

U {4, init(S2)) | £ € (S1)}
(S1) U (52)

U {(£,init(S1)), (£, init(S2))}
(S) Ui, init(S))}

U {0 |0 e (S)}

(if [b]* then S7 else S»)

(while [b]¢ do S)

(8) = {)] (,0) € flow(S)}

Elementary blocks

A statement consists of a set of elementary blocks

. Stmt — P(Blocks)

([x == al®)

([skip]®)

(S1:52)

(if [b]* then S7 else S5)
(while [b] do S)

{lx := a9
{[skip]‘}

(S1) U (S2)
{1} U (1)U (S2)
{3 U (S)

A statement S is label consistent if and only if any two elementary
statements [S1]¢ and [S5]¢ with the same label in S are equal: S; = S»

A statement where all labels are unique is automatically label consistent

Intraprocedural Analysis

Classical analyses:
e Available Expressions Analysis
e Reaching Definitions Analysis
e VVery Busy EXxpressions Analysis
e Live Variables Analysis

Derived analysis:

e Use-Definition and Definition-Use Analysis

Available Expressions Analysis

The aim of the Available Expressions Analysis is to determine

For each program point, which expressions must have already
been computed, and not later modified, on all paths to the pro-
gram point.

Example: point of interest

{
[x:=a+b]!; [y:=a*b]2; while [y>-]3 do ([a:=a+1]%; [x:=a+b]°)

T he analysis enables a transformation into

[x:= a+b]!; [y:=a*b]?; while [y>@]> do ([a:=a+1]?; [x:= a+b]°)

Available Expressions Analysis — the basic idea

N=X;N X5

T .= aqa

Kill
X = (N\{expressions with an z})

U :{subexpressions of a without an :c]:
gen

Available Expressions Analysis

kill and gen functions

Killag([z = a]®) = {d' € AExp, |z € FV(d')}
Killpg([skip]©) = @
Killpg([b]°) = 0
genpe([z 1= a]®) = {d’ € AExp(a) | z ¢ FV(a")}
genpe([skip]®) = 0
genae([b]Y) = AExp(b)

data flow equations: AE™

o @ if ¢ = (S*)
AEcntry(£) = { N{AE..; (&) | (£, ¢0) (Sx)} otherwise

AEe:m't(e) (AEentry(£>\K[//AE(B£)) U genAE(Be)
where B ¢ (Sy)

Example:

[x:=a+b]’; [y:=a*b]?; while [y>a+b] do ([a:=a+1]?; [x:=a+b]°)

kill and gen functions:

¢ Killpg (£) genpe(£)
1) {a+b}
2 0 {axb}
3 0 {a+b}
4 | {a+b, axb, a+l})

5 0 1atb}

Example (cont.):

[x:=a+b]’; [y:=a*b]?; while [y>a+b] do ([a:=a+1]?; [x:=a+b]°)

Equations:
AEentry(l) = 0
AEentry(z) = AE.;;1(1)
AEentry(?’) — AEexz’t(z) M AEea:z't(5)
AEentry(4) = AE.;;1(3)
AEentry(E’) = AE.;1(4)
AE@:J:Z'L‘(]-) — AEentry(l) U {a+b}

AEcir(2) = AEentry(Q) U {a*b}
AEe:m't(3) — AEentry(?’) U {a+b}
AE ;i (4) AEentry(4)\{a+ba a*b, a+1}
AEeajit(5) AEentry(S) U { }

Example (cont.):

[x:=a+b]!; [y:=a*b]?; while [y> a+b]3 do ([a:=a+1]%; [x:=a+b]°)

Largest solution:

AE entry (€> AEexit (£>
] {a+b}
{a+b} | {a+b, axb}
{a+b} {a+b}
{a+b}]
0 {a+b}

P WNRS

Why largest solution?

[z:=x+y]€;while [true]el do [Skip]él/

Equations: |
AEentry(e) = 0 [-- .]6
AEentry (E/) — AEe:m't (6) M AEe:m't (6”) i \

AEentTy (EH) = AEcp (6/) []E’ NO

AE ;i1 (£) = AEemﬁry (£) U {x+y} \yes
AE oyt (6/) = AE entry (6/) i
AE ezt (EH) — AEentry (6”) -]

After some simplification: AE.,;., (') = {x+y} N AE¢1, (€)

Two solutions to this equation: {x+y} and ()

Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine

For each program point, which assignments may have been made
and not overwritten, when program execution reaches this point
along some path.

Example: point of interest

J
[x:=5]1; [y:=1]%; while [x>1]3 do ([y:=x*y]%; [x:=x-1]°)

useful for definition-use chains and use-definition chains

Reaching Definitions Analysis — the basic idea

N = XU X5

[z 1= a]®

Kill

\ U {(z, 0}
gen

Reaching Definitions Analysis

kill and gen functions

killpp(lz = al®) = {(z,7)}
U{(x,) | BY is an assignment to z in Sk}
killkp([skip]?) = 0
Killgp([b])) = 0
genpp(le = a') = {(2,0)}
gengp([skip]®) = 0
gengp([b]) = 0

data flow equations: RD™

[{@?) |z € FV(S)} if € = in/t(S.)
RDentry (£) = {U{RDem(e')ue',e)e (S,)} otherwise

RDe:z:z't(e) (RDentry(g)\kH/RD(Be)) U genRD(BE)
where Bt ¢ (Sx)

Example:

[x:=5]1; [y:=1]%; while [x>1]3 do ([y:=x*y]%; [x:=x-1]°)

kill and gen functions:

Killrp(£) gengp(£)
{(x,7),(x,1),(x,5)} | {(x,1)}
{(y,7), (be), (v,4)} {(be)}
{(v,7),(y,2),(y,4)} | { }
{(x,7),(x,1),(x,5)} | {(x,5)}

OO WN RS

Example (cont.):

[x:=5]1; [y:=1]%; while [x>1]3 do ([y:=x*y]%; [x:=x-1]°)

Equations:

RDentry(l)

RDentry (2) =
RDentry (3) =

RDentry(4)
RDent'ry(S)

RDe:m't(]-)
RDexit(Q)
RDe:z:z't(?’)
RDea;z't(4)
RDem’t(S)

{=7),(,7)}
RDeazz't(l)

RDem’t(Q) U RDexz't(5)
RDe:m't(3)

RDe:L’z't(4)

(RDentry(l)\{<Xa 7),(x,1),(x,5)) U{(x,1)}
(RDentry(Q)\{(Ya 7),(y,2), (y, 4)}> U {(Y7 2)}
RDentry<3>

(RDentry(4)\{(Ya ?), (y,2), (¥, 4)}) U{ }
(RDentry (BIN{(x,7), (x,1), (x,5)}) U{(x,5)}

Example (cont.):

[x:=5]%; [y:=1]%; while [x>1]3 do ([y:=x*y]%; [x:=x-1]°)

Smallest solution:

RD entry (8)

RDexz't (6)

OOPP WN RS

{(x,7),(y,?)}
{(y,7),(x,1)}
{(x,1),(y,2),(y,4),(x,5)}
{(x,1),(y,2),(y,4),(x,5)}
{(x,1),(y,4),(x,5)}

{(y,7),(x,1)}
{(x,1),(y,2)}
{(x,1),(y,2),(y,4),(x,5)}
{(x,1),(y,4),(x,5)}
{(y,4),(x,5)}

Why smallest solution?

