SSA-Form Register Allocation
Foundations

Sebastian Hack

Compiler Construction Course
Winter Term 2009/2010
Overview

1. Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2. SSA Form
 - Dominance
 - ϕ-functions

3. Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4. Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5. Intuition
Overview

1. Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2. SSA Form
 - Dominance
 - ϕ-functions

3. Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4. Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5. Intuition
Complete Graphs and Cycles

Complete Graph K^5

Cycle C^5
Induced Subgraphs

Graph with a C^4 subgraph

Graph with a C^4 induced subgraph

Note: Induced complete graphs are called cliques.
Induced Subgraphs

Graph with a C^4 subgraph

Graph with a C^4 induced subgraph

Note
Induced complete graphs are called cliques
Clique number and Chromatic number

Definition

\[\omega(G) \] Size of the largest clique in \(G \)

\[\chi(G) \] Number of colors in a minimum coloring of \(G \)
Clique number and Chromatic number

Definition

\[\omega(G) \text{ Size of the largest clique in } G \]

\[\chi(G) \text{ Number of colors in a minimum coloring of } G \]

Corollary

\[\omega(G) \leq \chi(G) \text{ holds for each graph } G \]
Clique number and Chromatic number

Definition

\(\omega(G) \) Size of the largest clique in \(G \)

\(\chi(G) \) Number of colors in a minimum coloring of \(G \)

Corollary

\[\omega(G) \leq \chi(G) \] holds for each graph \(G \)

\[
\begin{array}{c|c|c|c|c}
\omega(G) & 3 & 2 & 2 & 3 \\
\chi(G) & 3 & 2 & 3 & 3 \\
\end{array}
\]
Perfect Graphs

Definition

G is perfect $\iff \chi(H) = \omega(H)$ for each induced subgraph H of G
Perfect Graphs

Definition

G is perfect $\iff \chi(H) = \omega(H)$ for each induced subgraph H of G
Perfect Graphs

Definition

G is perfect if and only if $\chi(H) = \omega(H)$ for each induced subgraph H of G.

![Diagram of perfect graphs](image)

| Perfect? |
|----------|----------|
| ✓ | ✓ |
Chordal Graphs

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G is chordal \iff G contains no induced cycles longer than 3</td>
</tr>
</tbody>
</table>

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in $O(|V| \cdot \omega(G))$
Chordal Graphs

Definition

\[G \text{ is chordal} \iff G \text{ contains no induced cycles longer than 3} \]

chordal?
Chordal Graphs

Definition

G is chordal $\iff G$ contains no induced cycles longer than 3

Theorem

Chordal graphs are perfect
Chordal Graphs

Definition

G is chordal \iff G contains no induced cycles longer than 3

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in $O(|V| \cdot \omega(G))$
Overview

1. Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2. SSA Form
 - Dominance
 - ϕ-functions

3. Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4. Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5. Intuition
Dominance

Definition

Every use of a variable is dominated by its definition
Dominance

Definition

Every use of a variable is dominated by its definition

- You cannot reach the use without passing by the definition
- Else, you could use uninitialized variables
- Dominance induces a *tree* on the control flow graph
- Sometimes called *strict* SSA
What do ϕ-functions mean?

Frequent misconception

Put a sequence of copies in the predecessors
What do ϕ-functions mean?

Frequent misconception

Put a sequence of copies in the predecessors
What do ϕ-functions mean?

Lost Copy Problem

$\begin{align*}
 x_1 &\leftarrow x_3 \\
 x_3 &\leftarrow x_1 \\
 x_3 &\leftarrow \phi(x_1, x_2) \\
 x_2 &\leftarrow x_3 + 1 \\
 \leftarrow x_3
\end{align*}$

$\begin{align*}
 x_1 &\leftarrow x_3 \\
 x_3 &\leftarrow x_1 \\
 x_2 &\leftarrow x_3 + 1 \\
 x_3 &\leftarrow x_2 \\
 \leftarrow x_3
\end{align*}$

Cannot simply push copies in predecessor
Copies are also executed if we jump out of the loop
Need to remove critical edges (loopback edge)
What do ϕ-functions mean?

Lost Copy Problem

- Cannot simply push copies in predecessor
- Copies are also executed if we jump out of the loop
- Need to remove critical edges (loopback edge)
What do ϕ-functions mean?

