
computer science

saarland
university

Prof. Dr. Reinhard Wilhelm
Prof. Dr. Sebastian Hack

Dipl.-Inform. Daniel Grund
Michael Jacobs, M.Sc.

Compiler Construction Project WS11/12

Project task D. Pretty Printing
Up to now your compiler can already lex and parse input as well as construct a corresponding parse tree. In this
project phase you are to add two kinds of pretty printers to your compiler, i.e., functionality to generate nicely
formatted source code from the parse tree. For printing this newly generated source code adhere to the Java
formatting conventions, in general. However, do ignore the line size limits of these conventions.
The first pretty printer must produce minimally parenthesized output, like in the following example:

class HelloWorld {
public int bar(int a, int b) {

return c = a + b;
}
public static void main(String[] args) {

System.out.println(43110 + 0);
boolean b = true && !false;
if (23 + 19 == (42 + 0) * 1)

b = 0 < 1;
else if (!true) {

int x = 0;
x = x + 1;

} else {
new HelloWorld().bar(0, -1);

}
}
public int c;

}

The second pretty printer must produce fully parenthesized output, like in the following example:

class HelloWorld {
public int bar(int a, int b) {

return c = (a + b);
}
public static void main(String[] args) {

(System.out).println(43110 + 0);
boolean b = true && (!false);
if ((23 + 19) == ((42 + 0) * 1))

b = (0 < 1);
else if (!true) {

int x = 0;
x = (x + 1);

} else {
(new HelloWorld()).bar(0, -1);

}
}
public int c;

}

1



For both pretty printers:
• Print all classes in alphabetical order. Within each class, first print all methods in alphabetical order and then

print all fields in alphabetical order.
• For inner statements, except for if-statements after an else and blocks, start a new line and increment the

indentation level.
• To realize indentation use one tabulator per indentation level; do not use spaces.
• The use of whitespace within expressions can be extrapolated from the examples.
• If something is unclear refer to the examples and the provided reference files. Compare your output to the

reference files via diff.
For the second pretty printer:

• Every subexpression must be parenthesized, except for literals (0, false, . . . ), identifiers, this, and the
outermost subexpression.

• Write test cases that allow one to detect mis-constructed parse trees if one inspects the fully parenthesized
output of --ast.

Additional technical requirements and restrictions: For a syntactically correct input program,
• mjavac --ast [file] must print its fully parenthesized version.
• mjavac --astmin [file] must print its minimally parenthesized version.

Both new switches must augment the mjavac --parse functionality, i.e., its acceptance and rejection behavior
as well as the respective return codes. Please check in your solution into your repository until 2011-11-24, 12:00,
noon.

2