Equations:

RD entry (é)

RD entry (6/) —

RD entry (6/,)
RD exit (6)

RD exit (6,) —

RD exit (6”)

[z:=x+y]€;while [true]el do [Skip]él/

{(x,7),(y,7),(2,7)}
RDe:m't (6) U RDexz't (E//)
RDea:z't(el)

(RDentry(E) \ {(27 ?)})U{(z,@)}
RDentry(gl)
RDentry (6”)

]el NO

After some simplification: RD,;, (¢") = {(x,7), (y,7),(2,£)} URD 1, (£)

Many solutions to this equation: any superset of {(x,7), (y,?),(z,£)}

Very Busy Expressions Analysis

An expression is very busy at the exit from a label if, no matter what
path is taken from the label, the expression is always used before any of
the variables occurring in it are redefined.

The aim of the Very Busy Expressions Analysis is to determine

For each program point, which expressions must be very busy at
the exit from the point.

Example:
point of interest

Vif [a>b]! then ([x:=b-a]>: [y :=IE8BI]°) else ([y:=b-a]?; [x:=[E88I]°)

The analysis enables a transformation into

[t1:=b-a]4; [t2: |52l B;

if [a>b]! then ([x:=t1]?; [y:=t2]3) else ([y:=t1]%; [x:=t2]°)

Very Busy Expressions Analysis — the basic idea

Kill
(X\{all expressions with an z})

U {all subexpressions of a}
gen

N

T .= aqa

X = N7 N N>

Very Busy EXxpressions Analysis

kill and gen functions

kilhg([z = a]¥) = {d’ € AExp, |z € FV(d)}
kilhyg([skip]?) = 0
Killyg([b]Y) = 0
genyg([x := a]®) = AExp(a)
genyg([skip]t) = @
genyg([b]) = AExp(b)

data flow equations: VB™

(0 if £¢ (S%)
VBt (£) = { N{VB ey (&) | (¢, €) € (Sx)} otherwise

VBentry(£> (VBem’t(g)\ki//VB(Bg)) U genVB(Be)
where B e (S%)

Example:

if [a>b]! then ([x:=b-a]?; [y:=a—b]3) else ([y:=b—a]4; [x:=a-b]°)

kill and gen function:

¢ | kilhyg(£) | genyg(¥£)
1 0 0

2 0 {b-a}

3 0 {a-b}

4 0 {b-a}

5 0 {a-b}

Example (cont.):
if [a>b]! then ([x:=b-a]?; [y:=a-b]>) else ([y:=b-a]*; [x:=a-b]°)

Equations:

VBentry(l) VBemt(l)
VBentry(Q) = VB.;;1(2) U{b-a}
VBentry(:S) = {a-b}
VBentry(4) = VB, (4) U{b-a}
VBent'ry(S) {a-b}
VBea:it(l) VBentry(2> M VBentry(4)
VBt (2) = VBentry(3)
VBeit(3) = 0
VB it(4) = VBentry(5>
VBe:m't(S))

Example (cont.):

if [a>b]! then ([x:=b-a]?; [y:=a-b]3) else ([y:=b-a]*;[x:=a-b]°)

Largest solution:

¢ VB entry (£) VB cyit (£)
1|{a-b,b-a} | {a-b,b-a}
2 | {a-b,b-a} | {a-b}

3| {a-b} 0

4 | {a-b,b-a} | {a-b}

5| {a-b} 0

Why largest solution?

Equations:

VBentry (6)
VB entry (6,)
VB entry (6”)
VB yit (6)
VB eyt (ﬁ,)
VBt (6”)

After some simplifications: VB,,;:(¢) = VB,,;;(£) N {x+1}

Two solutions to this equation: {x+1} and ()

(while [x>1]¢ do [skip]®); [x:=x+1]""

VBem't (6)

VBea:z't (6/)

{x+1}

VB entry (6/) NnVB entry (6”)

VB entry (6)
0

no

Live Variables Analysis

A variable is live at the exit from a label if there is a path from the label
to a use of the variable that does not re-define the variable.

The aim of the Live Variables Analysis is to determine

For each program point, which variables may be live at the exit
from the point.

Example:
point of interest

J
[x :=2]1; [y:=4]2; [X:=1]3; (if [y>X]4 then [z:=y]5 else [z:=y*y]6); [X:=z]7
The analysis enables a transformation into

[y:=4]%; [x:=1]3; (if [y>x]* then [z:=y]> else [z:=y*y]®); [x:=z]’

Live Variables Analysis — the basic idea

U {a II variables of a}
gen

T .= aqa

X = N{UN>

T

Live Variables Analysis

kill and gen functions

Kily([z := a]*) = {z}
killy([skip]t) = @
Killpy([b]°) = 0
geny([z 1= al®) = FW(a)
genyy([skip]?) = 0
genpy([b]) = FV(b)

data flow equations: LV—

(0 if £¢ (S%)
l—vemt(e) — { U{I—Ventry<£,) | (6/76) c (S*)} otherwise

I—Ventry(e) — (Lvexit(g)\Ki//LV(Be))UgenLV(BE)
where B e (S4)

Example:

[x:=2]1; [y:=4]7; [x:=1]3; (if [y>x]* then [z:=y]° else [z:=y*y]®); [x:=z]"

kill and gen functions:

¢ | Killpy(£) | genpy(£)
1| {x} 0

21 Ay} 0

3 {x} 0

41 0 {x,y}
5| {z} {y}

6| {z} {v}

7] {x} 1z}

Example (cont.):

[x:=2]1; [y:=4]7; [x:=1]3; (if [y>x]* then [z:=y]° else [z:=y*y]®); [x:=z]"

Equations:

I—Ventry (1)

LV entry (2) =
LV entry (3) =
LV entry (4) =
I—Ventry (5) =

LV entry (6)
LV entry (7)

LV ezt (DN {x}

LV it (2)\ {y}

LV et (3)\{x}

LV it (4) U {x, v}
(LVerit (B)\{z}) U {y}
(LV ezt (6)\{z}) U {y}
{z}

LV exit (1)

LV exit (2) —
LV exit (3) —
LV exit (4) —

LV exit (5)
LV exit (6)
I—Vexz't (7)

LV entry (2)

LV entry (3)

LV entry (4)

LV entry (5) U I—Ventry (6)
LV entry (7)

LV entry (7)

0

Example (cont.):

[x:=2]1; [y:=4]7; [x:=1]3; (if [y>x]* then [z:=y]° else [z:=y*y]®); [x:=z]’

Smallest solution:

¢ I—Ventry (£) LV et (£)
1 0 0

2 0 {v}

3| Ay} {x, v}
41 A{x,y} {v}

5/ Ay} {z}

6 {y} {z}

7 {z})

Why smallest solution?

Equations:

I—Ventry (6)
LV entry (6/)
LV entry (6//)
LV et (@)
LV et (6/)
LV et (6//)

(while [x>1]¢ do [skip]®); [x:=x+1]""

LV i (£) U {x}
I—Ve:m't (ﬁ/)

1x}
I—Vem‘ry (6/) U I—Ventry (EN)

LV entry (6)
0

no

After some calculations: LV,,;;(¢¥) = LV .;;(£) U {x}

Many solutions to this equation: any superset of {x}

Derived Data Flow Information

e Use-Definition chains or ud chains:
each JUSE of a variable is linked to all assignments that reach it

[x:=0]1; [x:=3]%; (if [z=x]° then [z:=0]* else [z:=x]°); [y:=.]6; [x:=y+z]’

T |

e Definition-Use chains or du chains:

each _ to a variable is linked to all uses of it

[x:=0]"; [B:=3]%; (if [z=x]> then [z:=0]% else [z:=x]°); [y:=x]®; [x:=y+z]’

| | T |

ud chains
ud : Vary x Lab, — P(Laby)

given by

ud(z,?) = {¢|def(xz,0) N3 (4,0 € (Sx) A clear(z, 0”0}
U {7 | clear(x, init(Sx), ')}

where

e def(x,f) means that the block £ assigns a value to x

e clear(z,/,¢") means that none of the blocks on a path from ¢ to ¢
contains an assignments to = but that the block ¢ uses x (in a test
or on the right hand side of an assignment)

ud chains - an alternative definition

UD : Vary x Lab, — P(Laby)
is defined by:

UD(z,0) = {El | (z,) € RDentry(E)} if « € genLV(Bg)
’ otherwise

One can show that:

ud(z, £) = UD(z, £)

du chains
du : Var, x Laby — P(Laby)

given by
({0 def(z,£) N3 (4,07 € (S«) A clear(z, 2", 0"}
B if 0 *£ 7
duCe, &) =\ 1| clear(x, init(Sy),)}
\ if ¢ = 7
[£:=--]| — S — [=2)?