Swap Problem

\[
\begin{align*}
a_1 &\leftarrow \\
&b_1 \\[1em]
a_2 &\leftarrow \phi(a_1, b_2) \\
b_2 &\leftarrow \phi(b_1, a_2)
\end{align*}
\]
What do ϕ-functions mean?

Swap Problem

- a_2 overwritten before used
- All ϕs in a block need to be evaluated simultaneously
What do ϕ-functions mean?

The Reality

ϕ-functions correspond to parallel copies on the incoming edges.
\(\phi\)-functions and uses

Does not fulfill dominance property

\(\phi\)s do not use their operands in the \(\phi\)-block

Uses happen in the predecessors
ϕ-functions and uses

- Does not fulfill dominance property
- ϕs do not use their operands in the ϕ-block
- Uses happen in the predecessors

Split ϕ-functions in two parts:
- Split critical edges
- Read part ($ϕ^r$) in the predecessors
- Write part ($ϕ^w$) in the block
- Correct modelling of liveness
Overview

1 Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2 SSA Form
 - Dominance
 - \(\phi\)-functions

3 Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4 Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing \(\phi\)-functions

5 Intuition
Non-SSA Interference Graphs
An inconvenient property

The number of live variables at each instruction (register pressure) is 2
However, we need 3 registers for a correct register allocation
In theory, this gap can be arbitrarily large (Mycielski Graphs)
Graph-Coloring Register Allocation

[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04]

- Every undirected graph can occur as an interference graph
 \[\implies\] Finding a k-coloring is NP-complete

- Color using heuristic
 \[\implies\] Iteration necessary

- Might introduce spills although IG is k-colorable

- Rebuilding the IG each iteration is costly
Spill-code insertion is crucial for the program’s performance
Hence, it should be very sensitive to the structure of the program
 - Place load and stores carefully
 - Avoid spilling in loops!
Here, it is merely a fail-safe for coloring
Coloring

- Subsequently remove the nodes from the graph

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order
Subsequently remove the nodes from the graph

Then, re-insert the nodes in reverse order and assign each node the next possible color.

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order

\[d, \]
Subsequently remove the nodes from the graph

elimination order

\(d, e,\)
- Subsequently remove the nodes from the graph

Coloring

```
   d  e
  / \
 a   b
 \  /
  c
```

elimination order

```
d, e, c,  
```
Subsequently remove the nodes from the graph

elimination order

\[d, e, c, a,\]
Subsequently remove the nodes from the graph. But... this graph is 3-colorable. We obviously picked a wrong order.

Elimination order:

\[
\text{d, e, c, a, b}
\]
Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

elimination order

d, e, c, a, b
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

Elimination order:

d, e, c, a,
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.

\[
\text{elimination order} \quad \frac{d, e, c,}{d, e, c,}
\]
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

![Diagram of a graph with nodes a, b, c, d, e. The elimination order is d, e.]

But... this graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order

d,
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

This graph is 3-colorable. We obviously picked a wrong order.

elimination order
Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But...

this graph is 3-colorable. We obviously picked a wrong order.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Diagram:
- Nodes: a, b, c, d, e
- Connections: (a, b), (b, c), (a, c), (d, e)

Elimination order: a, c,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Elimination order: a, c, d,
Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

 elimination order
a, c, d, e,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Diagram:

```
  a——b——c——d——e
```

Elimination Order:

```
a, c, d, e, b
```
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

Elimination order: a, c, d, e,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

Elimination order
a, c, d,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Elimination order: a, c,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

- A PEO allows for an optimal coloring in $k \times |V|$
- The number of colors is bound by the size of the largest clique
Graphs with holes larger than 3 have no PEO, e.g.

\[G \text{ has a PEO} \iff G \text{ is chordal} \]
Coloring
PEOs

- Graphs with holes larger than 3 have no PEO, e.g.

- G has a PEO $\iff G$ is chordal

Core Theorem of SSA Register Allocation

- The dominance relation in SSA programs induces a PEO in the IG
- Thus, SSA IGs are chordal
Overview

1 Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2 SSA Form
 - Dominance
 - \(\phi \)-functions

3 Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4 Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing \(\phi \)-functions

5 Intuition
Liveness and Dominance

- Each instruction ℓ where a variable v is live, is dominated by v

![Diagram]

Why?
Assume ℓ is not dominated by v
Then there's a path from start to some usage of v not containing the definition of v
This cannot be since each value must have been defined before it is used.
Liveness and Dominance

- Each instruction \(\ell \) where a variable \(v \) is live, is dominated by \(v \)

Why?

