Lexical Analysis

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de
and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

21. Oktober 2011

Subjects

- Role of lexical analysis
- Regular languages, regular expressions
- Finite-state machines
- From regular expressions to finite-state machines
- A language for specifying lexical analysis
- The generation of a scanner
- Flex
“Standard” Structure, interfaces, mechanisms, where treated

1. source (text)
2. lexical analysis (Vol.2, Ch.2) → finite-state machines
3. tokenized-program
4. syntax analysis (Vol.2, Ch.3) → pushdown automata
5. syntax-tree
6. semantic-analysis (Vol.2, Ch.4) → attribute grammar evaluators
7. decorated syntax-tree
8. optimizations (Vol.3) → abstract interpretation + transformations
9. intermediate rep.

“Standard” Structure cont’d

10. intermediate rep.
11. code-generation (Vol.4) → tree automata + dynamic programming + …
12. machine-program
Lexical Analysis (Scanning)

- **Functionality**

 Input: program as sequence of characters
 Output: program as sequence of symbols (tokens)

- **Produce listing**
- **Report errors, symbols illegal in the programming language**
- **Screening subtask:**
 - Identify language keywords and standard identifiers
 - Eliminate “white-space”, e.g., consecutive blanks and newlines
 - Count line numbers
 - Construct table of all symbols occurring

Automatic Generation of Lexical Analyzers

- The symbols of programming languages can be specified by regular expressions.

- **Examples:**
 - program as a sequence of characters.
 - (alpha (alpha | digit)*) for identifiers
 - ‘‘(*)‘‘ until ‘‘(*)‘‘ for comments

- The recognition of input strings can be performed by a finite-state machine.

- A table representation or a program for the automaton is automatically generated from a regular expression.
Automatic Generation of Lexical Analyzers cont’d

Regular-expression(s) -> FLEX -> input-program -> scanner-program -> tokenized-program

Lexical Analysis

Notations

A language, L, is a set of words, x, over an alphabet, Σ.

- $a_1a_2\ldots a_n$, a word over Σ, $a_i \in \Sigma$
- ε, The empty word
- Σ^n, The words of length n over Σ
- Σ^*, The set of finite words over Σ
- Σ^+, The set of non-empty finite words over Σ
- xy, The concatenation of x and y

Language Operations

- $L_1 \cup L_2$, Union
- $L_1L_2 = \{x.y | x \in L_1, y \in L_2\}$, Concatenation
- \overline{L}, Complement
- $L^n = \{x_1 \ldots x_n | x_i \in L, 1 \leq i \leq n\}$
- L^*, $= \bigcup_{n \geq 0} L^n$, Closure
- L^+, $= \bigcup_{n \geq 1} L^n$
Regular Languages

Defined inductively

- \emptyset is a regular language over Σ
- $\{\varepsilon\}$ is a regular language over Σ
- For all $a \in \Sigma$, $\{a\}$ is a regular language over Σ
- If R_1 and R_2 are regular languages over Σ, then so are:
 - $R_1 \cup R_2$,
 - $R_1 R_2$, and
 - R_1^*

Regular Expressions and the Denoted Regular Languages

Defined inductively

- \emptyset is a regular expression over Σ denoting \emptyset,
- ε is a regular expression over Σ denoting $\{\varepsilon\}$,
- For all $a \in \Sigma$, a is a regular expression over Σ denoting $\{a\}$,
- If r_1 and r_2 are regular expressions over Σ denoting R_1 and R_2, resp., then so are:
 - $(r_1 | r_2)$, which denotes $R_1 \cup R_2$,
 - $(r_1 r_2)$, which denotes $R_1 R_2$, and
 - $(r_1)^*$, which denotes R_1^*.

Metacharacters, $\emptyset, \varepsilon, (,), [, , \ast$ don’t really exist, are replaced by their non-underlined versions.
Clash between characters in Σ and metacharacters $\{(,)|[,]\ast$
Example

<table>
<thead>
<tr>
<th>Expression</th>
<th>Language</th>
<th>Example words</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a</td>
<td>b$</td>
<td>${a, b}$</td>
</tr>
<tr>
<td>ab^*a</td>
<td>${a}{b}^*{a}$</td>
<td>$aa, aba, abba, abbbba, \ldots$</td>
</tr>
<tr>
<td>$(ab)^*$</td>
<td>${ab}^*$</td>
<td>$\varepsilon, ab, abab, \ldots$</td>
</tr>
<tr>
<td>abba</td>
<td>${abba}$</td>
<td>$abba$</td>
</tr>
</tbody>
</table>

Regular Expressions for Symbols (Tokens)

Alphabet for the symbol classes listed below:

$\Sigma =$

- integer-constant
- real-constant
- identifier
- string
- comments
- matching-parentheses?
Automata

In the following, we will meet different types of automata.