One can show that:

du(z,0) = {€| ¢ € ud(z,£)}

Example:

[x:=0]1; [x:=3]%; (if [z=x]> then [z:=0]* else [z:=x]°); [y:=x]°; [x:=y+z]’

ud(x,?) X y z du(z,?) X y z
1 0) 0 1 0 0 0
2 0 0 0 2 {3,5,6}))
3 {2} 0 {7} 3) 0 0
4 0 0 0 4 0) {7}
5 {2} 0 0 5) 0 {7}
6 {2} 0 0 6 0 {7} 0
7 0 {6} | {4,5} 7) 0 0
?) 0 {3}

T heoretical Properties

e Structural Operational Semantics

e Correctness of Live Variables Analysis

The Semantics

A state is a mapping from variables to integers:

o € State = Var — Z
The semantics of arithmetic and boolean expressions

A AExp — (State — Z) (no errors allowed)
B: BExp — (State — T) (no errors allowed)
The transitions of the semantics are of the form

(S,0) — o’ and (S,o) — (S o)

Transitions
([z := a]t, o) — o[z — Ala]lo]
([skip]e,a> — O

<S]_,O'> — <S/70/>
<Sl;3270-> — <S{|_;527O-,>

(S1,0) — o
(51;52,0) — (52,0%)

(if [b]¢ then Sy else Sp,0) — (S1,0) if B[[b]lo = true
(if [b]¢ then S else Sp,0) — (So,0) if B[[b]lc = false

(while [b]¢ do S,o) — ((S;while [b]¢ do S),0) if B[[b]lo = true
(while [b]f do S,0) — o if B[[b]lc = false

Example:
([y:=x]*; [z:=1]%; while [y>1]> do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0300)

—

—

—

([z:=1]%; while [y>1]> do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0330)
(while [y>1]® do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0331)

([z:=z*y]"; [y:=y-1]°;
while [y>1]> do ([z:=z*y]%; [y:=y-1]°); [y:=0]°, 0331)

— ([y:=y-1]°;while [y>1]> do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0333)
— (while [y>1]3 do ([z:=z*y]?; [y:=y-1]°); [y:=0]°, 0'303)
— ([zi=zxy]*; [y:=y-1]°>;

Ll

while [y>1]3 do ([z:=zxy]*; [y:=y-1]°); [y:=0]°, 0323)
([y:=y-1]°;while [y>1]> do ([z:=zxy]*; [y:=y-1]°); [y:=0]°, 0326)
(while [y>1]° do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, o316)
([y:=0]°,0316)

0306

Equations and Constraints

Equation system LV=(Sx):

| . 0 if ¢ ¢ (Sy)
Weait(£) 1= { ULV eniry () | (£,0) € Flow(S,)} otherwise
Vet () = (Vi (O\Killy (BY)) U geny (BY)
where B ¢ (Sy)

Constraint system LVE(Sy):

| 0 if ¢/ € (Sy%)
Lvexzt(e) D { U{I—Ventry(el) | (f/,f) c (S*)} otherwise

LV entry(0) D (LV it (O\Killy (BY)) U genyy (BY)
where Bt ¢ (Sy)

Each solution to the equation system LV=(S%) is also a solution to the
constraint system LVS(Sy).

Trivial.

The least solution to the equation system LV=(S«) is also the least
solution to the constraint system LVE(Sy).

Use Tarski's Theorem.

Proceed by contradiction. Suppose some LHS is strictly
greater than the RHS. Replace the LHS by the RHS in the solution.
Argue that you still have a solution. This establishes the desired con-
tradiction.

A solution /ive to the constraint system is preserved during computation

(S,01) — <S/70/1> — e = <S/T,O'/1/> —> (7’1”

= LV= = LV= = LV=

live live cee live

requires a lot of machinery — see the book.

Correctness Relation

g1~V 0o2

means that for all practical purposes the two states o1 and o5 are equal:
only the values of the live variables of V matters and here the two states
are equal.

Example:
Consider the statement [x:=y+z]¢
Let V1 = {y,z}. Then o1~y,00 means o1(y) = o2(y) Ao1(z) = 02(2)

Let Vo = {x}. Then o1~y,00 means o1(x) = o2(x)

The relation “~" is invariant under computation: the live variables for
the initial configuration remain live throughout the computation.

(S,01) = (S, {f’1> — o= (97 f{'1'> — o7
NV NV/ NV// NV///
(S, 05) — (S, 0’2> — e — (S”, 0’2’> — 0/2”
V = /iveentry((S)) V"= /iveentry((SU))
VI = //.Ve(gnmwy((Sl)) V= /iveefz;it((SH))
= //'vemt(é)

for some ¢ ¢ (S)

Monotone Frameworks

e Monotone and Distributive Frameworks
e Instances of Frameworks

e Constant Propagation Analysis

The Overall Pattern

Each of the four classical analyses take the form

: . L if/c E
Analysis,(£) = { LI{Analysis,(£") | (¢/,£) € F} otherwise
Analysise(£) = fo(Analysis,(£))
where

—|JisNor Y (and U is U or N),

— F' is either (Sx) or (Sx),

— E is {init(Sx)} or (Sx),

— 1 specifies the initial or final analysis information, and

— f; is the transfer function associated with Bt ¢ (Sx).

The Principle: forward versus backward

e The forward analyses have F to be flow(Sx) and then Analysis,
concerns entry conditions and Analysis, concerns exit conditions;
the equation system presupposes that Sx has isolated entries.

e The backward analyses have F to be flon'~(Sy) and then Analysis,
concerns exit conditions and Analysis, concerns entry conditions; the
equation system presupposes that S, has isolated exits.

The Principle: union versus intersecton

e When || is | we require the greatest sets that solve the equations
and we are able to detect properties satisfied by all execution paths
reaching (or leaving) the entry (or exit) of a label; the analysis is
called a must-analysis.

e When || is | we require the smallest sets that solve the equations and
we are able to detect properties satisfied by at least one execution
path to (or from) the entry (or exit) of a label; the analysis is called
a may-analysis.