- Assume \(\ell \) is not dominated by \(v \)
- Then there's a path from \texttt{start} to some usage of \(v \) not containing the definition of \(v \)
- This cannot be since each value must have been defined before it is used
Liveness and Dominance

- Each instruction ℓ where a variable v is live, is dominated by v

Why?

- Assume ℓ is not dominated by v
- Then there's a path from start to some usage of v not containing the definition of v
- This cannot be since each value must have been defined before it is used
Interference and Dominance

- Assume v, w interfere, i.e. they are live at some instruction ℓ
- Then, $v \succeq \ell$ and $w \succeq \ell$
- Since dominance is a tree, either $v \succeq w$ or $w \succeq v$

$$v \{\succeq, \preceq\} w$$
Interference and Dominance

- Assume v, w interfere, i.e. they are live at some instruction ℓ
- Then, $v \succeq \ell$ and $w \succeq \ell$
- Since dominance is a tree, either $v \succeq w$ or $w \succeq v$

Consequences

- Each edge in the IG is directed by dominance
- The interference graph is an “excerpt” of the dominance relation
Interference and Dominance

- Assume $v \preceq w$

- Then, v is live at w

![Diagram showing dominance subtree of v]

Why?

If v and w interfere then there is a place where both are live. w dominates all places where v is live. Hence, v is live inside w's dominance tree. Thus, v is live at w.

Interference and Dominance

Assume $v \leq w$

Then, v is live at w

Why?

- If v and w interfere then there is a place where both are live
- w dominates all places where w is live
- Hence, v is live inside w’s dominance tree
- Thus, v is live at w
Interference and Dominance

Consider three nodes u, v, w in the IG:

\[u \prec v \quad \text{or} \quad u \preceq v \]

Thus, they interfere

Conclusion

All variables that interfere with w dominate w.

... are mutually connected in the IG
Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w

Thus, they interfere

Conclusion

All variables that . . . interfere with w . . . are mutually connected in the IG
Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w
- Thus, they interfere

Conclusion

All variables that interfere with w dominate w... are mutually connected in the IG.
Interference and Dominance

Consider three nodes \(u, v, w \) in the IG:

\[u \preceq \text{ or } \preceq v \]

\[u \text{ is live at } w \]
\[v \text{ is live at } w \]
\[\text{Thus, they interfere} \]

Conclusion

All variables that . . .

- interfere with \(w \)
- dominate \(w \)

. . . are mutually connected in the IG
Dominance and PEOs

- Before a value v is added to a PEO, add all values whose definitions are dominated by v
- A post order walk of the dominance tree defines a PEO
- A pre order walk of the dominance tree yields a coloring sequence
- IGs of SSA-form programs can be colored optimally in $O(\omega(G) \cdot |V|)$
- Without constructing the interference graph itself
Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the clique are live.
Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the clique are live.

- Dominance induces a total order inside the clique
 ⇒ There is a “smallest” value d

- All others are live at the definition of d
Spilling

Consequences

- The chromatic number of the IG is exactly determined by the number of live variables at the labels

- Lowering the number of values live at each label to \(k \) makes the IG \(k \)-colorable

- We know in advance where values must be spilled
 \[\implies \text{All labels where the pressure is larger than } k \]

- Spilling can be done before coloring and

- coloring will always succeed afterwards
Spilling

Consequences

- The chromatic number of the IG is exactly determined by the number of live variables at the labels.

- Lowering the number of values live at each label to \(k \) makes the IG \(k \)-colorable.

- We know in advance where values must be spilled.
 \(\implies \) All labels where the pressure is larger than \(k \).

- Spilling can be done before coloring and coloring will always succeed afterwards.

Conclusion

- No iteration as in Chaitin/Briggs-allocators.
- No interference graph necessary.
Getting out of SSA

- We now have a k-coloring of the SSA interference graph.
- Can we turn that program into a non-SSA program and maintain the coloring?
Getting out of SSA

- We now have a k-coloring of the SSA interference graph
- Can we turn that program into a non-SSA program and maintain the coloring?

