
computer science

saarland
university

Prof. Dr. Reinhard Wilhelm
Prof. Dr. Sebastian Hack

Dipl.-Inform. Daniel Grund
Michael Jacobs, M.Sc.

Compiler Construction WS11/12

Exercise Sheet 3
Please hand in the solutions to the theoretical exercises until the beginning of the lecture next Friday 2011-11-11,

12:00. Please write the number of your tutorial group or the name of your tutor on the first sheet of your solution.

Exercise 3.1. Item-PDAs Revisited (Points: 4+2)
Let the pushdown automaton P = ({a, b}, {q0, q1, q2, q3},∆, q0, {q3}), where

∆ = {(q0, a, q0q1), (q0, b, q0q2), (q0,#, q3), (q1, a, q1q1), (q1, b, ε), (q2, a, ε), (q2, b, q2q2)}

and # 6∈ Σ symbolizes the end of the input word, be given.
Provide a context-free grammar that generates the language L accepted by P . If possible, provide also a regular

expression for L. Otherwise provide sufficient arguments why this is not possible.

Exercise 3.2. LL(k) (Points: 2+2+2+2)
A grammar is an LL(k)-grammar for some k ∈ N if whenever there exist u, x, y ∈ VT∗ with k : x = k : y, Y ∈ VN
and α, β, γ ∈ (VT ∪ VN)∗ such that

S
∗

=⇒
lm

uY α =⇒
lm

uβα
∗

=⇒
lm

ux

S
∗

=⇒
lm

uY α =⇒
lm

uγα
∗

=⇒
lm

uy

then β = γ
A language L is an LL(k)-language if there exists an LL(k)-grammar that generates L.

1. Prove that for each k ∈ N there exists a grammar which is LL(k + 1) but not LL(k).

2. Prove that for each k ∈ N an LL(k)-grammar is an LL(k + 1)-grammar.

3. Investigate the relationship between LL(0)-languages and regular languages. In particular provide the fol-
lowing information.

• {|x| | x ∈ LL(0)}, where LL(0) is the set of all LL(0)-languages.

• {|x| | x ∈ Lreg}, where Lreg is the set of all regular language.

• Which set relation holds between LL(0) and Lreg?

4. A grammar is left-recursive if it has a production of the form A→ Aµ. Show that a left-recursive grammar
is not LL(k) for any k.

Exercise 3.3. Checkable LL(k) conditions (Points: 3+4+3)
The formal definition of an LL(k)-grammar as given in the previous exercise is not very handy for checking if a
given grammar is an LL(k)-grammar. Therefore the lecture about LL-parsing introduced some checkable LL(k)
conditions (slides 33 and 34).

• Show that an LL(k)-grammar does in general not have to be a strong LL(k)-grammar for k > 1.

1

• Show that an LL(1)-grammar is always also a strong LL(1)-grammar. (Prove one direction of the theorem
on slide 33 of the lecture about LL-parsing.)

• Provide a sufficient condition to find out if a given context-free grammar is an LL(k)-grammar. This con-
dition should be weaker than the check if a grammar is a strong LL(k)-grammar. Give an example where
your condition classifies a grammar as LL(k)-grammar even if it is no strong LL(k)-grammar. Remember
that the definition of an LL(k)-grammar itself is of course also a sufficient condition, but for grammars that
define infinite languages it cannot be checked.

Project task C. Parser and AST construction
Implement a recursive descent parser for MiniJava:
• The parser must accept exactly the words of the MiniJava language, i.e. those words derivable with the

grammar, G, given in the language specification.
• Also, construct a syntax tree for syntactically correct inputs.
• Check your implementation against the provided test cases and write additional test cases on your own.
• The next project task will be to pretty-print source code from the AST in two different flavors.

Before you start hacking the parser, plan ahead:
• Find the ambiguities in G and its left-recursive productions and resolve them as you deem it fit. For your

revised grammar, G′, determine the FiFo-sets and a k such that G′ is SLL(k).
• How to implement the k-lookahead capability in your lexer/parser?
• How to represent the AST? What classes and class hierarchy for AST nodes do you need, e.g. Expression,
BinaryExpression?

Additional technical requirements and restrictions:
• mjavac --parse [file] must perform the syntactical analysis and accept (reject) the syntactically

correct (incorrect) programs and terminate with return code 0 (1).
Please check in your solution into your repository until 2011-11-17, 12:00.

2