Property Spaces

The property space, L, is used to represent the data flow information,
and the combination operator, ||. P(L) — L, is used to combine infor-
mation from different paths.

e [is a complete lattice, that is, a partially ordered set, (L,C), such
that each subset, Y, has a least upper bound, |]Y.

e [satisfies the Ascending Chain Condition; that is, each ascending
chain eventually stabilises

Example: Reaching Definitions
e . = P(Var« x Laby) is partially ordered by subset inclusion so C is C
e the least upper bound operation || is |J and the least element L is ()

e [satisfies the Ascending Chain Condition because Var, x Lab, is
finite (unlike Var x Lab)

Example: Available EXxpressions

e . =P(AExp,) is partially ordered by superset inclusion so C is D

e the least upper bound operation || is (| and the least element L is
AExp,

e [satisfies the Ascending Chain Condition because AExp, is finite
(unlike AExp)

Transfer Functions

The set of transfer functions, F, is a set of monotone functions over L,
meaning that

[T 1" implies fy(1) T fo(1)

and furthermore they fulfil the following conditions:

e F contains all the transfer functions f, : L — L in question (for
/ & Lab*)

e F contains the identity function

e F is closed under composition of functions

Frameworks

A Monotone Framework consists of:

e a complete lattice, L, that satisfies the Ascending Chain Condition;
we write | | for the least upper bound operator

e a set F of monotone functions from L to L that contains the identity
function and that is closed under function composition

A Distributive Framework is a Monotone Framework where additionally
all functions f in F are required to be distributive:

f1ulp) = f(l1) U f(l2)

Instances
An instance of a Framework consists of:

— the complete lattice, L, of the framework

— the space of functions, F, of the framework

— a finite flow, I’ (typically (Sx) or (S%))

— a finite set of extremal labels, E (typically {init(Sx)} or (S%))
— an extremal value, . € L, for the extremal labels

— a mapping, f., from the labels Lab, to transfer functions in F

Equations of the Instance:

Analysis,(£) = | [{Analysis,(¢) | (¢,£) € F} U4

where £ — 1 ¢ if¢ek
E L ifi¢E

Analysise(£) fo(Analysis,(£))

Constraints of the Instance:

Analysis,(¢) 3 | |[{Analysis,(¢) | (¢,£) € F} Ut

where £ — 1 ¢ if¢ek
E 1L ife¢E

Analysise(£) 3 fy(Analysis,(£))

The Examples Revisited

Available Reaching Very Busy Live

EXxpressions Definitions Expressions | VVariables
L | P(AExp,) P(Var, x Laby) P(AExp,) | P(Vary)
L D) C D) C
L M U M U
1 AExp, 0 AExp, 0
L 0 {(x,?)|ze FV(Sx)}))
E | {init(S«)} {init(S«)} (Sx) (S«)
F (S%) (Sx) (Sx) (S%)
F {f:L—L|3y,ly: f(1)=U\1g)Ulg}
s (D) = (1\ kill(BY)) U gen(B*) where Bf ¢ (S4)

Bit Vector Frameworks

A Bit Vector Framework has
e L =P(D) for D finite

o F={f13lg: f() = U\ 1) ULy}

Examples:
e Available Expressions
e Live Variables
e Reaching Definitions

o VVery Busy EXxpressions

Bit Vector Frameworks are always Distributive Frameworks

_ [fiul) _ [((ul) \) Ul
Flul) = {30 i) = | (i) \ 1) Ul
_ (U \) U (2 \ k) U _) W\) Ulg) U (U2 \ 1) Ulg)
| (U \) N2\ 1)) Ul | (U \) Ulg) N (U2 \ lg) Ulg)
_) f)ufd2) _
— <\ F(11) N F(1) = f(1) U f(2)

e id(l) =({\D)UD
o f2(f1(1) = U\ UIH\IP UG =\ GUEDNU UG\ UL
e monotonicity follows from distributivity

e P(D) satisfies the Ascending Chain Condition because D is finite

The Constant Propagation Framework

An example of a Monotone Framework that is not a Distributive Frame-
WOrK

The aim of the Constant Propagation Analysis is to determine

For each program point, whether or not a variable has a constant
value whenever execution reaches that point.

Example:
[x:=6]1; [y:=3]%; while [x > y]3 do ([x:=x — 1]*; [z:=yx7]°)
The analysis enables a transformation into

[x:=6]1; [y:=3]%; while [x > 3]° do ([x:=x — 1]%; [2:=9]°)

Elements of L

SEBTteCP = ((Var* — ZT)J_a E)
Idea:

e | is the least element: no information is available

e 0 € Vary, — Al specifies for each variable whether it is constant:
— o(x) € Z: z is constant and the value is o(x)

— o(x) = T: x might not be constant

Partial Ordering on L

The partial ordering C on (Vary — Z ') | is defined by
Vo e (Vary, - Z"), : L LC 5

V61,60 € Vary —» Z' . 61 C 6o iff Vz:61(z) C 6o(x)

where Z' = Z U {T} is partially ordered as follows:

V2eZ! 12 C T
Vz1,20 €Z: (21 C 20) & (21 = 22)

ransfer Functions in F

Fcp =A4f | f is a monotone function on St/a\tecp}

Constant Propagation as defined by St/:aTteCp and Fcp is a Monotone
Framework

Instances

Constant Propagation is a forward analysis, so for the program Sk:

e the flow, F, is (S%),

e the extremal labels, £, is {init(Sx)},

e the extremal value, (cp, IS Az. T, and

e the mapping, f,CP, of labels to transfer functions is as shown next

Constant Propagation Analysis

Acp : AExp — (Statecp — Z])

(L ife=1
Acplzle = {8(m) otherwise
(1L ife=1
Acplrlle = {n otherwise
Acpllar opg a2llé = Acpllaille op, Acpllazlla

transfer functions: f5"

z 1= a]: fECP((Af) = {
skipl’: [P(E) = &
)" :

L if o =L
olx — Acplla]lo] otherwise

o

FEP (@)

Constant Propagation is not a Distributive Framework

Consider the transfer function f&" for [y:=x*x]¢
Let 1 and o5 be such that 1(x) =1 and o5(x) = —1
Then 61 U6, maps x to T — f:P(61U6,) mapsyto T

Both fSP(51) and f£P(62) map y to 1 — fiP(61) U ££7(62) maps y to 1

Equation Solving

e The MFP solution — “Maximum’” (actually least) Fixed Point

— Worklist algorithm for Monotone Frameworks

e The MOP solution — “Meet” (actually join) Over all Paths

The MFP Solution
— Idea: iterate until stabilisation.

Worklist Algorithm

Input: An instance (L,F,F,E, ., f.) of a Monotone Framework
Output: The MFP Solution: MFPs, MFPe,

Data structures:
e Analysis: the current analysis result for block entries

e The worklist W: a list of pairs (£,¢) indicating that the current
analysis result has changed at the entry to the block ¢ and
hence the entry information must be recomputed for ¢

Worklist Algorithm

Step 1
W = nil;
for all (£,¢) in FF do W := cons((¥£,¢),W);
for all £ in F or E do
if £ € E then Analysis[{] := . else Analysis[{] := L;;

Step 2
while W == nil do
¢ := fst(head(W)); ¢ = snd(head(W)); W := tail(W);
if fy(Analysis[¢]) Z Analysis[¢] then
Analysis[¢'] := Analysis[¢/] U f,(Analysis[{]);
for all ¢ with (¢,¢") in F do W := cons((¢,¢"),W);

Step 3 MF P, MFPa,
for all £in F or E do
MFPs(£) := Analysis[/];
MFPe(£) = fy(Analysis[{])

The worklist algorithm always terminates and it computes the least (or
MFP) solution to the instance given as input.

Suppose that £ and F' contain at most b > 1 distinct labels, that F
contains at most e > b pairs, and that L has finite height at most A~ > 1.

Count as basic operations the applications of f,, applications of LI, or
updates of Analysis.

Then there will be at most O(e - h) basic operations.
Example: Reaching Definitions (assuming unique labels):

O(b2) where b is size of program: O(h) = O(b) and O(e) = O(b).

The MOP Solution
— Idea: propagate analysis information along paths.

