
4.2 Attribute Grammars 121

bottom_up_elim(root);
top_down_elim(root);
check whether now allopssets have exactly one element; otherwise report an error

end

It looks like the bottom-up elimination and the top-down elimination do the same thing. This is
almost correct. Figure 4.5 shows a combination ofop1- andop2 labeled nodes. Each node is associ-
ated with the set of potential definitions of the operator. Bottom-up elimination possibly eliminates
candidates from the set of definitions ofop1, top-down elimination from the set of definitions ofop2.

Fig. 4.5. The elimination of potential operators in two directions, bottom up and top down

bottom up–Elimination

{. . . X . . .}

. . .i. . .

op1

op2 {. . . X . . .}

top down–Elimination

4.2 Attribute Grammars

We have described tasks to be performed by semantic analysisin Section 4.1. In line with our pre-
sentation so far it would be nice to also have a description mechanism for these tasks, from which
implementations could be generated.

Remember the algorithm for overload resolution in Section 4.1.3, in particular the two passes
bottom-up elimination and top-down elimination. One step of bottom-up elimination at some node
k removes from the setops(k) of potential operators atk all those where the type of theith parameter
does not agree with the result type of any potential operatorat nodek.i. Hence, the new set of potential
operators at nodek is determined based on the set of potential operators at the children ofk. One step
of top-down elimination at some nodek removes operator candidates atk.i whose result type does not
agree with any of the parameter types of parameteri of the operator candidates atk. Here, the set of po-
tential operators atk.i is computed based on the set of potential operators atk. The overload-resolution
algorithm needs this flow of information in both directions.

An elegant and powerful description mechanism for tasks like these areattribute grammars. They
extend context-free grammars by associatingattributeswith the symbols of the underlying context-free
grammar. These attributes are containers for static semantic information. Their values are computed by
computations performed on trees, with computations traversing the trees as needed.

The set of attributes of a symbolX is denoted byA(X). With each attributea is associated a type
τa, which fixes the set of possible values for the instances of the attribute.

Consider a productionp : X0 −→ X1 . . . Xk with k ≥ 0 symbols occurring on the right side. To
tell the different occurrences of symbols in productionp apart, we number these from left to right. The
left side nonterminalX0 will be denoted byp[0], theith symbolXi on the right side ofp by p[i] for

122 4 Semantic Analysis

i = 1, . . . , k. The attributea of a symbolX has anattribute occurrenceat each occurrence ofX in a
production. The occurrence of an attributea at a symbolXi is denoted byp[i].a.

Attributes also havedirections, which can be better understood, if we think of production appli-
cations in parse trees. The attributes of a symbolX are eitherinheritedor synthesized. The values of
(instances of) synthesized attributes at a node are computed from (values of attribute instances in) the
subtree at this node. The values of (instances of) inheritedattributes at a node are computed from the
context of the node, see Figure 4.6. All the attribute instances with ingoing yellow edges are computed
within the production. These are the occurrences of synthesized attributes of the left side of the produc-
tion and the occurrences of inherited attributes of the right side of productions. Together we call them
defining occurrencesof attributes in this production. All other occurrence of attributes in the produc-
tion are calledapplied attribute occurrences. Each production hassemantic rules, which describe how
the values of defining attribute occurrences in the production are computed from the values of other
attribute occurrences of the same production. So, semanticrules need to be given for each inherited
attribute occurrence on the right side of a production and each synthesized attribute occurrence on the
left side. The set of inherited and synthesized attributes of an attribute grammar are denoted byI and
S, resp. and the set of inherited and synthesized attributes of a symbolsX correspondingly byI(X)
andS(X).

X1

X0

Xk

Fig. 4.6. An attributed node in the parse tree with its attributed successors. Instances of inherited attributes are
drawn as boxes to the left of syntactic symbols, instances ofsynthesized attributes as boxes to the right of symbols.
Red (darker) arrows show the information flow into the production instance from the outside, yellow (lighter)
arrows symbolize functional dependences between attribute instances that are given through the semantic rules
associated with the production.

In our examples we write the semantic rules in an OCAML -like programming language.
PopularLR parsers such as YACC and BISON offer a restricted attribute mechanism: Each symbol

of the grammar has one associated attribute, and to each production there is one semantic rule that
describes how the value of the attribute occurrence on the left side is computed from the values of the
right-side attribute occurrences.

Example 4.2.1 Consider a context-free grammar with the nonterminalsE, T, F for arithmetic expres-
sions. The set of terminals consists of parentheses, operators, and the symbolsvar andconst, represent-
ing int variables and constants. The nonterminals have an attribute tree that will hold the trees for the
words that have been derived from them.

The productions of the grammar are extended by semantic rules as follows: Different occurrences
of the same symbol are indexed.

Example 4.2.2

4.2 Attribute Grammars 123

p1 : E −→ E + T

E[0].tree = Plus (E[1].tree, T.tree)

p2 : E −→ T

E.tree = T.tree

p3 : T −→ T ∗ F

T [0].tree = Mult (T [1].tree, F.tree)

p4 : T −→ F

T.tree = F.tree

p5 : F −→ const

F.tree = Int (const.val)

p6 : F −→ var

F.tree = Var (var.id)

p7 : F −→ (E)

F.tree = E.tree

⊓⊔

The trees are built with the constructorsPlus, Mult, Int, Var. Further, we assume that the symbolconst

has an attributeval , which will hold the value of the instances ofconst, and the symbolvar has an
attributeid , which will hold the unique codes for the instances ofid . ⊓⊔

If the semantic rule for a defining attribute occurrence usesan attribute occurrence as argument there
is afunctional dependencefrom the argument attribute-occurrence to the defining attribute occurrence.

Attributes of symbols labeling nodes of parse trees are called attribute instances. They exist at
compile time after syntactic analysis has produced the parse tree.

The functional dependences between attribute occurrencesdetermine in which order the attribute
instances at nodes of the parse tree may be evaluated. Arguments of semantic rules need to be evaluated
before the rules can be applied to compute the value of the associated attribute (instance). There exist
some constraints on the functional dependences to ensure that thelocal semantic rules of the attribute
grammar for the attribute occurrences in the productions can be composed to aglobal computation of
all attribute instances in a parse tree. The values of attribute instances at the individual nodes of the
parse tree are computed by a global algorithm, which is generated from the attribute grammar, and
which at each noden adheres to the local semantic rules of the production applied atn. The theme of
this chapter is how such an algorithm can be automatically generated from a given attribute grammar.

An attribute grammar is innormal form if all defining attribute occurrences in productions only
depend on applied occurrences in the same productions. If not explicitly stated otherwise we assume
that attribute grammars are in normal form.

We have admitted synthesized attributes for terminal symbols of the grammar. In compiler design,
attribute grammars are used to specify semantic analysis. This phase follows lexical and syntactic anal-
ysis. Typical synthesized attributes of terminal symbols are values of constants, external representations
or unique encodings of names, and the addresses of string constants. The values of these attributes are
delivered by the scanner, at least if it is extended by semantic functionality. So, in compilers synthe-
sized attributes of terminal symbols play an important role. Also inherited attribute instances at the root
of the parse tree have no semantic rules in the grammar to compute their values. However, the compiler
may have some use for them and therefore will initialize them.

4.2.1 The Semantics of an Attribute Grammar

The semantics of an attribute grammar determines for each parse treet of the underlying context-free
grammar which values the attributes at each node int should have.

For each noden in t let symb(n) the symbol of the grammar labelingn. If symb(n) = X then
n is associated with the attributes inA(X). The attributea ∈ A(n) of the noden addressed byn.a.
Furthermore we need an operator to navigate from a node to itssuccessors. Letn1, . . . , nk be the

124 4 Semantic Analysis

sequence of successors of noden in parse treet. n[0] denotes the noden itself, andn[i] = ni for
i = 1, . . . , k denotes theithn successor ofn in the parse treet.

If X0 = symb(n) and, ifXi = symb(ni) for i = 1, . . . , k are the labels of the successorsni of n
thenX0 −→ X1 . . .Xk is the production of the context-free grammar that was applied at noden. The
semantic rules of this productionp provide the method to compute values of the attributes at thenodes
n, n1, . . . , nk. The semantic rule

p[i].a = f(p[i1].a1, . . . , p[ir].ar)

for the productionp becomes the semantic rule

n[i].a = f(n[i1].a1, . . . , n[ir].ar)

for the noden in the parse tree. We assume that the semantic rules specifytotal functions. Lett be a
parse tree and

V (t) = {n.a | n node int, a ∈ A(symb(n))}

be the set of all attribute instances int. The subsetVin (t) of inherited attribute instances at the rootl
and of synthesized attribute instances at the leaves are called the set ofinput attribute instancesof t.