Automata

- process some *input*, e.g. strings or trees,
- make *transitions* from configurations to configurations;
- *configurations* consist of (the rest of) the input and some *memory*;
- the *memory* may be small, just one variable with finitely many values,
- but the memory may also be able to grow without bound, adding and removing values at one of its ends;
- the type of memory an automaton has determines its ability to *recognize* a class of languages,
- in fact, the more powerful an automaton type is, the better it is in *rejecting* input.

Finite State Machine

The simplest type of automaton, its memory consists of only one variable, which can store one out of finitely many values, its *states*,
A Non-Deterministic Finite-State Machine (NFSM)

\[M = (\Sigma, Q, \Delta, q_0, F) \]

- \(\Sigma \) — finite alphabet
- \(Q \) — finite set of states
- \(q_0 \in Q \) — initial state
- \(F \subseteq Q \) — final states
- \(\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q \) — transition relation

May be represented as a transition diagram

- Nodes — States
- \(q_0 \) has a special “entry” mark
- final states doubly encircled
- An edge from \(p \) into \(q \) labeled by \(a \) if \((p, a, q) \in \Delta\)

Example: Integer and Real Constants

<table>
<thead>
<tr>
<th>(\text{Di})</th>
<th>({0, 1, \ldots, 9})</th>
<th>(\varepsilon)</th>
<th>(E)</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{1, 2}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{3}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>{4}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>0</td>
<td>{5}</td>
<td>{7}</td>
</tr>
<tr>
<td>5</td>
<td>{6}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>{7}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{Di} = \{0, 1, 2, 3, 4, 5, 6, 7\} \)

\(q_0 = 0 \)

\(F = \{1, 7\} \)
Finite-state machines — Scanners

Scanners

- get an input string (a sequence of words),
- start in their initial state,
- attempt to find the end of the next word,
- when found, restart in their initial state with the rest of the input,
- terminate when the end of the input is reached or an error is encountered.

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner — first “non-consumed” character,
- in final state, and exists transition under the next character: make transition and remember position,
- in final state, and exists no transition under the next character: Symbol found,
- actual state not final and no transition under the next character: backtrack to last passed final state
 - There is none: Illegal string
 - Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: Example: (a|a*;)
Lexical Analysis

Other Example Automata

- integer-constant
- real-constant
- identifier
- string
- comments

Lexical Analysis

The Language Accepted by a Finite-State Machine

- $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$
- For $q \in Q$, $w \in \Sigma^*$, (q, w) is a configuration
- The binary relation step on configurations is defined by:

 $(q, aw) \vdash_M (p, w)$

 if $(q, a, p) \in \Delta$

- The reflexive transitive closure of \vdash_M is denoted by \vdash_M^*
- The language accepted by M

 $L(M) = \{ w \mid w \in \Sigma^* \mid \exists q_f \in F : (q_0, w) \vdash_M^* (q_f, \varepsilon) \}$
From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R, there exists an NFSM M, such that $L(M) = R$.
(ii) For every regular expression r, there exists an NFSM that accepts the regular language defined by r.

A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression r
- Construct an “NFSM” with one final state, q_f, and the transition
 \[
 q_f \xrightarrow{r} q_f
 \]
- Decompose r and develop the NFSM according to the following rules
 \[
 q \xrightarrow{r_1 r_2} p \quad \Rightarrow \quad q \xrightarrow{r_1} q \xrightarrow{r_2} p
 \]
 \[
 q \xrightarrow{r_1} p \quad \Rightarrow \quad q \xrightarrow{r_1} q \xrightarrow{r_2} p
 \]
 \[
 q \xrightarrow{r} p \quad \Rightarrow \quad q \xrightarrow{\varepsilon} q_{1} \xrightarrow{r} q_{2} \xrightarrow{\varepsilon} p
 \]
- until only transitions under single characters and ε remain.
Examples

- $a(a|0)^*$ over $\Sigma = \{a, 0\}$
- Identifier
- String

Nondeterminism

- Several transitions may be possible under the same character in a given state
- ε-moves (next character is not read) may “compete” with non-ε-moves.
- Deterministic simulation requires “backtracking”
Deterministic Finite-State Machine (DFSM)

- No ε-transitions
- At most one transition from every state under a given character, i.e. for every $q \in Q$, $a \in \Sigma$,

$$|\{q' \mid (q, a, q') \in \Delta\}| \leq 1$$

From Non-Deterministic to Deterministic Automata

Theorem

For every **NFSM**, $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$ there exists a **DFSM**, $M' = \langle \Sigma, Q', \delta, q'_0, F' \rangle$ such that $L(M) = L(M')$.