Paths

The paths up to but not including ¢:
path,(£) = {[41,-- -, lIn>1AVi<n:(l,l;41) € PNy =LAl € E}

The paths up to and including #:
pathe(£) = {[l1,---, 0]l In>1AVIi<n:({,liy1) EFNly =LAl € B}

Transfer functions for a path £ = [¢1,---,£y]:

fe—»:fgno---ofgloid

The MOP Solution

The solution up to but not including #:

MOP(€) = | [{fAv) | £ € pathe(£)}

The solution up to and including #:

MOP(€) = | [{fAv) | £ € pathy(£)}

Precision of the MOP versus MFP solutions

The MFP solution safely approximates the MOP solution: MFP 1 MOP

For Distributive Frameworks the MFP and MOP solutions are equal:
MFP = MOP

Consider the MFP and MOP solutions to an instance (L,F, F,B,u, f.)
of a Monotone Framework; then:

MFPs; 3 MOP,; and MFPe J MOP,

If the framework is distributive and if path,(¢) = 0 for all £ in E and F
then:

MFP, = MOP, and MFPe = MOP,

Decidability of MOP and MFP

The MFP solution is always computable (meaning that it is decidable)

The MOP solution is often uncomputable (meaning that it is undecid-
able): the existence of a general algorithm for the MOP solution would
imply the decidability of the Modified Post Correspondence Problem,
which is known to be undecidable.

The MOP solution for Constant Propagation is undecidable.

Let uq,---,un and vy, -+, vy be strings over the alphabet {1,---,9};
let | w | denote the length of u; let [u]] be the natural number denoted.

The Modified Post Correspondence Problem is to determine whether or
not w;, ---u;,, = v, ---v;, for some sequence iy, --,im With 11 = 1.

x:=[ui]l; y:=[lvil;
while [---] do

(if [---] then x:=x * 1041l + [uq]; y:=y * 10/Y1] + [v1] else

if [---] then x:=x * 10/¥nl + [u,]; y:=y * 10lvn| + [v,] else skip)
[z:=abs((x-y)*(x-y))]*

Then MOP.(¢) will map z to 1 if and only if the Modified Post Corre-
spondence Problem has no solution. This is undecidable.

Interprocedural Analysis

e [he problem

e MVP: "Meet” over Valid Paths

e Making context explicit

e Context based on call-strings

e Context based on assumption sets

(A restricted treatment; see the book for a more general treatment.)

The Problem: match entries with exits

proc fib(val z, u; res v)

1

is
[z<3]? no
w -
call fib(x,0,v)]% v:=u+1]3 call fib(z-1,u,v)]?
Y7110 5

|

[call fib(z-2,v,v)]%

end8

Preliminaries

Syntax for procedures

Programs: P, = begin Dy Sx end
Declarations: D ::= D; D | proc p(val z;res y) is'" S end

Statements: S ::=---[[call p(a,z)]/

Example:

begin proc fib(val z, u; res v) is
if [2<3]2 then [v:=u+1]3
else ([call fib(z—l,u,v)]g; [call fib(z-2,v,v)]9)
end"”’;
[call £ib(x,0,y)]9,
end

Flow graphs for procedure calls

([call p(a,2)]y?) = Lo
(lcall p(a, 2)]) = {4}

([call p(a,2)]y) = {lcall p(a,2)]y}
(lcall p(a, 2)1) = {lc,tr}

([call p(a, 2)1;) = {(leiln), (Lw; £)}

if proc p(val z;res y) is" S end is in Dy

o (Vc;¥y) is the flow corresponding to calling a procedure at ¢. and
entering the procedure body at ¢,, and

o (Vy:4,) is the flow corresponding to exiting a procedure body at /4,
and returning to the call at #,.

Flow graphs for procedure declarations

For each procedure declaration proc p(val z;res y) is‘" S end’” of Dy:

(p) = ¢

(p) = {4z}

(p) = {isgn, endgx} U (S)

(p) = {ln, Lz} U (S)

(p) = {{ln,init(S))} U (S) U{(l,la) | £ € (S)}

Flow graphs for programs

For the program P, = begin D, S« end:

— (S*)
(S%)

— U{ (p) | proc p(val x;res y) ist S end® is in Dy}
U (Sx)

= (J (p) | proc p(val z;res y) is'™ S end” is in Dy}
U (Sx)

= ([(p) | proc p(val x;res y) ist § end® is in Dy}
Urlow(Sy)

{(le, bn, Ly, br) | proc p(val x;res y) ist" S end® is in Dy
and [call p(a, Z)]Ei is in Sk}

Example:

begin proc fib(val z, u; res v) is
if [z<3]2 then [v:=u+1]3
else ([call fib(z-1,u,v)]g; [call fib(z-2,v,v)]%)
end"”’;
[call £ib(x,0,¥)]9,
end

We have

= {(1,2),(2,3),(3,8),
(2,4),(4,1),(8,5),(5,6),(6,1),(8;7),(7,8),
(9;1),(8;10)}
— {(97 Y 710)7 (47 Y 75)7 (67 Y 77)}
and = 9 and = {10}.

A naive formulation

Treat the three kinds of flow in the same way:

flow treat as
(01,42) | (£1,42)
(gc; en) (ECaen)
(la; Or) | (Lg,lr)

Equation system:

Ae(€) = fo(Ac(¥))
Ac(l) = | {Ae() | (W 0) e For ({'0) e For({4)c Fluly

But there is no matching between entries and exits.

MVP: “Meet” over Valid Paths
Complete Paths

We need to match procedure entries and exits:

A complete path from £1 to ¢ in P, has proper nesting of procedure
entries and exits; and a procedure returns to the point where it was

called:

CPy, o, — {1 whenever £ = /5
CPy, o, — €1, CPyy whenever (£1,05) €
CPyo— Le, CPy, 1., CPy. ¢ wWhenever P, contains [call p(a,)],

and proc p(val z;res y) is'" S end

More generally: whenever (4,7, 0., 0r) is an element of (or
for backward analyses); see the book.

Valid Paths

A valid path starts at the entry node of P, all the procedure exits
match the procedure entries but some procedures might be entered but
not yet exited:

VP — VPt 4 whenever ¢ € Lab,

VP o, — 41 whenever £1 = /5

VP, 05 — £1, VP, 4, whenever (£1,45) €

VPy.o — e, CP , VP; ¢ whenever P, contains [call p(a, z)]ﬁj

and proc p(val z;res y) is'" S end

VPy. ¢ — e, VP, 4 whenever P, contains [call p(a, z)]&f
and proc p(val z;res y) is'" S end

The MVP solution
MVPo (&) = | [{fAt) | £ € vpath.(£)}

MVP(£) = | |{fAr) | £ € vpathy(£)}

where
vpatho(£) = {[l1, - ,ln_1]|mn>1 ANy =4LN][l1,---,€p] is @ valid path}
vpathe(£) = {[l1,---,én]l | m>1ANLly=£LAN][l1,---,4y] is @ valid path}

The MVP solution may be undecidable for lattices satisfying the As-
cending Chain Condition, just as was the case for the MOP solution.

Making Context Explicit

Starting point: an instance (L,F,F,FE, «, f.) of a Monotone Framework
e the analysis is forwards, i.e. F = and £ ={ 3
e the complete lattice is a powerset, i.e. L = P(D);
e the transfer functions in F are completely additive; and
e cach f,is given by f)(Y) = U{ ¢p(d) | d € Y} where ¢, : D — P(D).

(A restricted treatment; see the book for a more general treatment.)

An embellished monotone framework

e I/ =P(A x D):

e the transfer functions in F' are completely additive; and

e cach f; is given by f)(Z) = U{- x dp(d) | (8, d) € Z}.