Central question

What to do about ϕ-functions?
Φ-Functions

Consider following example

\[z_1 \leftarrow \phi(x_1, y_1) \]
\[z_2 \leftarrow \phi(x_2, y_2) \]
\[z_3 \leftarrow \phi(x_3, y_3) \]
\(\Phi\)-Functions

- Consider following example

\[
\begin{align*}
(z_1, z_2, z_3) & \leftarrow (x_1, x_2, x_3) \\
(z_1, z_2, z_3) & \leftarrow (y_1, y_2, y_3)
\end{align*}
\]

\[
\begin{array}{c}
z_1 \leftarrow \phi(x_1, y_1) \\
z_2 \leftarrow \phi(x_2, y_2) \\
z_3 \leftarrow \phi(x_3, y_3)
\end{array}
\]

- \(\Phi\)-functions are parallel copies on control flow edges
Φ-Functions

- Consider following example

\[
\begin{align*}
(z_1, z_2, z_3) &\leftarrow (x_1, x_2, x_3) \\
z_1 &\leftarrow \phi(x_1, y_1) \\
z_2 &\leftarrow \phi(x_2, y_2) \\
z_3 &\leftarrow \phi(x_3, y_3) \\
(z_1, z_2, z_3) &\leftarrow (y_1, y_2, y_3)
\end{align*}
\]

- Φ-functions are parallel copies on control flow edges

- Considering assigned registers …
Φ-Functions

- Consider following example

Φ-functions are parallel copies on control flow edges

- Considering assigned registers . . .

. . . Φs represent register permutations
Permutations

- A permutation can be implemented with copies if one auxiliary register is available.

- Permutations can be implemented by a series of transpositions (i.e. swaps).

- A transposition can be implemented by three XORs without a third register.
Intuition: Why do SSA IGs do not have cycles?

Why are SSA IGs chordal?

Program	Live Ranges
\(a \leftarrow \cdots\) & \(a\)
\(b \leftarrow \cdots\) & \(b\)
\(c \leftarrow \cdots\) & \(c\)
\(d \leftarrow a + b\) & \(d\)
\(e \leftarrow c + 1\) & \(e\)

- How can we create a 4-cycle \(\{a, c, d, e\}\)?
Intuition: Why do SSA IGs do not have cycles?

Why are SSA IGs chordal?

Program Live Ranges
\[a \leftarrow \cdots \]
\[b \leftarrow \cdots \]
\[c \leftarrow \cdots \]
\[d \leftarrow a + b \]
\[e \leftarrow c + 1 \]
\[a \leftarrow \cdots \]

How can we create a 4-cycle \(\{a, c, d, e\} \)?

Redefine \(a \implies \) SSA violated!
Intuition: ϕ-functions break cycles in the IG

Program and live ranges

$\begin{align*}
d &\leftarrow \cdots \\
e &\leftarrow a + \cdots \\
&\leftarrow d
\end{align*}$

$\begin{align*}
a &\leftarrow \cdots \\
b &\leftarrow \cdots \\
c &\leftarrow a + \cdots \\
e &\leftarrow b \\
&\leftarrow c
\end{align*}$
Intuition: ϕ-functions break cycles in the IG

Program and live ranges

$$a \leftarrow \cdots$$

$$d \leftarrow \cdots$$
$$e_1 \leftarrow a + \cdots$$
$$\leftarrow d$$

$$e_3 \leftarrow \phi(e_1, e_2)$$

$$b \leftarrow \cdots$$
$$c \leftarrow a + \cdots$$
$$e_2 \leftarrow b$$
$$\leftarrow c$$

Interference Graph

$$a$$
$$\rightarrow d$$
$$\rightarrow e_1$$
$$b$$
$$\rightarrow c$$
$$\rightarrow e_2$$
$$c$$
$$\rightarrow e_3$$
Intuition: Why destroying SSA before RA is bad

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[
\begin{align*}
d' & \leftarrow d \\
c' & \leftarrow c \\
b' & \leftarrow b \\
a' & \leftarrow a
\end{align*}
\]
Intuition: Why destroying SSA before RA is bad

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[d' \leftarrow d \]
\[c' \leftarrow c \]
\[b' \leftarrow b \]
\[a' \leftarrow a \]
Intuition: Why destroying SSA before RA is bad

Parallel copies

$(a', b', c', d') \leftarrow (a, b, c, d)$

Sequential copies

\[
\begin{align*}
 d' & \leftarrow d \\
 c' & \leftarrow c \\
 b' & \leftarrow b \\
 a' & \leftarrow a
\end{align*}
\]
IGs of SSA-form programs are chordal
The dominance relation induces a PEO
No further spills after pressure is lowered
Register assignment optimal in linear time
Do not need to construct interference graph
Allocator without iteration