Assigning values to the input attribute instances and instantiating the semantic rules of the attribute
grammar at all nodes int produces a system of equations in the unknownsn.a that has for all but the
input attribute instances exactly one equation. LetAES(t) this attribute equation system. IfAES(t) is
recursive (cyclic) it can have several solutions or no solution. IF AES(t) is not recursive there exists
for assignmentσ of the input attribute instance exactly one attribute assignment for the parse treest
agreeing on the input attribute instances withσ and satisfying all equations. The attribute grammar
is therefore calledwellformed, if the system of equationsAES(t) is not recursive for any parse treet
of the underlying context-free grammar. In this case we define the semantics of the attribute grammar
as the function mapping each parse treet and each assignmentσ of the input attribute instances to
an attribute assignment that agrees on these withσ and that additionally satisfies all equations of the
systemAES(t).

4.2.2 Some Attribute Grammars

In the following we present some attribute grammars that solve essential subtasks of semantic anal-
ysis. The first attribute grammar shows how types of expressions can be computed using an attribute
grammar.

Example 4.2.3 (Type checking) The attribute grammarAGtypes beschreibt die type determination for
expressions containing assignments, nullary functions, operators+,−, ∗, / and variable and constants
of typeint orfloatin a C-like programming language with explicit type declarations for variables. The
attribute grammar has an attributetyp for the nonterminal symbolsE, T andF and for the terminal
symbolconst, which may take valuesInt andFloat. This grammar can be easily extended to more
general expressions with function application, componentselection in composed values, and pointers.

4.2 Attribute Grammars 125

E −→ var ′=′ E

E[1].env = E[0].env

E[0].typ = E[0].env var.id

E[0].ok = let x = var.id

in let τ = E[0].env x

in (τ 6= error) ∧ (E[1].type ⊑ τ)

E −→ E aop T E −→ T

E[1].env = E[0].env

T.env = E[0].env

E[0].typ = E[1].typ ⊔ T.typ

E[0].ok = (E[1].typ ⊑ float) ∧ (T.typ ⊑ float)

T.env = E.env

E.typ = T.typ

E.ok = T.ok

T −→ T mop F T −→ F

T [1].env = T [0].env

F.env = T [0].env

T [0].typ = T [1].typ ⊔ F.typ

T [0].ok = (T [1].typ ⊑ float) ∧ (F.typ ⊑ float)

F.env = T.env

T.typ = F.typ

T.ok = F.ok

F −→ (E) F −→ const

E.env = F.env

F.typ = E.typ

F.ok = E.ok

F.typ = const.typ

F.ok = true

F −→ var F −→ var ()

F.typ = F.env var.id

F.ok = (F.env var.id 6= error)

F.typ = (F.env var.id) ()

F.ok = match F.env var.id

with τ () → true

| _ → false

The attributeenv of the nonterminalsE, T andF is inherited, all other attributes of grammarAGtypes

are synthesized.
The semantic rules in this grammar are not necessarilytotal functions. For instance, they are not

total if an identifier is used, but not declared in a program. In this case, an entry for this identifier would
be searched for in the symbol tableenv , Also, the right side of the semantic rule to the third production
produces the valueInt for the operator′÷′ only if the attribute occurrenceT [1].typ andF.typ both
have the valueInt. Otherwise it is not defined.

If a semantic rule is undefined for particular arguments thisis understood as returning an error
value. No operator is defined for such an error value. Thus, the error value propagates. The compiler
would reject a program with error values in attributes.⊓⊔

We use a convention for writing attribute grammars to reducethe writing effort caused mainly by chain
productions:

If no semantic rule for a defining occurrence is given the identity function as semantic rule is assumed.

The following examples use this convention, at least for rulesA −→ αXβ whose right sides contain
only one symbolX whose attributes agree with the ones of the left sideA.

126 4 Semantic Analysis

Example 4.2.4 (Managing Symbol Tables) Attribute grammarAGscopes manages symbol tables for
a fragment of a C-like imperative language with parameterless procedures. Nonterminals for declara-
tions, statements, blocks, and expressions are associatedwith an with a inherited attributeenv that will
contain the actual symbol table.

The redeclaration of an identifier within the same block is forbidden while it is allowed in a new
block. To check this a further inherited attributesame is used to collect the set of identifiers that are
encountered so far in the actual block. The synthesized attributeok signals whether all used identifiers
are declared and used in a type-correct way.

〈decl 〉 −→ 〈type〉 var;

〈decl 〉.new = (var.id , 〈type〉.typ)

〈decl 〉.ok = true

〈decl 〉 −→ void var () { 〈block 〉 }

〈block 〉.same = ∅

〈block 〉.env = 〈decl〉.env ⊕

{var.id 7→ void ()}

〈decl 〉.new = (var.id , void ())

〈decl 〉.ok = 〈block 〉.ok

〈stat〉 −→ E;

E .env = 〈stat〉.env

〈stat〉.ok = E .ok

〈stat〉 −→ { 〈block 〉 }

〈block 〉.env = 〈stat〉.env

〈block 〉.same = ∅

〈stat〉.ok = 〈block 〉.ok

〈block 〉 −→ 〈decl 〉 〈block 〉

〈decl 〉.env = 〈block 〉[0].env

〈block 〉[1].same = let (x, _) = 〈decl〉.new

in 〈block 〉[0].same ∪ {x}

〈block 〉[1].env = let (x, τ) = 〈decl 〉.new

in 〈block 〉[0].env ⊕ {x 7→ τ}

〈block 〉[0].ok = let (x, _) = 〈decl〉.new

in if ¬(x ∈ 〈block 〉[0].same)

then 〈decl 〉.ok ∧ 〈block 〉[1].ok

else false

〈block 〉 −→ 〈stat〉 〈block 〉

〈stat〉.env = 〈block 〉[0].env

〈block 〉[1].env = 〈block 〉[0].env

〈block 〉[1].same = 〈block 〉[0].same

〈block 〉[0].ok = (〈stat〉.ok ∧ 〈block 〉[1].ok)

〈block 〉 −→ ǫ

〈block 〉.ok = true

This grammar only contains productions for the nonterminalsymbol〈stat〉. To obtain a complete gram-
mar further productions for expressions like the ones in 4.2.3 are needed. For the case that the program-
ming language also contains type declarations another attribute is required that manages the actual type
environment.

The given rules collect declarations from left to right. This excludes the use of a procedurevor
before its declaration. This formalizes the scoping rule for the language, namely that the scope of a
procedure declaration begins at the end of the declaration.We want now to change this scoping rules
to allow the use of procedures starting with the beginning ofthe block in which they are declared The
modified attribute grammar reflecting this is calledAGscopes+. In the attribute grammarAGscopes+ the
computation of the attributeenv is modified such that all procedures declared in the block areadded
to env already at the beginning of a block. The nonterminal〈block 〉 is associated with an additional
synthesized attributeprocs , and the productions for the nonterminal〈block 〉 obtain the additional rules:

4.2 Attribute Grammars 127

〈block 〉 −→ ε

〈block 〉.procs = ∅

〈block 〉 −→ 〈stat〉 〈block 〉

〈block 〉[0].procs = 〈block 〉[1].procs

〈block 〉 −→ 〈decl 〉 〈block 〉

〈block 〉[0].procs = match 〈decl 〉.new

with (x, void()) → 〈block 〉[1].procs ⊕ {x 7→ void()}

| _ → 〈block 〉[1].procs

The procedures collected in〈block 〉.procs are added to the environment〈block 〉.env in the productions
that introduce new blocks. The attribute grammarAGscopes+ then has the following semantic rules:

〈stat〉 −→ { 〈block 〉 }

〈block 〉.env = 〈stat〉.env ⊕ 〈block 〉.procs

〈decl 〉 −→ void var () { 〈block 〉 }

〈block 〉.env = 〈decl 〉.env ⊕ 〈block 〉.procs

The rest of attribute grammarAGscopes+ agrees with attribute grammarAGscopes . Note that the new
semantic rules induce an interesting functional dependency: Inherited attributes of a nonterminal on the
right side of a production depend on synthesized attributesof the same nonterminal.⊓⊔

Attribute grammars can be used to generate code. The code-generation functions as they were described
in Wilhelm/Seidl: Compiler Design—Virtual Machinesare recursively defined over the structure of
programs. They use information about the program such as thetypes of identifiers visible in a program
fragment whose computation can be described by attribute grammars. We now give an example how
a nontrivial subproblem of code generation can be describedby an attribute grammar. This is the so-
calledshort-circuit evaluationof boolean expressions.