Ignoring procedures, the data flow equations will take the form:

Ae (ﬁ) — fé(Ao (6))

for all labels that do not label a procedure call

| [{Ae(&) | (£,€) € For (£;0) € F} U/
for all labels (including those that label procedure calls)

Ao(£)

Example:

Detection of Signs Analysis as a Monotone Framework:

(Lsigna Fsigna F, E, Lsign f.sign) where Sign = {-,0,+} and

Lgign = P(Var, — Sign)

The transfer function fs'g” associated with the assignment [z := a]¢ is

5'%”(y) — U{ ¢S|gn sign) ‘ oSIgn c Y}
where Y C Var, — Sign and

B8 (0%8") = {08 [z — s] | 5 € Agign[all (c¥8")}

Example (cont.):

Detection of Signs Analysis as an embellished monotone framework

S|gn — 7D(- X (Var* — Slgn))

The transfer function associated with [z := a]¢ will now be:

S|gn (2) = U{- v ¢S|gn sign) | (., O.Sign) € Z}

Transfer functions for procedure declarations

Procedure declarations

proc p(val x;res y) is" S end®

have two transfer functions, one for entry and one for exit:

fo., fo, P& x D) — P& x D)

For simplicity we take both to be the identity function (thus incorpo-
rating procedure entry as part of procedure call, and procedure exit as
part of procedure return).

Transfer functions for procedure calls
Procedure calls [call p(a,z)]z‘f have two transfer functions:

For the procedure call

fglc:P(-x D)— P& x D)

and it is used in the equation:

Ao(le) = fglc(Ao(éc)) for all procedure calls [call p(a,z)],

For the procedure return

f€2c,€7": PA x D)|xP(& x D) - P& x D)

and it is used in the equation:

Ae(ly) = ffc,gr(Ao(le) |, Ac(€r)) for all procedure calls [call p(a, z)]&f
(Note that Ao(4,-) will equal Ae(¥¢;) for the relevant procedure exit.)

Procedure calls and returns

proc p(val x;res y)

igln
: M
N
N

Z

[call p(a, z)]&f

Z -

endgw

f7.0.(2,2") J

Variation 1: ignore calling context upon return

proc p(val x;res y)

"

l ft e
[call p(a, 2)]%| |
[call p(a,2)]s | - |
| ngC,g,r i
| endeﬂ?
fiz2)y =N xop ()| (6, d)eZ N =--G6---d---Z-}

ft.0(2,2") = f7.(2")

Variation 2: joining contexts upon return

l

[call p(a, z)]%

eC)ET

[call p(a, 2)]p | -

fi(Z2) =o'y x op.(d) | (6,d) € Z NG =---5---d--

|

f Le,ly

proc p(val x;res y)

isen

12022 = 24 (Z2)u 25 (2"

.E:..

‘)

Different Kinds of Context

e Call Strings — contexts based on control
— Call strings of unbounded length

— Call strings of bounded length

e Assumption Sets — contexts based on data
— Large assumption sets

— Small assumption sets

Call Strings of Unbounded Length
A = Lab*

Transfer functions for procedure call

L2 = {8} x ¢.() | (5,d) € Z A
6 = 1[0, 4]}

12.0,(2,2") = {0} x ¢4, (d,d) | (5,d) € Z A
0, dyez A& =[5t}

Example:

Recalling the statements:

proc p(val z;res y) is " S end [call p(a, 2)]/

Detection of Signs Analysis:

initialise formals
2" (0% = {o%" [w — slly —]| s € Aggalall (0°B"), " € {~,0,+}}

5382 (058", 055") = {038z > 035" (D)][y — 03B ()] [z — 035" (W)}

restore formals return result

Call Strings of Bounded Length
-=LabS

ransfer functions for procedure call

fi(2) = {0} x 67 (d) | (5 d) e Z A
= [0,£c]).}

f6.0(2,2") = J{{0} x ¢ 4, (d,d) | (5,d) € Z A
(¢",d)yez' N & =T64L]}

A special case: call strings of length

A = {A}

Note: this is equivalent to having no context information!

Specialising the transfer functions:

() =U{¢7.(d) | de Y}

foVY) =U{¢7.,(dd)|deY A deY'}

(We use that P(A x D) isomorphic to P(D).)

A special case: call strings of length

A = Lab U {A}

Specialising the transfer functions:

f1(2) = J{{Le} x of.(d) | (6,d) € Z}

f2.0.(2,2") =\ JU{8} x 674, (d,d) | (5,d) € Z A (Le,d) € Z'}

Large Assumption Sets
A&l = P(D)

Transfer functions for procedure call

A2 = {8} x 91 (d) | (6,d) € Z A
5 ={d' |, d") ez}

12.0,(2,2"y =\ J{{8} x ¢7 4 (d,d) | (5,d) € Z A
(&', dYe Z' Ao ={d"|(6,d") e Z}}

Small Assumption Sets
A =D

Transfer function for procedure call

fi(2) =J{{d} x ¢} (d) | (5, d) € Z}

f2.0.(2, 2" = JU{8} x ¢34 (d,d) | (8,d) € Z A
(d,d") e Z'}

Shape Analysis

Goal: to obtain a finite representation of the shape of the heap of a
language with pointers.

The analysis result can be used for
e detection of pointer aliasing
e detection of sharing between structures

e software development tools
— detection of errors like dereferences of nil-pointers

e program verification
— reverse transforms a non-cyclic list to a non-cyclic list

Syntax of the pointer language

a = pln|ay op, ar|nil

p = z|xz.sel

b ::= true|false|not b|by Opy, bo|ay Op, ax | 0Py, p
S = [p:=a]®| [skip]‘| S1; S2 |

if [b]¢ then Sp else So |while [b]¢ do S |
[malloc p]*

Example

[y:=nil1]®;
while [not is-nil(x)]? do

([z:=y]3; [y:=x]%; [x:=x.cdr]®; [y.cdr:=2]®);
[z:=nil1]’

Reversal of a list

cdr cdr cdr cdr
(&)——(&a)—(&)—°C

cdr
o

zZ—

X
y

cdr cdr cdr
(§a)——(&)—<

cdr

cdr
x — (&)—(&)

y—<

Z

cdr cdr
X — (&) —(&)—°

cdr cdr cdr
X —(&)—(&)——(&)—9
y — (e o

Z

cdr cdr cdr
y— (&) —(&)—(&)—°

Z

cdr
X —(&H)—9

cdr cdr cdr cdr cdr
(Ea)——(&)——(&)——(&)—°

y

cdr cdr
(&2)——(&)—<

cdr

cdr
y—(&)—(&)

Structural Operational Semantics

A configurations consists of

e a state s € = Vary — (Z + Loc + {¢})

mapping variables to values, locations (in the heap) or the nil-value

e a heap n € Heap = (Loc x Sel) —i, (Z 4+ Loc + {¢})

mapping pairs of locations and selectors to values, locations in the
heap or the nil-value

Pointer expressions

o : PExp — (x Heap) —+n (Z 4 {¢} + Loc)
is defined by
plz](o,®) = o(=z)
([H(o(x), sel)
ollz.sell(o,H) = ¢ if o(x) € Loc and # is defined on (o(x), sel)
| undefined otherwise

Arithmetic and boolean expressions

A AExp — (x Heap) —+iy (Z 4+ Loc + {¢})
B : BExp — (x Heap) —¢in T

Statements

Clauses for assignments:

([z:=a)t, o, H) — { JH)
if Afla]l(o,H) is defined

([z.s€el:=a)t, o, 1) — (o, H[(o(z), sel) — A[a] (o, H)])
if o(x) € Loc and Ala]l(o,H) is defined
Clauses for malloc:

([malloc z]t, o, H) — { £, H)

where £ does not occur in ¢ or ‘H

([malloc (z.sel)], ,H) — (o, H[(o(x), sel) — &])

where ¢ does not occur in o or H and o(xz) € Loc

Shape graphs

The analysis will operate on shape graphs (S, H,is) consisting of
e an abstract state, S,
e an abstract heap, H, and

e sharing information, is, for the abstract locations.