A **Scheme of a Constructive Proof (Subset Construction)**

Construct a DFSM whose states are **sets of states** of the NFSM. The DFSM simulates all possible transition paths under an input word in parallel.

Set of new states

$$\{\{q_1, \ldots, q_n\} \mid n \geq 1 \land \exists w \in \Sigma^* : (q_0, w) \vdash^*_M (q_i, \varepsilon)\}$$

\[\vdash^*_M (q_i, \varepsilon)\]
The Construction Algorithm

Used in the construction: the set of ε-Successors,
\[\varepsilon-SS(q) = \{ p \mid (q, \varepsilon) \vdash^*_M (p, \varepsilon) \} \]
- Starts with \(q_0 = \varepsilon-SS(q_0) \) as the initial DFSM state.
- Iteratively creates more states and more transitions.
- For each DFSM state \(S \subseteq Q \) already constructed and character \(a \in \Sigma \),
 \[\delta(S, a) = \bigcup_{q \in S} \bigcup_{(q, a, p) \in \Delta} \varepsilon-SS(p) \]
 if non-empty
 add new state \(\delta(S, a) \) if not previously constructed;
 add transition from \(S \) to \(\delta(S, a) \).
- A DFSM state \(S \) is accepting (in \(F' \)) if there exists \(q \in S \) such that \(q \in F \)

Example: \(a(a|0)^* \)
DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states and transitions.

q and p are undistinguishable (have the same acceptance behavior) iff

for all words w $(q, w) \vdash_M^*$ and $(p, w) \vdash_M^*$ lead into either F' or $Q' = F'$.

Undistinguishability is an equivalence relation.
Goal: merge undistinguishable states \equiv consider equivalence classes as new states.

DFSM minimization algorithm

- Input a DFSM $M = \langle \Sigma, Q, \delta, q_0, F \rangle$
- Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.
- Start with the partition $\Pi = \{F, Q - F\}$
- Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_1, q_2 \in S$ and $a \in \Sigma$ such that
 - $\delta(q_1, a) \in S_1$ and $\delta(q_2, a) \in S_2$ and $S_1 \neq S_2$
- Merge sets of undistinguishable states into a single state.
Example: $a(a|0)^*$

A Language for specifying lexical analyzers

$$(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*$$

$$(\varepsilon.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*)$$

$$(\varepsilon|E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)))$$
Descriptional Comfort

Character Classes:
Identical meaning for the DFSM (exceptions!), e.g.,
\(le = a - z \ A - Z \)
\(di = 0 - 9 \)
Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:
Identical meaning for the parser, e.g.,
Identifiers
Comparison operators
Strings

Descriptional Comfort cont’d

Sequences of regular definitions:

\[
\begin{align*}
A_1 &= R_1 \\
A_2 &= R_2 \leftarrow A_1 \\
\vdots \\
A_n &= R_n \leftarrow A_{1.1} \cdots A_{n.1}
\end{align*}
\]
Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides
2. Create an NFSM for every regular expression separately;
3. Merge all the NFSMs using ε transitions from the start state;
4. Construct a DFSM;
5. Minimize starting with partition

\[\{F_1, F_2, \ldots, F_n, Q - \bigcup_{i=1}^{n} F_i\} \]
%{
 extern int line_number;
 extern float atof(char *);
}%

DIG [0-9]
LET [a-zA-Z]

[=#+<>+-*] { return(*yytext); }

({DIG}+) { yylval.intc = atoi(yytext); return(301); }

({DIG}\.{DIG}+(E(\+|\-)?{DIG}+)?)
 { yylval.realc = atof(yytext); return(302); }

"\"(\"\.|[^"\\])\"" { strcpy(yylval.strc, yytext);
 return(303); }

"<=" { return(304); }

: { return(305); }
\
\n { return(306); }

ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); }

\{LET\}\{LET\}\{DIG\}*
 { yylval.symb = look_up(yytext);
 return(310); }

\t { /* White space */ }
\n { line_number++; }
. { fprintf(stderr,
 "WARNING: Symbol '%c' is illegal, ignored!\n", yytext); }

%}