Example 4.2.5 We consider code generation for a virtual machine like the CMA in Wilhelm/Seidl:
Compiler Design—Virtual Machines,

The code generated for a boolean expression according to attribute grammarBoolExpshould have
the following properties:

• the generated code consists only of load-instructions and conditional jumps. In particular, no
boolean operations are generated.
• Subexpressions are evaluated from left to right.
• Of each subexpression as well of the whole expression only the smallest subexpressions are evalu-

ated that uniquely determine the value of the whole (sub)expression. So, each subexpression is left
as soon as its value determines the value of its containing expression.

The following code is generated for the boolean expression(a∧ b)∨¬c with the boolean variablesa, b
andc:

load a

jumpf l1 jump-on-false

load b

jumpt l2 jump-on-true

l1: load c

jumpt l3

l2: continuation if the expression evaluates totrue

l3: continuation if the expression evaluates tofalse

128 4 Semantic Analysis

The attribute grammarBoolExpgenerates labels for the code for subexpressions, and it transports these
labels to atomic subexpressions from which the evaluation jumps to these labels. Each subexpression
E andT receives infsucc the label of the successor if the expression evaluates tofalse, and intsucc

the label of the successor if it evaluates totrue. A synthesized attributejcond contains the relation of
the value of the whole (sub)expression to its rightmost identifier.

• If jcond has the valuetrue for an expression this means that the value of the expressionis the
same as the value of its rightmost identifier. This identifieris the last one that is loaded during the
evaluation.
• If jcond has the valuefalse the value of expression is the negation of the value of its rightmost

identifier.

Correspondingly, aload instruction for the last identifier is followed by ajumpt to the label intsucc,
if jcond = true, and it is followed by ajumpf if jcond = false. This selection is performed by the
function:

gencjump (jc, l) = if jc then (jumpt l) else (jumpf l)

As a context for boolean expressions we add a production for atwo-sided conditional statement.
The labelstsucc and fsucc of the condition quite naturally correspond to the start addresses of the
code for thethenand theelseparts of the conditional statements. The code for the condition ends in
a conditional jump to theelsepart. It tests the conditionE for the valuefalse. Therefore the function
gencjump receives¬jcond as first parameter. We obtain:

4.3 The Generation of Attribute Evaluators 129

〈if _stat〉 −→ if (E) 〈stat〉 else 〈stat〉

E.tsucc = new()

E.fsucc = new()

〈if _stat〉.code = let t = E.tsucc

in let e = E.fsucc

in let f = new()

in E.code ˆgencjump (¬E.jcond , e)ˆ

t : ˆ〈stat〉[1].codeˆjump fˆ

e : ˆ〈stat〉[2].codeˆ

f :

E → T

E → E or T

E[1].tsucc = E[0].tsucc T.tsucc = E[0].tsucc

E[1].fsucc = new() T.fsucc = E[0].fsucc

E[0].jcond = T.jcond

E[0].code = let t = E[1].fsucc

in E[1].codeˆgencjump (E[1].jcond , E[0].tsucc)ˆ

t : ˆT.code

T → F

T → T and F

T [1].tsucc = new() F.tsucc = T [0].tsucc

T [1].fsucc = T [0].fsucc F.fsucc = T [0].fsucc

T [0].jcond = F.jcond

T [0].code = let f = T [1].tsucc

in T [1].codeˆgencjump (¬T [1].jcond , T [0].fsucc)ˆ

f : ˆF.code

F → (E)

F → not F

F [1].tsucc = F [0].fsucc

F [1].fsucc = F [0].tsucc

F [0].code = F [1].code

F [0].jcond = ¬F [1].jcond

F → var

F.jcond = true

F.code = load var.id

The infix operator ˆ denotes the concatenation of code fragments. This attribute grammar is not in
normal form: The semantic rule for the synthesized attribute code of the left sideifstat in the first
production uses the inherited attributestsucc and fsucc of the nonterminalE on the right side. The
reason is that the two inherited attributes are computed using a functionnew() that generated a new
label every time it is called. This way it changes a global state, which is, puristically seen, not admitted
by the attribute-grammar formalism.⊓⊔

4.3 The Generation of Attribute Evaluators

This section treats attribute evaluation, more precisely the evaluation of attribute instances in parse
trees, even more precisely the generation of the corresponding evaluators.

130 4 Semantic Analysis

An attribute grammar defines for each parse treet of the underlying context-free grammar a system
of equationsAES(t). The unknowns in this system of equations are the attribute instances at the nodes
of t. Let us assume that the attribute grammar is well-formed. Inthis case the system of equations is
not recursive. Non-recursive systems of equations can be solved by elimination methods. Each elimi-
nation step selects one attribute instance to be evaluated next. It must only depend on already evaluated
attribute instances. Such an attribute evaluator is purelydynamicas it does not exploit any information
about the dependences in the attribute gammar. An evaluatorthat makes use of such information is
described in the next section.

4.3.1 Demand-driven Attribute Evaluation

We now describe a first, dynamic attribute evaluator for well-formed attribute grammars, which evalu-
ates attribute instances in ademand-drivenway.

Demand-driven evaluation means that not all attribute instances will get their values, but attribute
evaluation will be triggered by avalue enquiryfor some attribute instances. This demand-driven eval-
uation is performed by a functionsolve, which is called for a node and one of the attributesa of the
symbol that labelsn. The evaluation starts by checking whether the demanded attribute instancen.a
has already received its value. If this is the case the function returns with the already computed value.
Otherwise the evaluation ofn.a is triggered. This evaluation may in turn demand the evaluation of other
attribute instances, whose evaluation is triggered recursively. This strategy has the consequence that for
each attribute instance in the parse tree the right side of its semantic rule is evaluated at most once. The
evaluation of attribute instances that are never demanded is completely avoided.

To realize this idea all attribute instances that are not initialized are set to the valueUndef before
the first value enquiry. Each attribute instance initialized with a non-Undef valued is set to the value
Value d. For the navigation in the parse tree we use the postfix operators [i] to go from a noden to
its ith successor. Fori = 0 the navigation stays atn. Furthermore we need an operatorfather when
given a noden returns the(n′, j) consisting of the fathern′ of noden and the information in which
direction, seen fromn′, to findn. This latter information says which child the argument nodeis of its
fathern′. To implement the functionsolve for this recursive evaluation, we need a functioneval. If p is
the production that was applied at noden, and if

f(p[i1].a1, . . . , p[ir].ar)

is the right side of the semantic rule for the attribute occurrencep[i].a, eval n (i, a) returns the value of
f , where for each demanded attribute instance the functionsolve is called, that is,

eval n (i, a) = f(solve n[i1] a1, . . . , solve n[ir] ar)

In a simultaneous recursion with the functioneval the functionsolve is implemented by:

solve n a = match n.a

with Value d→ d

| Undef → if b ∈ S(symb(n))

then let d = eval n (0, a)

in let _ = n.a← Value d

in d

else let (n′, j′) = father n

in let d′ = eval n′ (j′, a)

in let _ = n.a← Value d′

in d′

The functionsolve checks, whether the attribute instancen.a in the parse tree already has a value. If
this is the casesolve returns this value. If the attribute instancen.a does not yet have a value,n.a is
labeled withUndef. In this case the semantic rule forn.a is searched for.

4.3 The Generation of Attribute Evaluators 131

If a is a synthesized attribute of the symbol at noden, there is a semantic rule to the productionp
at noden. The right sidef of this rule is modified such that it does not directly attemptto access its
argument attribute instances, but instead calls the functionsolve recursively for these instances for node
n. If a valued for the attribute instancen.a is obtained, it is assigned to the attribute instancen.a and
in addition returned as result.

If a is an inherited attribute of the symbol at noden, the semantic rule forn.a is not supplied by
n, but by the father ofn. Let n′ be the father ofn andn thej′th child ofn′. The semantic rule for the
attribute occurrencep′[j′].a is chosen if the productionp′ was applied at noden′. Its right side is again
modified in the same way such that before any access to attribute values the functionsolve is called for
the noden′. The computed value is stored in the attribute instancen.a and returned as result.