The nodes of the shape graphs are abstract locations:

ALoc = {nyx | X C Var,}

Example

In the semantics:

x (&) =
y (e) =

-

In the analysis:
cdr
i) cdr an

cdr

X

y "y} " {z}

.

&

cdr

&

Abstract Locations

The abstract location ny represents
the location o(z) if x € X

‘The abstract location ny is called the
abstract summary location: ng rep-
resents all the locations that cannot
be reached directly from the state
without consulting the heap

If two abstract locations
nx and ny occur in the same shape
graph then either X =Y or XNY = ()

Abstract states and heaps

S € AState = 7P(Vars x ALoc) abstract states

H € AHeap P(ALoc x Sel x ALoc) abstract heap

If x is mapped to ny by
@Cdr the abstract state S then z € X
ngy

cdr

X N {x}

cdr
y Myy —— ™z Whenever (ny, sel, nyy)

” // and (ny,sel,ny) are in the abstract

heap H then either V. =0 or W = W'

Reversal of a list

X

X

y

X

y

cdr

cdr
(g cdr n(bq

cdr

'y} M {z}

7

cdr
"=} noq

t cdr

cdr Nig

n{y}

7

y

cdr
g cdr nmq

Ny}
n{x} ﬂ. ng

t cdr
ngyy -S40 ng,y

cdr

t cdr

cdr nig

n{y}

Sharing in the heap

x —(a) (a)

| cdr

| cdr

y ‘®§5 cdr o

cdr
iz cdr m@
iy /

cdr

X

y

x (&) (e)

| cdr

cdr cdr S

y o

iS: the abstract locations that might
be shared due to pointers in the
heap:

ny IS included in is if it might repre-
sents a location that is the target of
more than one pointer in the heap

Examples: sharing in the heap

x — (&)< <t i
| cdr X ngy -SAr. ng
Y,
| cdrC dr y " cdr
y L&) O
x ——(a) (e)= oo
| cdr X ngy CArL ny

Ce)<or-(Ces)< Y,

y oo
y // cdr

car car @Cdr
| cdr x —— n{x}
% 4» cdr cdr o y
y %-

y -

Sharing information

The implicit sharing information of the abstract heap must be consistent
with the explicit sharing information:

If ny € is then either
o (ng,sel,nx) is in the abstract heap for

cdr
. n{}) some sel, or
y e there are two distinct triples (ny, sel1,nx)
y %- and (ny/,selo, ny) in the abstract heap

Whenever there are two distinct
triples (ny, sel1,nx) and (ny,selo, nx) in the
abstract heap and X # () then ny € is

The complete lattice of shape graphs

A shape graph is a triple (S,H,is) where
S € AState = P(Vary x ALoc)
H € AHeap P(ALoc x Sel x ALoc)

is € IsShared = 7P(ALoc)
and ALoc = {ny | Z C Var,}.

A shape graph (S, H,is) is compatible if it fulfils the five invariants.

T he analysis computes over sets of compatible shape graphs

SG = {(S,H,is) | (S,H,is) is compatible}

The analysis

An instance of a forward Monotone Framework with the complete lattice
of interest being P(SG)

A may analysis. each of the sets of shape graphs computed by the
analysis may contain shape graphs that cannot really arrise

Aspects of a must analysis: each of the individual shape graphs (in a
set of shape graphs computed by the analysis) will be the best possible
description of some (o, H)

The analysis

Equations:
(. it £ = init(Syx)
Shape,(£) = { U{Shape,(£") | (¢,£) € flow(Sx)} otherwise
Shape,(£) = fPP(Shape,(£))

Example: The extremal value ¢ for the list reversal program

cdr
’I’L{X} cdr n@q

X

— x points to a non-cyclic list with at least three elements

Shapee(1) for [y:=nil]t

cdr

Note: we do not record nil-values in the analysis

Shapee(2) for [not is-nil(x)]?

cdr
X . n{x} ﬂ. n@q

cdr
’I’L{X} ﬂ n@q

Y — {»}
| cdr
Z —— "z}

cdr
X — n{x} ﬂ, 'r),@()

Y —" cdr
| cdr

Z — "z}

X —

cdr
X — ngxy €A noq x — gy AN ny

Y — ™y}

cdr ng

Y — ™y»}
| cdr
Z —— "z}

X — Mxp —— "

Yy — Yy cdr
| cdr

Z — Nz}

Y — My q
| cdr car
Z — n{z} cdr nq)q

Y — My}

X —— N{x} gy

Y — My}
| cdr
Z — Mz}

Y — My}
| cdr

Z —— Nz} — Ny

cdr
z — Ny I n@q

cdr
g L)

Shapee(3) for [z:=y]3

cdr
X — n{x} ﬂ. n@q

cdr
g g <A

y \ cdr

Z %n{mz}
X — Nz}

N

cdr
z — Mgz A n@/)

cdr
X —— Mg <A ’n@q

N

zZ 4"”/{3”2}

X — " Sy

y \ cdr

Z %n{Yaz}

TN

cdr
z — My A n@q

Shapes(4) for [y:=x]%

cdr
X —Txyy <91, noq

y

X %n{x’y} ﬂ' n

y J cdr

Z — ™z}

X %n{x’y}

y

cdr

cdr
X — - Mxyy <91, an

y

Z — Nz}

X — My CAT

y J cdr

Z — ™z}

cdr

X — - nixyy <ALy

Z — Nz}

X %n{xay}

cdr

Z — Nz} L)

cdr
N,

Shapes(5) for [x:=x.cdr]?

cdr
X —— ’I’L{X} ﬂ, n@q X — n{x} ﬂ, ny

f cdr t cdr

Yy — Yy Yy — Yy

X — n{x} ﬂ. ng X —— n{x} ngy
f cdr t cdr

Yy — ™y Yy — Yy

Z — "z} Z — "z}

X — gy -S40y X — Nix
t cdr t cdr
Yy — Yy cdr Y —— Ny}
Z e Ny z . Nz CA0
Yy — Yy

cdr cdr
z — . ngy Cdr noq z — . ngy Cdr an

cdr
n{x} ﬂ, n(z)@

f cdr
Ny}

Mz}

cdr

f cdr
Ny} cdr

Mz}

Ny}

nig cdr ng

cdr
N,

Shapee(6) for [y.cdr:=z]°

cdr
X — ’I’L{X} ﬂ, n@q

Yy — Yy

X —— gz A0 ny

Yy — Yy
| cdr
zZ — "z}

X — Mz} —— Ny

Y — "y cdr
| cdr

Z — "z}

Yy — Yy
| cdr

Z —— Mz} ——

cdr
g)

cdr, n,

T {x}

n{y}

N{x} ngy
Ny}
| cdr
Nz}
N {x}

n{y}
| cdr
’I’L{z} ﬂ, ’n,@

cdr
n{z} ﬂ, 'rL(Z)V/)

cdr
TL{X} ﬂ, n(z)@

Ty}
| cdr

Mz}

cdr
n{x} ﬂ, ?’L@@

T{y}
| cdr

Mz}

cdr

n{y}
| cdr
n{z} ﬂ, ?’L@

cdr
)

Shapee(7) for [z:=nil]’

cdr cdr
X — n{x} ﬂ, 'n,@@ X — n{x} ﬂ. 'n,@() X — n{x} ﬂ. ng
Yy —— "y} y — "
cdr
x - Ny <dn an x - ngxy S9N my X - N)
cdr
- cdr o cdr N cdr n‘/)
Yy — ™y Yy — ™y Y — Yy)
X —— Mx} q q
cdr cdr
Y —— gy SS9y y —— gy S0) i

— upon termination y points to a non-circular list

— a more precise analysis taking tests into account will know that x is
nil upon termination

Transfer functions

: P(SG) — P(SG)
has the form:
(SG) = {27 ((S,H,is)) | (S,H,is) € SG}
where
: SG — P(SG)

specifies how a single shape graph (in Shape,(¢)) may be transformed
into a set of shape graphs (in Shapee(£)) by the elementary block.

Transfer function for [b]¢ and [skip]*

We are only interested in the shape of the heap — and it is not changed
by these elementary blocks:

dp (S, H,is)) = {(S,H,is)}

Transfer function for [z:=a]®
— where a is of the form n, a1 op, a> Or nil

#2M((S,H,is)) = {kill((S,H,is))}

where kill.((S,H,is)) = (S/,H’,is’) is

S/
H/
is/
and

Idea: all abstract

set

{(z7k$(nZ)) | (Z7nZ) €S N z # ZC}
{(kz(ny), sel, kz(ny)) | (ny, sel,ny) € H}
{kz(nx) | nx €is}

kx(nz) = ng\ ()

locations are renamed to not having x in their name

The effect of [x:=ni1]*

ny ng

selq

(S,H,is)

Transfer function for [z:=y]¢ when z £ y

d2 (S, H,is)) = {(S",H",is")}
where (S',H’ is’) = kil ((S, H,is)) and

S" = {(z,9%(nz)) | (z,nz) € S}
U {(z,¢%(ny)) | ,ny) € S'AY =y}

H" = {(o4(ny), sel, g!(ny)) | (ny, sel,nyy) € H')

is" = {g%(ng) | ny €is'}

and

y _) nzupey Tyez
9z(nz) { ny otherwise

Idea: all abstract locations are renamed to also have z in their name set
if they already have y

he effect of [z:=y]¢ when z#vy

|

T nx x\{zg} ——
X \
Yy n sel nw Y Ny Ula) sel —
selp sely
ny ny

(S,H,is) (S, H" s

Transfer function for [z:=y.sel]’ when = % y

Remove the old binding for x: strong nullification

(S, H,is") = kill.((S,H,is))
Establish the new binding for x:

1. There is no abstract location ny such that (y,ny) € S’ — or there is
an abstract location ny such that (y,ny) € S’ but no ny such that
(ny,sel,ny) € H’

2. There is an abstract location ny such that (y,ny) € S’ and there is
an abstract location ny # ng such that (ny, sel,ny) € H’

3. Thereis an abstract location ny such that (y,ny) € S’ and (ny, sel, ny)
e H’

Case 1 for [z:=y.sel]’

Assume there is no abstract location ny such that (y,ny) € S/

dM((S,H,is)) = {(S/,H,is))}

Assume there is an abstract location ny such that (y,ny) € S’ but there
is no abstract location n such that (ny,sel,n) € H’

dpN((S,H,is)) = {(S',H',is)}

Case 2 for [z:=y.sel]’

Assume there is an abstract location ny such that (y,ny) € S’ and there
is an abstract location ny # ny such that (ny, sel,ny) € H'.

The abstract location ng; will be renamed to include the variable x using
the function:

U — nUU{x} if Z=U
hz (nz) { ny otherwise

We take
637 (S, H,is)) = {(S", H",is"))
where (S’,H’ is’) = kil ((S, H,is)) and
" = {(z,hY(ng)) | (z,nz) € S’} U{(x, hy (ny))}
H” = {(hY (ny),sel',hl (ny)) | (ny,sel’,ny) € H'}
is” = {nf(nzy) |nzeis}

he effect of [z:=y.sel]® in Case 2

€T nx nx\{z} —
5
Yy ny sel -se/2 nw Y ny sel
sel sel
ny ny

(S,H,is) (S7,H" s

sels

nw

Case 3 for [z:=y.sel]t (1)

Assume that there is an abstract location ny such that (y,ny) € S’ and
furthermore (ny, sel,ny) € H'.

We have to materialise a new abstract location n,,, from ny.

[:=ni1] "} [z:=y.sel]’; [z:=nil]"

| |

(S, H,is) (S",H",is")
(S’ H,is)) CURTURTL

(s',His) = (8", H",is") = kil ((S",H",is"))

Case 3 for [z:=y.sel]t (2)

Transfer function:

qﬁ?A((S, H,is)) = {(S",H",is") | (S",H" is") is compatible A
killz((S",H",is")) = (S/,H,is’) A
(w,n{x}) eS” A (ny,Se/,n{x}) e H"}

where (S/,H' is") = kil ((S, H,is)).

The effect of [z:=y.sel]¢ in Case 3 (1)

x nx

@SG/g
Yy sel ng S€2. ny

ny

selq

ny

(S,H,is)

he effect of [z:=y.sel]® in Case 3 (2)

| | |

nx\{z} — nx\{z} —— nx\{z} —
X x x —
y . ny S_e/.n{x} y - . Ny S_el.n{x} y . Ny sel n{z}
Se/3l sels selgl sels
ny Seli ny Selz ny ny Seli ny 2€k ny ny Seli ny 2€lz ny
/! 1" il /! I/ /! "ol
(S7,HY,is] (S3,H3,is3) (S5, Hg, isg)
nx\{z} — nx\{z} — nXx\{z} —
x x x —
Y ny S€Lngy seb Y ny S€Lngy sel Yy ny S€lngy sel
S€‘/3l sels Se/3l sels
ny S_ell ny w ny S_e/l ’I’L(])() nw ny 546'/1 n@q W

(S, HY, is) (S, HY, ish) (S, HY, ish)

Transfer function for [z.sel:=a]*
— where a is of the form n, ay op, ao> oOr nil.

If there is no ny such that (z,nx) € S then f?A is the identity.

If there is nx such that (x,nx) € S but that there is no ny such that
(nx,sel,ny) € H then f2A is the identity.

If there are abstract locations nyxy and ny such that (x,ny) € S and
(nx,sel,ng) € H then

527 ((S,H,i8)) = {kill, o/ ((S, H,i8))}
where Fkill,, ..;((S,H,is)) = (S',H’,is’) is given by
S =S
H = {(ny,sel',ny) | (ny,sel' ny) €H A (X =V A sel =sel)}

. is\{ny} if nye€is A #into(ny,H) <1 A —=3(ng,sel',ny) € H’
IS otherwise

The effect of [z.sel:=ni1]¢ when #into(ngr, H) <1

N

g
sl é% o ——E

selq

T

selq

ny ny

(S, H,is) (S, H')is")

Transfer function for [z.sel:=y]* when z # y
If there is no nx such that (z,nx) € S then f?A is the identity function.

If (z,nx) € S but there is no ny such that (y,ny) € S then
627 ((S,H,i8)) = {kill, (S, H,i5))}

If there is (xz,nx) € S and (y,ny) € S then
67 (S, H,is)) = {(S", H",is")}
where (S',H’,is") = kill,, ..;,((S,H,is)) and
s" = s (=5)
H" H'U{(nx,sel,ny) | (z,nx) €S’ A (y,ny) € S}

/! is’ U {’I’Ly} it #intO(ny, H/) >1
is/ otherwise

IS

The effect of [z.sel:=y]* when #into(ny,H’) <1

nx sel ny T

€T nx nu

sel

ny y ny

! !

(S,H,is) (S, H" is")

Transfer function for [malloc z]°

HIM((S,H,i8)) = {(S' U {(m,n)}, H, iS))
where (S’ ,H’ is’) = kill.(S, H,is).