If the attribute grammar is well-formed, the demand-drivenevaluator computes for each parse tree
and for each attribute instance always the correct value. Ifthe attribute grammar is not well-formed
there exist parse trees for which the associated system of equations is recursive. Ift is such a parse tree,
there is int a noden and an attributea at n such thatn.a depends, directly are indirectly, on itself.
The callsolve n a might then possibly not terminate. This nontermination canbe avoided by labeling
attribute instances withCalled if their evaluation has started, but not yet terminated. Thefunctionsolve

would terminate evaluation when it meets such an attribute instance labeled withCalled. solve would
return an error value in this case, see Exercise??.

4.3.2 Static Precomputations for Attribute Evaluators

Dynamic attribute evaluation do not exploit information about the attribute grammar to improve the ef-
ficiency of attribute evaluation. More efficient attribute evaluation methods is possible using knowledge
of the functional dependences in productions. An attributeoccurrencep[i].a in productionp function-
ally depends on an occurrencep[j].b if p[j].b is an argument for the semantic rule forp[i].a.

These production-local dependences determine the dependences in the system of equationAES(t).
The evaluation method that we describe now analyzes the functional dependences between attribute
occurrences in productions to derive information about global dependences and a visit sequence for
the attribute occurrence of each production that guarantees that an attribute instance is only visited
when the argument instances for the corresponding semanticrule are already evaluated. Consider again
Figure 4.6. Attribute evaluation requires a cooperation ofthe computations at a noden and and its
successorsn1, . . . , nk, and those in the context of this production instance. A local computation of an
instance of a synthesized attribute at a noden labeled withX0 provides an attribute value to be used
by local computations in the upper context ofn. The computation of the value of an inherited attribute
instance at the same noden takes place aboven and provides a new attribute value available for local
computations belown according to the semantic rules for the productionp : X0 −→ X1 . . . Xk. To
schedule this interaction of computationsglobal functional dependences between attribute instances
need to be derive from production-local dependences. We introduce some notions:

For a productionp let V (p) be the set of attribute occurrences inp. The semantic rules to production
p define a relationDp(p) ⊆ V (p)× V (p) of production-localfunctional dependences on the setV (p).
The relationDp(p) contains a pair(p[j].b, p[i].a) of attribute occurrences if and only ifp[j].b occurs as
an argument in a semantic rule forp[i].a.

env blocksame ok

envenv stat ok blocksame ok

Fig. 4.7. The production-local dependence relation to productionblock → stat block in AGscopes

132 4 Semantic Analysis

env blocksame ok

env blocksame oknewdecl

Fig. 4.8. The production-local dependence relation to productionblock → decl block in AGscopes .

env

envenv T typ mop op

typT

F typ

Fig. 4.9. Die production-local dependence relation zur productionT → T mop F ausAGtypes

env

var id

typFenv typF

const typ

Fig. 4.10. The production-local dependence relations of the productionsF → const andF → var in AGtypes .

Example 4.3.1 (Continuation of Examples 4.2.4 and 4.2.3) To increase readability we represent attri-
bute-dependence relations always together with the underlying syntactic structure, that is, the pro-
duction or the parse tree. The dependence relations for the productionsblock → stat block and
block → decl block in AGscopes are shown in Figure 4.7 and 4.8. The production-local dependence
relations for attribute grammarAGtypes are all very simple: There are dependences between the oc-
currence of the inherited attributeenv on the left side and the inherited occurrence of attributeenv on
the right side and between the synthesized attributestyp andop on the right side to the synthesized at-
tributetyp on the left side (see Figure 4.9). Only in productionF → var there is a dependence between
the attributesenv andtyp of nonterminalF (see Figure 4.10).⊓⊔

In attribute grammars in normal form the arguments of semantic rules for defining occurrences are
always applied attribute occurrences. Therefore the pathsin all production-local dependence relations
have length 1, and there exist no cycles of the form(p[i].a, p[i].a). The adherence to normal form
simplifies some considerations. If not explicitly said otherwise we assume in the following that all
attribute grammars are in normal form.

4.3 The Generation of Attribute Evaluators 133

The production-local dependences between attribute occurrence in productions induce dependences
between attribute instances in the parse trees of the grammar. Let t be a tree of the context-free gram-
mar underlying an attribute grammar. Theindividual dependence relation on the setV (t) of attribute
instances oft, Dt(t), is obtained byinstantiatingthe production-local dependence relations of pro-
ductions applied int. For each noden in t at which productionp has been applied the relationDt(t)
consists of exactly the pairs(n[j].b, n[i].a) with (p[j].b, p[i].a) ∈ Dp(p).

env blocksame ok

env blocksame ok

env blocksame ok

decl new

type typ

var id

var

int

env E

const

=

env stat ok

env

}{

id

ǫtyp

typ

stat ok

Fig. 4.11. The individual dependence relation for the parse tree to{ int x; x = 1; } according to attribute
grammarAGscopes

Example 4.3.2 (Continuation of Example 4.2.4) The dependence relation to the parse tree of state-
ment{ int x; x = 1; } according to attribute grammarAGscopes is shown in Figure 4.11. For sim-
plicity we assumed that the nonterminaltype directly derives the base typeint, and that nonterminalE
for expressions directly derives the terminalconst. ⊓⊔

A relationR on a setA is calledcyclic if its transitive closure contains(a, a). Otherwise we call the
relationR acyclic. A attribute grammar is callednon-circular, if all individual dependence relations of
the attribute grammar are acyclic. An individual dependence relationDt(t) is acyclic if and only if the
system of equationsAES(t) that was introduced in Section 4.2.1 is not recursive. Attribute grammars
that satisfied the latter condition were called well-formed. Thus, an attribute grammar is well-formed if
and only it is well-formed.

Consider a parse treet with root labelX as in Figure 4.12. The instances of the inherited attributes
at the root are viewed as input tot, and the instances of the synthesized attributes at the rootas output
of t. The instance ofd at the root (transitively) depends only on the instance ofc at the root. If the value
of the instance ofc is known an attribute evaluator can descend intot and return with the value for the
instance ofd since there are no other dependences of instances external to t that do not pass through
c. The instance ofe at the root depends on the instances ofa andb at the root. When both values are
available the evaluation of the instance ofe can be triggered. This situation is described by thelower
characteristic dependence relationof X induced byt. This is a relation over the setA(X).

134 4 Semantic Analysis

dc Xba edc Xba e

Fig. 4.12. Attribute dependences in a parse tree forX and the induced lower characteristic dependence relation

Let t be a parse tree for a symbolX with root n. The lower characteristic dependence relation
Rt(X) for X induced byt consists of all pairs(a, b) of attributes for which the pair(n.a, n.b) of
attribute instances at the rootn of t is in the transitive closure of the individual dependence relation
Dt(t). In particular is

Rt(X) ⊆ I(X)× S(X).

env blocksame ok

Fig. 4.13. Lower characteristic dependence relation forblock

Example 4.3.3 (Continuation of Example 4.3.2) The lower characteristic dependence relation for the
nonterminalblock induced by the subtree of the root oft with rootblock in Example 4.3.2 is shown in
Figure 4.13. ⊓⊔

Lemma 4.1. For an attribute grammar the following statements are equivalent:

1. For each parse treet with root labelX , the lower characteristic dependence relationUt(X) is
acyclic;

2. For each parse treet the dependence relationDt(t) is acyclic.

While the set of dependence relations of an attribute grammar is in general infinite the set oflower
dependence relations is always finite since there is one suchrelation per nonterminal. One can thus
compute the set of all lower dependence relations and then decide whether the dependence relations
Dt(t) for each parse treet is acyclic, and whether the demand-driven attribute evaluator always termi-
nates.

Let X be a symbol with a setA of attributes. For a relationR ⊆ A2 andi ≥ 0 and a productionp
we define the relationR[p, i] as

R[p, i] = {(p[i].a, p[i].b) | (a, b) ∈ R}

Consider a productionp : X −→ X1 . . . Xk. For a binary relationS ⊆ V (p)2 over the set of attribute
occurrence of productionp we define the following two operations

S+ =
⋃
{Sj | j ≥ 1} (transitive closure)

πi(S) = {(a, b) | (p[i].a, p[i].b) ∈ S} (projection)

Projection allows extracting the induced dependences between the attributes of a symbol occurring in a
productionp out of a dependence relation for attribute occurrences inp. We can thereby define the effect

4.3 The Generation of Attribute Evaluators 135

[[p]]♯ of the application of productionp on the dependence relationsR1, . . . , Rk for symbol occurrences
p[i] on the right side ofp by:

[[p]]♯(R1, . . . , Rk) = π0((Dp(p) ∪R1[p, 1] ∪ . . . ∪Rk[p, k])+)

The operation[[p]]♯ takes the local dependence relation of productionp and adds the instantiated depen-
dence relations for the symbol occurrences of the right side. The transitive closure of this relation is
computed and projected to the attributes of the left-side nonterminal ofp. If productionp is applied at
the root of a parse treest, and if the die relationsU1, . . . , Uk are the lower dependence relations for the
subtrees under the root oft the lower characteristic dependence relation fort is obtained by

Ut(X) = [[p]]♯(U1, . . . , Uk)

The setsU(X), X ∈ V of all lower dependence relations for nonterminal symbolsX result as the least
solution of the system of equations

(U) U(a) = {∅} , a ∈ VT

U(X) = {[[p]]♯(U1, . . . , Uk) | p : X → X1 . . .Xk ∈ P, Ui ∈ U(Xi)} , X ∈ VN

Here,VT , VN , andP are the sets of terminal and nonterminal symbols, and productions of the under-
lying context-free grammar. Each right side of these equations ismonotonicin each unknownU(Xi)
on which it depends. The set of all transitive binary relations over a finite set is finite. Therefore also
the set of its subsets is finite. The least solution of this system of equations, i.e., the set of all lower
dependence relations for eachX can be determined by iteration. The resulting relations canbe checked
for cyclic dependences. Hence the non-circularity problemfor attribute grammars can be decided.

Theorem 4.3.1 It is decidable whether an attribute grammar is well-formed. ⊓⊔

To decide well-formedness all lower dependence relations of the attribute grammar are computed. This
set is finite, but it can grow exponentially in the number of attributes. The check for non-circularity is
thus only practically feasible if the number of attributes is small, or if the symbols have only few lower
dependence relations. In general the exponential effort isunavoidable since the problem to check for
non-circularity of an attribute grammar isEXPTIMEcomplete.

In many attribute grammars a nonterminalX may have several lower characteristic dependence
relations, but these are all contained in one common transitive acyclic dependence relation.

Example 4.3.4 Consider the attribute grammarAGscopes in Example 4.2.4. For nonterminalblock

there are the following lower characteristic dependence relations:

(1) ∅

(2) {(same, ok)}

(3) {(env , ok)}

(4) {(same, ok), (env , ok)}

The first three dependence relations are all contained in thefourth. ⊓⊔

To compute for each symbolX a transitive relation that contains all lower characteristic dependences
for X we set up the following system of equations over transitive relations:

(R) R(a) = ∅ , a ∈ VT

R(X) =
⊔
{[[p]]♯(R(X1), . . . ,R(Xk)) | p : X → X1 . . .Xk ∈ P} , X ∈ VN

The partial order on transitive relations is the subset relation⊆. Note that the least upper bound of the
transitive relationsR ∈ S is not just their union. Instead we have:

⊔
S = (

⋃
S)+

136 4 Semantic Analysis

i.e., following the union of the relations the transitive closure must be computed. For each productionp
the operation[[p]]♯ is monotonic in each of their arguments. Therefore the system of equations possesses
a least solution. Since there are only finitely many transitive relations over the set of attributes this
solution can be determined by iteration. LetU(X), X ∈ V, andR(X), X ∈ V, be the least solutions
of the systems of equations(U) and(R). By induction over the iterations of the fixed-point algorithm
One can prove that for allX ∈ V holds

R(X) ⊇
⋃
U(X)

We conclude that all characteristic lower dependence relations of the attribute grammar are acyclic if
all relationsR(X), X ∈ V, are acyclic. An attribute grammar where all relationsR(X), X ∈ V, are
acyclic is calledabsolutely non-circular. Each absolutely non-circular attribute grammar is thereby also
well-formed. This means that for absolutely non-circular attribute grammars the algorithm for demand-
driven attribute evaluation always terminates. By solvingthe system of equations(R) one has identified
a polynomial criterion to guarantee the applicability of demand-driven attribute evaluation.

Similar to thelower characteristic dependence relations of a symbolX the uppercharacteristic
dependence relation forX can be defined. It is derived from attribute dependences of upper tree frag-
ments forX . Remember: The upper tree fragment of a parse treet at n is the tree that one obtains
by replacing the subtree atn by the noden. This upper tree fragment is denoted byt\n. Let Dt(t\n)
be the individual dependence relation of the upper tree fragment, i.e., the set of all pairs(n1.a, n2, b)
of the individual dependence relationDt(t) for which n1 as well asn2 lie in the upper tree fragment
t\n. The upper characteristic dependence relationOt,n(X) for X at noden in t consists of all pairs
(a, b) ∈ A(X) × A(X), for which the pair(n.a, n.b) lies in the transitive closure ofDt(t\n) (see
Figure 4.14). One can construct a system of equations over sets of transitive relations for the setO(X)
of all possible upper characteristic dependence relationsof symbolX (see Exercise??).

cXba d e

cXba d e

Fig. 4.14. Attribute dependences in an upper tree fragment forX and the induced upper characteristic dependence
relation

4.3.3 Visit-Oriented Attribute Evaluation

The advantage of a statically generated attribute evaluator over the demand-driven dynamic evaluator
of the previous section is that the behavior of the evaluatorat each node is already statically fixed at
generation time. No test at each attribute instance at evaluation time whether the instance is already
evaluated is needed. The largest class of attribute grammars for which we describe the generation

4.3 The Generation of Attribute Evaluators 137

of attribute evaluators is the class ofl-orderedor simple-multi-visitattribute grammars. An attribute
grammar is calledl-ordered if there exists a functionT that map each symbolX to a total order
T (X) ⊆ A2 on the setA of attributes ofX that is compatible with all productions. This means that for
each productionp : X0 −→ X1 . . . Xk of the underlying grammar the relation

DT (p) = (Dp(p) ∪ T (X0)[p, 0] ∪ . . . ∪ T (Xk)[p, k])+

is acyclic. This property is equivalent to the property that

T (Xi) = πi((Dp(p) ∪ T (X0)[p, 0] ∪ . . . ∪ T (Xk)[p, k])+)

holds for alli. Therefore holds in particular:

T (X0) ⊇ [[p]]♯(T (X1), . . . , T (Xk))

By comparing this inequality with the equation for the unknown X0 in the system of equations(R) in
the last section, we can conclude that the total orderT (X0) contains the dependence relationR(X0).
SinceT (X0) is a total order and is therefore acyclic the attribute grammar is absolutely noncircular,
where all local lower dependence relations atX0 are contained inT (X0). In analogy, one can show
thatT (X0) contains allupperdependence relations atX0.

Example 4.3.5 (Continuation of Example 4.2.4) In the attribute grammarAGscopes the following to-
tal orders on the sets of attributes offer themselves for thesymbolsstat , block , decl , E andvar:

stat env → ok

block same → env → ok

decl new

E env → ok

var id

⊓⊔

Let BT (X) ∈ A(X)∗ be the sequence of the attributes ofX according to the total orderT (X).
This linear sequence can be factored into subsequences of inherited and purely synthesized attributes.
In our example this factorization is for all considered symbols very simple: All inherited attributes
occur before all synthesized attributes. In general some inherited attributes can depend on synthesized
attributes. We then obtain a factorization:

BT (X) = IX,1SX,1 . . . IX,rX
SX,rX

whereIX,i ∈ I(X)∗ andSX,i ∈ S(X)∗ holds for all i = 1, . . . , rX and furthermoreIX,i 6= ǫ for
i = 2, . . . , rX andSX,i 6= ǫ for i = 1, . . . , rX − 1.

Intuitively, this factorization of the sequenceBT (X) means That the synthesized attributes at each
node of a parse tree labeled withX can be evaluated in at mostrX visits; at the first visit of the node,
coming from the parent node, the values of the inherited attributes inIX,1 are available, at the return
to the parent node, the values of the synthesized attributesin SX,1 are evaluated. Correspondingly, at
the ith visit of the node, the values of the inherited attributes in IX,1 . . . IX,i are available, and the
synthesized attributes inSX,i are computed. A subsequenceIX,iSX,i of BT (X) is called avisit of X .
To determine which evaluations may be performed during theith visit at a noden and at the successors
of the noden, one considers the dependence relationDT (p) for the productionX0 −→ X1 . . . Xk

that is applied atn. Since the relationDT (p) is acyclicDT (p) can be arranged into a linear order. In
our case we chose the orderBT (p), which can be factorized intovisits. Altogether we obtain for the
relationDT (p) a visit sequence:

BT (p) = BT ,1(p) . . . BT ,rX0
(p)

The ith subsequenceBT ,i(p) describes what happens during theith visit of a noden at which the
productionp : X0 −→ X1 . . . Xk has been applied. For each occurrence of inherited attributes of the

138 4 Semantic Analysis

Xj (j > 0) in the subsequence, the corresponding attribute instances are computed one after the other.
After the computation of the listed inherited attribute instances of thei′th visit of thejth successor this
successor is recursively visited to determine the values ofthe synthesized attributes, associated with the
i′th visit. When the values of the synthesized attributes of all successors are available that are directly
or indirectly needed for th computation of the synthesized attributes of theith visit of the left sideX0

the values of these synthesized attributes are computed.
To describe the subsequenceBT ,i(p) in an elegant way we introduce the following abbreviations.

Let w = a1 . . . al be a sequence of attributes of the nonterminalXj. p[j].w = p[j].a1 . . . p[j].al shall
denote the associated sequence of attribute ccurrences inp. Thei′th visit IXj ,i′SXj ,i′ of thejth symbol
of the productionp is denoted by the sequencep[j].(IXj ,i′ SXj ,i′). The sequenceBT ,i(p), interpreted
as a sequence of attribute occurrences inp, has then the form:

BT ,i(p) = p[0].IX0,i

p[j1].(IXj1
,i1 SXj1

,i1)

. . .

p[jr].(IXjr ,ir
SXjr ,ir

)

p[0].SX0,i

for an appropriate sequence of pairs(j1, i1), . . . , (jr, ir). It consists of the visits of the nonterminal
occurrencesXj1 , . . . , Xjr

of the right side of productionp that are embedded in theith visit of the left
side ofp.

Let p be a production andf(p[j1].a1, . . . , p[jr].ar) be the right side of the semantic rule for the
attribute occurrencep[j].a for a total functionf . For a noden in the parse tree at which productionp
has been applied, we define

evalp,j,a n = f(n[j1].a1, . . . , n[jr].ar)

The functionsevalp,j,a are used to generate a functionsolvep,i from theith subsequenceBT ,i(p) of
productionp:

solvep,i n = forall (a ∈ IXj1
,i1)

n[j1].a← evalp,j1,a n;

visiti1 n[j1];

. . .

forall (a ∈ IXjr ,ir
)

n[jr].a← evalp,jr ,a n;

visitir
n[jr];

forall (a ∈ SX0,i)

n.a← evalp,0,a n;

Example 4.3.6 (Continuation of Example 4.2.4) The production-local dependence relation for the
productionblock → decl block is obtained from the relation in Figure 4.8 by associating the total order
on the attribute occurrences with the symbols. Altogether,this relation is embedded into the following
total order:

block [0].same → block [0].env →

decl .new →

block [1].same → block [1].env → block [1].ok →

block [0].ok

According to this total order, the evaluator first descends ino the subtree for the nonterminaldecl to
determine the value of the attributenew . Thereby the inherited attributes of the nonterminalblock

don the right side of the production can be computed. A descent into the subtree for this nonterminal
permits to compute the value of the synthesized attributeok of this nonterminal. After this, all values
are available that are needed to compute the value of the synthesized attributeok on the left side of the
production. ⊓⊔

4.3 The Generation of Attribute Evaluators 139

The evaluation orders invisiti are chosen in such a way that the value of each attribute instancen[j′].b
will be computed before any attempt to read its value. The functionssolvep,i are simultaneously recur-
sive with themselves and with the functionsvisiti. For a noden let get_prod n be the production that
was applied atn or Null if n is a leaf that is labeled with a terminal symbol orǫ. If p1, . . . , pm is a
sequence of the productions of the grammar, Then the function visiti is given by:

visiti n = match get_prod n

with Null→ ()

| p1 → solvep1,i n

. . .

| pm → solvepm,i n

For a noden the functionvisiti checks wethern is a leaf or wether it was generated by the application of
a production. Ifn is a leaf the evaluator doesn’t need to do anything, if we assume that the synthesized
attributes of the leaves were properly initialized. The evaluator recognizes thatn is a leaf if the call
get_prod n returns the valueNull. If n is not a leaf the callget_prod n returns the productionpj atn.
In this case thefunctionsolvepj ,i is called forn.

Let S be the start symbol of the context-free grammar underlying the attribute grammar. IfS has
no inherited attributes thenBT (X) consists of one order of only synthesized attributes, whichone can
evaluate in a single visit. The evaluation of all attribute instances in a parse treet with rootn0 for the
start symbolS is then performed by the callvisit1 n0.

The evaluator just presented can be generated in polynomialtime from the attribute grammar together
with the total ordersT (X), X ∈ V . Not every attribute grammar possess such a system compatble total
orders. The question wether an attribute grammar isl-attributed is certainly inNP , since total orders
T (X), X ∈ V , can be guessed and then checked for compatibility in polynomial time. A significantly
better algorithm is not known. This problem is not only inNP , but it isNP complete.

In practice one will therefore use only a subclass of thel ordered attribute grammars where a simple
method delivers compatible total ordersT (X), X ∈ V . The starting point for the construction is the
system of equations:

(R′) R′(X) =
⊔
{πi((Dp(p) ∪R′(X0)[p, 0] ∪ . . . ∪R′(Xk)[p, k])+) |

p : X0 → X1 . . .Xk ∈ P, X = Xi} , X ∈ V

over thetransitiverelations on attributes, ordered by the subset relation⊆. Bear in mind that the least
upper bound of transitive relationsR ∈ S is given by:

⊔
S = (

⋃
S)+

The least solution of the system of equation(R′) exists since the operators on the right side of the
equations are monotonic. The least solution can be determined by the iterative method that we used
in Chapter 3.2.5 for the computation of thefirstksets. Termination is guaranteed since the number of
possible transitive relations is finite.

LetR′(X), for X ∈ V be the least solution of the system of equations. Each systemT (X), X ∈ V,
of compatibletotal orders is a solution of the system of equations(R′). ThereforeR′(X) ⊆ T (X)
holds for all symbolsX ∈ V . If there exists such a systemT (X), X ∈ V, of compatible total orders
the relationsR′(X) are all acyclic. The relationsR′(X) are therefore a good starting point to construct
total ordersT (X).

This construction is done in a way that for eachX a sequence with a minimal number of visits is
obtained. For a symbolX with A(X) 6= ∅ a sequenceI1S1 . . . IrSr is computed, whereIi andSi are
sequences of inherited and synthesized attributes, respecively. All already listed attributes are collected
in a setD, which is initialized with the empty set. Let us assume,I1, S1, . . . Ii−1, Si−1 are already
computed, andD would contain all attributes that occur in these sequences.Two steps are executed:

140 4 Semantic Analysis

1. First, a maximally large set ofinheritedattributes ofX is determined that are not inD, and which
only depend on each other or on attributes inD. This set is topologically sorted, delivering some
sequenceIi. This set is added toD.

2. Next, a maximally large set ofsynthesizedattributes is determined that are not inD, and that only
depend on each other or on attributes inD. This set is added toD, and a topologically sorted
sequence is produced asSi.

This procedure is iterated producing more subsequencesIiSi until all attributes are listed, that is, until
D is equal to the whole setA(X) of attributes of the nonterminalX .

Let T ′(X), X ∈ V, be total orders on the attributes of the symbols ofX that are computed this way.
We call the attribute grammarorderedif the total ordesT ′(X), X ∈ V, are already compatible, that is,
satisfy the system of equations(R′). In this method the relationsR′(X) are expendedone by oneto
total orders, without checking wether the added artificial dependences generate cycles in the produc-
tions. The polynomial complexity of the construction was therefore achieved with a restriction of the
expressivity of the accepted attribute grammars.

In our examples 4.2.4, 4.2.3 and 4.2.5 in Section 4.2.2 attribute evaluators are generated by our method
that visit each node of a parse tree exactly once. Not all practically relevant attribute grammars have
so simple evaluators. An attribute grammar to compute a symbol table for JAVA , for instance, must
visit the body of a class several times because in JAVA for methods need not be declared in aforward
declaration, as is the case for functions in C. A JAVA method that is used in the body of another method,
although it is declared only later. A similar problem occursin functional languages such as OCAML ,
when simultaneous recursive functions are introduced (seeExercise??).

4.3.4 Parser-directed Attribute Evaluation

In this section we consider some classes of attribute grammars that are strongly restricted in the types of
attribute dependences they admit, but quite useful in practice. The introductory example 4.2.1 belongs
to one of these classes. For attribute grammars in these classes, attribute evaluation can be performed
in parallel to syntax analysis and directed by the parser. attributes values are administered in a stack-
like fashion either on a dedicated attribute stack or together with the parser states on the parse stack.
In any case, attribute values are addressed using static relative addresses such that an efficient access
is possible. The construction of the parse tree, at least forthe purpose of attribute evaluation, is unnec-
essary. attributes-grammars from these classes are therefore interesting for the compilation of simple
languages by efficient compilers.

Since attribute evaluation shall be parser directed the values of synthesized attributes at terminal
symbols need to be obtained by the scanner when the symbol is passed on to the parser.

L attributesd Grammars

All parsers that we consider as possibly directing attribute evaluation process their input from left to
right. This suggests that attribute dependences going fromright to left are not acceptable. The first
grammar class introduced,L attributed grammars, excludes exactly such dependences. This class prop-
erly contains all classes subject to parser-directed attribute evaluation. It consists of those attribute
grammars in normal form where the attribute instances in each parse tree can be evaluated in one left
to right traversal of the parse tree. Formally we call an attribute grammarL attributed(abbreviated an
LAG), if for each productionp : X0 → X1 . . . Xk of the underlying grammar the occurrencep[j].b
of an inherited attribute only depends on attribute occurrencesp[i].a with i < j. Attribute evaluation in
one left to right traversal can be performed using the algorithm of Section 4.3.3, which visits each node
in the parse tree only once and visits the children of a node ina fixed left to right oder. For a production
p : X0 → X1 . . . Xk a functionsolvep is generated that is defined by:

4.3 The Generation of Attribute Evaluators 141

solvep n = forall (a ∈ IX1
)

n[1].a← evalp,1,a n;

visit n[1];

. . .

forall (a ∈ IXk
)

n[k].a← evalp,k,a n;

visit n[k];

forall (a ∈ SX0
)

n.a← evalp,0,a n;

HereIX andSX are the sets of inherited and synthesized attributes of symbol X , and the expression
evalp,j,a n delivers the value of the right side of the semantic rule for the attribute instancen[j].a. The
visit of a noden is realized by the functionvisit:

visit n = match get_prod n

with Null→ ()

| p1 → solvep1
n

. . .

| pm → solvepm
n

Again functionget_prod n returns the production that was applied at noden (or Null if n is a leaf).
The attribute grammarsAGscopes , AGtypes andAGbool of Examples 4.2.4, 4.2.3 and 4.2.5 are allL
attributed, where the last one is not in normal form.

LL Attributed Grammars

Let us consider the actions that are necessary for a parser-directed attribute evaluation:

• When reading a terminal symbola: Receiving the synthesized attributes ofa from the scanner;
• When expanding a nonterminalX : Evaluation of the inherited attributes ofX ;
• When reducing toX : Evaluation of the synthesized attributes ofX ;

An LL(k) parser as it was described in the chapter on syntax analysis can trigger these actions at the
reading of a terminal symbol, at expansion, and at reduction, respectively. An attribute grammar in
normal form is calledLL attributed, if

• it is L attributed, and
• the underlying context-free grammar is anLL(k)-grammar (for somek ≥ 1).

The property of an attribute grammar to beLL attributed means that syntax analysis can be per-
formed by anLL parser, and that whenever theLL parser expands a nonterminal, all arguments for its
inherited attributes have already been computed, or at least could have been computed.

In Chapter 3.3 we described how to construct a parser to a strong LL(k) grammar. This parser
administered items[A → α.β] on its stack, where the dot in the item represented that the part of the
input that was derived fromα was already processed. We now extend this pushdown automaton such
that it manages a second stack, theattribute stack, whose frames are pointed to by pointers associated
with items on the parse stack. The frame for the item[A → α.β] contains the values of the inherited
attributes of the left sideA and the values of the synthesized attributes of the symbols in α.

Figure 4.15 visualizes the actions of theLL parser-directed attribute evaluation.

• An expandtransition for symbolB, pushing one of its alternativesB → γ onto the parse stack,
creates a new frame for the values of the inherited attributes of the left sideB, computes their
values by the associated semantic rules into this frame.

142 4 Semantic Analysis

• A shift transition under a terminal symbola, moving the dot over thea, extends the frame with
space for the values of the synthesized attributes ofa, obtains their values from the scanner, and
stores these on the attribute stack.
• A reducetransition assumes a complete item[B → γ.] on top of the parse stack and the values

of the synthesized attributes ofγ available in the associated frame. The values of the synthesized
attributes of the left sideB are computed according to the semantic rules and stored in the frame
for B pointed to by the item[A→ α.Bβ]. The complete item[B → γ.] is removed from the parse
stack, and its frame is removed from the attribute stack. Thedot in [A→ α.Bβ] is moved over the
B.

nachher

vorher nachher

vorher nachher

vorher

S(B)A→ αB.β I(A) S(α)

A→ α.Bβ S(α)I(A)A→ α.Bβ I(A) S(α)

A→ α.Bβ I(A) S(α)

B → γ. I(B) S(γ)

Reading a terminal symbol a

A→ α.aβ I(A) S(α) A→ αa.β I(A) S(α) S(a)

Reduction according to B → γ

Expansion of a nonterminal B

I(B)B → .γ

Fig. 4.15. Actions ofLL parser-directed attribute evaluation, whereI(A) andS(α) denote the sequences of the
values of the inherited attributes of a symbolA and of the synthesized attributes of the symbols inα, resp.

The attribute grammarsAGtypes andAGbool are bothL attributed. However, both are notLL attributed.
In both cases the underlying underlying context-free grammar is left recursive and therefore notLL(k)
for anyk. For the attribute grammarAGbool one can show that there exists noLL attributed grammar
that solves this code-generation problem in this way, that is, by propagation of two jump targets to each
subexpression.

LR Attributed Grammars

We now present a method by which anLR parser can direct the evaluation of attributes. AnLR parser
administers states on its stack. States consists of sets of items, possibly extended by lookahead sets.
Each such stateq is associated with an attribute frameS(q). The attribute frame of the initial state is
empty. For any other stateq 6∈ {q0, f} with entry symbolX The frameS(q) contains the values of
the synthesized attributes of the symbolX . We extend theLR parser with a (global) attribute frameI,
Which holds the value of each inherited attributeb or⊥ if the value of the attributesb is not available.
Initially the global attribute frameI contains the values of the inherited attributes of the startsymbol.

4.3 The Generation of Attribute Evaluators 143

The values of the synthesized attributes of a terminal symbol are made available by the scanner.
Two problems need to be solved if the values of the attributesfor the attribute frameS(q) of a stateq
are computed:

• The semantic rule needs to be identified by which the attribute values should be evaluated.
• The values of the attribute occurrences that are arguments of the semantic rule need to accessed by

static addresses.

The values of the synthesized attributes of a nonterminalX0 can be computed when theLR parser
makes a reduce transition: The productionp : X0 → X1 . . . Xk is known by which the reduction to
X0 is done. To compute a synthesized attributeb of X0 the semantic rule for the attribute occurrence
p[0].b of this production is used. Before the reduction a sequenceq′q1, . . . , qk of states is on top of
the parse stack, whereq1, . . . , qk have entry symbolsX1, . . . , Xk of the right side ofp. Let us assume
the values for the attribute framesS(q1), . . . ,S(qk) were already computed. The semantic rule for a
synthesized attribute ofX0 can be applied by accessing the values for the occurrencesp[0].b of inherited
attributes of the left sideX0 in I and the values for occurrencesp[j].b of synthesized attributes ofXj

of the right side inS(qj). Before thereducetransition, the values of the synthesized attributes ofX0

can be computed for the stateq = δ(q′, X0) that is entered underX0. Still unsolved is the question how
the values of the inherited attributes ofX0 can be determined.

In the case that there are no inherited attributes, we already have a method for attribute evaluation.
An attribute grammar is calledS attributed, if it has only synthesized attributes. Example 4.2.1 is such
a grammar. Despite the restriction to have only synthesizedattributes once could describe how trees for
expressions are constructed. In general, the computation of some semantic value can be specified by an
S-grammar. This mechanism is offered by parser generators such as YACC or BISON. EachS attributed
grammar is alsoL attributed. If anLR grammar isS attributed, the attribute frames of the states can be
computed on a stack, in particular the values of synthesizedattributes of the start symbol.

Attribute grammars with synthesized attributes alone are not expressive enough for more challeng-
ing tasks. Even the computation of types of expressions relative to a symbol tableenvin Example 4.2.3
requires an inherited attribute, which is passed down the parse tree. Our goal therefore is to extend the
approach forS attributed grammars to deal with inherited attributes. TheLR parser does in general
not know the upper tree fragment, in which the transport paths for inherited attribute values lie. If a
grammar is left recursive the application of an arbitrary number of semantic rules may be required to
compute the value of an inherited attribute. On the other hand, it is helpful that often the values of inher-
ited attributes passed down unchanged through the parse tree. This is the case in the attribute grammar
AGtypes of Example 4.2.3, which computes the type of an expression, in which the value of the at-
tributeenv is copied from the left side of productions in attributes of the same name to occurrences of
nonterminals on the right side. This can be observed in productionblock → stat block of the attribute
grammarAGscopes of Example 4.2.4, in which the inherited attributesame of the left side is copied to
an attribute of the same name of the nonterminal occurrenceblock of the right side, and the inherited
attributeenv of the left side is copied to attributes of the same name at nonterminal occurrences of the
right side.

Formally we call an occurrencep[j].b of an inherited attributeb at thejth symbol of a production
P : X0 → X1 . . . Xk copyingif there exists ani < j, such that the following holds:

1. p[j].b = p[i].b, and
2. p[i].b is the last occurrence of the attributeb beforep[j].b, that is,b 6∈ A(Xi′) for all i < i′ < j.

In this sense all occurrences of the inherited attributesenv on the right side of the attribute grammar
AGtypes are copying. The same holds for the occurrences of the inherited attributessame andenv of
the attribute grammarAGscopes in the productionblock → stat block .

Let us assume for a moment that all occurrences of inherited attributes in right sides were copying.
This means that the values of inherited attributes do never change. If the global attribute frameI
contains the right value of an inherited attribute, this doesn’t need to be changed.

Not all occurrences of inheritedr attributes of anL attributed grammar are in general copying.
For a noncopying occurrencep[j].b of an inherited attributeb the attribute evaluator needs to know
the productionp : X0 → X1 . . .Xk and the positionj in the right side ofp, to select the correct

144 4 Semantic Analysis

semantic rule for the attribute occurrence. We use a trick toaccomplish this. A new nonterminalNp,j is
introduced with the only productionNp,j → ǫ. This nonterminalNp,j is inserted before the symbolXj

in the right side ofp. The nonterminal symbolNp,j is associated with all inherited attributesb of Xj

that are noncopying inp. Each attributeb of Np,j gets a semantic rules that computes the same value as
the semantic rule forp[j].b.

Example 4.3.7 Consider the productionblock → decl block of the attribute grammarAGscopes of
Example 4.2.4. The attribute occurrencesblock [1].same andblock [1].env on the right side of the pro-
duction are not copying. Therefore a new nonterminal lN is inserted beforeblock :

block −→ decl N block

N −→ ǫ

The new nonterminal symbolN has inherited attributes{same, env}. It doesn’t need any synthesized
attributes. The new semantic rules for the transformed production:

N.same = let (x, τ) = decl .new

in block [0].same ∪ {x}

N.env = let (x, τ) = decl .new

in block [0].env ⊕ {x 7→ τ}

block [1].same = N.same

block [1].env = N.env

block [1].ok = let (x, τ) = decl .new

in if x 6∈ block [0].same

then block [1].ok

else false

SinceN has only inherited attributes, it doesn’t need any semanticrules. We observe that the inherited
attributessame andenv of the nonterminalblock are both copying after the transformation.⊓⊔

Inserting nonterminalNp,j doesn’t change the accepted language. However theLR(k) property may
be lost. In Example 4.3.7 this is not the case. If the underlying context-free grammar is stillLR(k)-
grammar after the transformation we call the attribute grammarLR attributed.

After the transformation the only noncopying inherited attribute occurrences are the ones at the
newly introduced nonterminalsNp,j . At a reducetransition forNp,j theLR parser has identified the
productionp and the positionj in the right side ofp at which it is just positioned. At reduction the
new value for the inherited attributeb is computed and stored in the global attribute frameI. The states
q′ which the parser may reach by a transition under nonterminalNp,j, are associated with an attribute
frameold(q′). This attribute frame does not contain the values of synthesized attributes. Instead the
previous values of inherited attributes ofI are stored that were overwritten by the reduction. These
previous values are required to reconstruct the original values of the inherited attributes before the
descend into the subtree forX .

Let us consider more precisely how the value of an inherited attributeb of the nonterminalNp,j can
be computed. Let̄p : X → α.Np,jβ be the production that results from the transformation applied
to p, whereα has lengthm. Before thereducetransition forNp,j there is a sequenceq′q1 . . . qm on
top of the parse stack, whereq1, . . . , qm have the sequence of entry symbols inα. The evaluation of
the semantic rules for the inherited attributeb of Np,j accesses the values of the synthesized attributes
of the symbols inα in the attribute frames of the statesq1, . . . , qm. The attribute evaluator can access
the values of the inherited attributea of the left sideX in the global frameI if the attributea was
not defined by anyNp,i with i < j in the evaluation so far of the production̄p. However if that was
the case, the value ofa can be accessed in the frameold(qi′) to stateqi′ , that corresponds to the first
redefinition ofa in the right side ofp.

Let us consider in detail, what happens atreducetransition for a transformed production̄p. Let
Np,j1 , . . . , Np,jr

be the sequence of new nonterminals that were inserted by thetransformation in

4.4 "Ubungen 145

the right side of the productionp, and letm be the length of the transformed right side. Before
the reducetransition there is a sequenceq′q1 . . . qm of states on top of the parse stack where the
statesqj1 , . . . , qjr+r−1 corresponf to the nonterminalsNp,j1 , . . . , Np,jr

. Using the attribute frames
old(qj1), . . . , old(qjr+r−1) the allocation of the inherited attributes before the descent into the parse
tree forX is reconstructed. If an attributeb occurs in no frameold(qji+i−1), I contains the value ofb.
Otherwise the value ofb is set to the value ofb in the first frameold(qji+i−1) in which b occurs. This
reconstruction of the global frameI for the inherited attributes is shown in Figure 4.16. If the frameI
is reconstructed before processing the right side of production p̄, the semantic rules for the computation
of the synthesized attributes of the left sideX can be applied. Any required synthesized attribute of the
ith symbol occurrence of the right side ofp̄ can be accessed in the attribute frame ofqi.

afterbefore

c 2

b 1

c 5

b 4

b 1

b 9c 2

q′

q

q3

q4

q5

q′

q1

q2

Fig. 4.16. The reconstruction of the inherited attributes at areducetransition for a productionX → γ with |γ| = 5
andδ(q′, X) = q. The attribute framesold(q2) andold(q4) contain the overwritten inherited attributesb andc in
I.

The described method allows extendingLR parsers, such that they do not only evaluate synthesized
attributes on a stack, but forLR attributed grammars also the needed inherited attributes for each state.

Example 4.3.8 The attribute grammarBoolExpof Example 4.2.5 isL attributed, but neitherLL- nor
LR attributed. IA newε-nonterminal must be inserted at the beginning of the right side of the left
recursive production for the nonterminalE since the inherited attributefsucc of nonterminalE of the
right side is noncopying. Correspondingly, a newε-nonterminal must be inserted at the beginning of
the right side of left recursive production for the nonterminal T since the inherited attributetsucc of
the nonterminalT is noncopying. This leaves the grammar no longerLR(k) for anyk ≥ 0. ⊓⊔

4.4 "Ubungen

1. 1.1
Wie ist der Inhalt der Symboltabelle im Rumpf der Prozedurq hinter der Deklaration der Prozedur
r in Beispiel 4.1.2?

2. 1.2
Gegeben seien die folgenden Operatoren:

