Attribute Dependencies

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-saarland.de

14. November 2013
Attribute Dependencies

Attribute dependencies

- relate attribute occurrences (and instances),
- describe which attribute occurrences (instances) depend on which other occurrences (instances),
- constrain the order of attribute evaluation,
- are input to attribute-evaluator generators.
Types of Dependencies

Local dependencies between attribute occurrences in a production according to a semantic rule,

Individual dependency graph of attribute instances of a tree obtained by pasting together local dependency graphs of productions (instances)

Global dependencies between attributes of a non-terminal induced by individual dependency graphs.

- An individual dependency graph may contain a cycle. Attribute instances on this cycle can not be evaluated.
- AG is noncircular if none of its individual dependency graphs contains a cycle.

Theorem

AG is well–formed iff it is noncircular.
Local Dependencies

- **production local dependency relation**
 \[D_p(p) \subseteq O(p) \times O(p) : \]
 \[
 b_j \quad D_p(p) \quad a_i \quad \text{iff} \quad a_i = f_{p,a,i}(\ldots, b_j, \ldots)
 \]

- Attribute occurrence \(a_i \) at \(X_i \) depends on \(b_j \) at \(X_j \) iff \(b_j \) is argument in the semantic rule of \(a_i \).

- Representation of this relation by its directed graph, the **production local dependency graph**, also denoted by \(D_p(p) \).
Local Dependencies in the Scopes-AG

1: \(\text{e-env} \quad \text{ok} \)
 \[\text{Stms} \quad \text{Stm} \]

2: \(\text{e-env} \quad \text{ok} \)
 \[\text{it-env} \quad \text{Stms} \quad \text{Decls} \quad \text{st-env} \]

4: \(\text{e-env} \quad \text{it-env} \quad \text{st-env} \quad \text{ok} \)
 \[\text{Decls} \quad \text{Decls} \quad \text{Decl} \]

5: \(\text{e-env} \quad \text{it-env} \quad \text{st-env} \quad \text{ok} \)
 \[\text{Id} \quad \text{Ptype} \quad \text{Stms} \]

6: \(\text{e-env} \quad \text{ok} \)
 \[\text{Id} \quad \text{Args} \]
Attribute Dependencies

Individual Dependency Graph
Attribute Dependencies

Individual Dependency Graphs
A First Attribute Evaluator

Principle:

1. Topological sorting of the individual dependency graph of a tree.

2. Attribute evaluation then done in the resulting order.

Topological sorting

- takes a partial order (an acyclic graph),
- produces a total order compatible with the partial order,
- i.e., resulting total order, an evaluation order.
Topological sorting

- Keeps a set of candidates to be inserted next into the total order, initialized with the minimal elements of the order,

- In each step
 - Selects a candidate and inserts it into the total order,
 - Removes it from the set of candidates,
 - Removes it from the partial order,
 - Makes all elements only depending on this candidate to candidates,

- Until the set of candidates is empty.

- Partial order nonempty \Rightarrow graph acyclic.

Can serve as a dynamic test for well formedness.
Example Evaluation
Properties of this Evaluator

- Evaluation order determined at evaluation time, i.e. compile time; therefore this evaluator is called the dynamic evaluator,
- Additional effort for the determination of the evaluation order at evaluation time,
- “Data driven” strategy, i.e. the availability of its arguments triggers the evaluation of an instance,
- Evaluates all instances in a tree,
- Evaluates each instance exactly once.
Alternatives

- Evaluation order may be fixed before evaluation time, e.g. by a fixed evaluation “plan” for each production,
- “Demand driven” strategy
 - Starts with a demand of some maximal elements in the partial order,
 - Demand for evaluation is passed to arguments,
 - Computed values are passed back.
- Properties of the demand driven strategy:
 - Allows the selective evaluation of a subset of “interesting” attribute instances,
 - Only instances needed for the evaluation of these attribute instances are evaluated,
 - May evaluate instances several times, depending on the implementation, i.e. on whether computed values are stored.
Issues

► Separation into

 Strategy phase: Evaluation order is determined,
 Evaluation phase: Evaluation proper of the attribute instances directed by this evaluation strategy.

► Goal: Preparation of the strategy phase at generation time, i.e., evaluation orders, evaluation plans, etc. are precomputed from the AG; may include a static test for well formedness,

► Complexity of

 Generation: Runtime in terms of AG size,
 Evaluation: Size of evaluator, time optimality of evaluation.

► AG subclasses, hierarchy: Expressivity, Generation algorithms, Complexity.
Attribute Dependencies

Lower Characteristic Graphs

Given \(t \), tree with root label \(X \)

- “Projecting” the dependencies in \(D_t(t) \) onto the attributes of \(X \) yields the lower characteristic graph of \(X \) induced by \(t \), \(D_t\uparrow_t(X) \).

- \(D_t\uparrow_t(X) \) contains an edge from \(a \in Inh(X) \) to \(b \in Syn(X) \) iff there exists a path from the instance of \(a \) at the root to the instance of \(b \) at the root in \(D_t(t) \).
Example: Lower Characteristic Graphs

Lower characteristic graphs induced by the previous individual dependency graph:
Upper Characteristic Graphs

n inner node in t labeled X, regards the upper tree fragment of t at n, $t \setminus n$,

- “Projecting” the dependencies in $Dt(t \setminus n)$ onto the attributes of X yields the **upper characteristic graph of X induced by t, $Dt_{t,n}(X)$**.

- $Dt_{t,n}(X)$ contains an edge from $a \in \text{Syn}(X)$ to $b \in \text{Inh}(X)$ iff there exists a path from the instance of a at n to the instance of b at n in $Dt(t \setminus n)$.

![Diagram of upper characteristic graph with nodes a, b, c, d, e and edges connecting them.]

\[a \quad b \quad X \quad c \quad d \quad e \]
Example: Upper Characteristic Graphs

Upper characteristic graphs induced by the previous individual dependency graph:
Attribute Dependencies

Strategic Information in Characteristic Graphs

at the root of a subtree means:

it-env evaluated ⇒ st-env can be evaluated

e-env not evaluated ⇒ ok cannot be evaluated during a downward visit.
Induced Global Dependencies

The induction of characteristic graphs:

1. Local dependency graphs, $D_p(p)$: Relation on attribute occurrences of p
 \textit{Type conversion + Pasting}

2. Individual dependency graph, $D_t(t)$: Relation on attribute instances in t
 \textit{Transitive closure and restriction}

3. Relation on attribute instances of node n with $\text{sym}(n) = X$
 \textit{Type conversion}

4. Lower characteristic graph $D_{t\uparrow}(X) \subseteq \text{Inh}(X) \times \text{Syn}(X)$: Relation on attributes of X or

5. Upper characteristic graph $D_{t\downarrow,n}(X) \subseteq \text{Syn}(X) \times \text{Inh}(X)$: Relation on attributes of X.

Computation of Global Dependency Graphs

- So far, the characteristic graph induced by one tree (fragment).
- Nonterminal X has
 - a set, $Dt^\uparrow(X)$, of lower characteristic graphs and
 - a set, $Dt^\downarrow(X)$, of upper characteristic graphs.
- These sets are computed at generation time by GFA.
- Only non–terminals can contribute, i.e., for $p : X_0 \rightarrow X_1 \ldots X_{n_p}$ this means $X_i \in V_N$ for all $1 \leq i \leq n_p$.
- Watch out for “typing problems”!
Formalization of “Pasting”

\[R_0, R_1, \ldots, R_{np} \text{ relations on the sets} \]
\[\text{Attr}(X_0), \text{Attr}(X_1), \ldots, \text{Attr}(X_{np}), \text{resp}. \]

The pasting operation \(Dp(p)[\cdot] \) has functionality
\[\text{Attr}(X_0)^2 \times \text{Attr}(X_1)^2 \times \ldots \times \text{Attr}(X_{np})^2 \rightarrow O(p) \times O(p). \]
\(Dp(p)[R_0, R_1, \ldots, R_{np}] \) is the following relation on \(O(p) \):

\[Dp(p) \cup R_0^0 \cup R_1^1 \cup \ldots \cup R_{np}^{np}, \]

where \(b_i R_i^i a \) iff \(b R_i a \).

The relations on the attributes of \(X_0, X_1, \ldots, X_{np} \) are regarded as relations on attribute occurrences and unioned.

We write \(Dp(p)[\emptyset, R_1, \ldots, R_{np}] \) as \(Dp(p)[R_1, \ldots, R_{np}] \).
Formalization of Upward “Projection”

Upward projection $R^\uparrow(p)[.]$ has functionality:
${\text{Attr}}(X_1)^2 \times \ldots \times {\text{Attr}}(X_{n_p})^2 \to Inh(X_0) \times Syn(X_0)$.

$R^\uparrow(p)[R_1, \ldots, R_n]$ is the following relation:

$$b \ R^\uparrow(p)[R_1, \ldots, R_n] \ a \iff b_0 \ Dp(p)[R_1, \ldots, R_n]^+ \ a_0.$$
Formalization of Downward “Projection”

Downward projection $R_{\downarrow i}(p)[\cdot]$ has functionality:

$\text{Attr}(X_0)^2 \times \text{Attr}(X_1)^2 \times \ldots \times \text{Attr}(X_n)^2 \rightarrow \text{Syn}(X_i) \times \text{Inh}(X_i)$

$R_{\downarrow i}(p)[R_0, R_1, \ldots, R_n]$ is defined by

\[b \ R_{\downarrow i}(p)[R_0, R_1, \ldots, R_n] \ a \text{iff} \]

\[b_i \ Dp(p)[R_0, R_1, \ldots, R_{i-1}, \emptyset, R_{i+1}, \ldots, R_n]^+ \ a_i \]
Extensions to Sets of Relations

Let $\mathcal{R}_1, \ldots, \mathcal{R}_{n_p}$ be sets of relations on $\text{Attr}(X_1), \ldots, \text{Attr}(X_{n_p})$, resp.

$$R^{\uparrow}(p)[\mathcal{R}_1, \ldots, \mathcal{R}_{n_p}] = \{R^{\uparrow}(p)[R_1, \ldots, R_{n_p}] \mid R_i \in \mathcal{R}_i, (1 \leq i \leq n_p)\} \text{ and}$$

$$R^{\downarrow}_i(p)[\mathcal{R}_0, \mathcal{R}_1, \ldots, \mathcal{R}_{n_p}] = \{R^{\downarrow}_i(p)[R_0, R_1, \ldots, R_{n_p}] \mid R_j \in \mathcal{R}_j \ (0 \leq j \leq n_p)\}$$

for all i in $(1 \leq i \leq n_p)$.

GFA: Lower Characteristic Graphs

Evaluation time:
How to compute $Dt \uparrow_t (X_0)$ for a tree t with root label X_0 and $\text{prod}(\varepsilon) = p : X_0 \rightarrow X_1 \ldots X_{np}$?

Let the relations $Dt \uparrow_{t/1}(X_1), \ldots, Dt \uparrow_{t/np}(X_{np})$ be already computed.

![Diagram illustrating the tree structure with labels X_0, X_1, X_i, and X_{np} connected appropriately.

Compute $Dt \uparrow_t (X_0)$ locally as

$$Dt \uparrow_t (X_0) = R \uparrow(p)[Dt \uparrow_{t/1}(X_1), \ldots, Dt \uparrow_{t/np}(X_{np})]$$
GFA: Lower Characteristic Graphs cont’d

This suggests for the **generation time**:
\[Dt \uparrow(X) = \bigcup_{p : p[0] = X} R \uparrow(p)[Dt \uparrow(p[1]), \ldots, Dt \uparrow(p[n_p])] \]

Least fixpoint is the set of the sets of lower characteristic graphs.
GFA–Problem Lower Characteristic Graphs

One step in the fixpoint iteration for production p:

1. Paste all combinations of lower characteristic graphs onto $D_p(p)$,
2. Project the resulting graphs onto the attributes of X_0,
3. Form the union all the resulting sets for X_0.

bottom up-GFA-Problem lower characteristic graphs

lattices	$\{D(X) = \mathcal{P}(\mathcal{P(Inh}(X)) \times \mathcal{S}yn(X)))\} \forall X \in V_N$
part. order	\subseteq (subset inclusion on sets of relations)
bottom	\emptyset (empty set of relations)
transf. fct.	$\{Lc_p : D(p[1]) \times \ldots \times D(p[n_p]) \rightarrow D(p[0]) \mid Lc_p(\mathcal{R}_1, \ldots, \mathcal{R}_{n_p}) = R_{up}(p)[\mathcal{R}_1, \ldots, \mathcal{R}_{n_p}] \} \forall p \in \mathcal{P}$
comb. fct.	\bigcup (union on sets of relations)
A Static Non–circularity Test

- A lower char. graph represents all dependencies in the trees inducing it.
- Pasting all combinations of lower char. graphs onto local dep. graphs produces a cyclic graph if AG is circular. Hence:
- AG is noncircular iff all graphs in $Dp(p)[Dt(X_1), \ldots, Dt(X_{n_p})]$ for all productions p are noncyclic.
- $|\bigcup_X Dt(X)|$ exponential in $|Attr|$.
- The non–circularity test is exponential.
Compile time:

Regard \(p \) applied at node \(n \) in \(t \).
Already computed
\[\text{Dt}_{t,n}(X_0) \text{ and } \text{Dt}_{t/n_1}(X_1), \ldots, \text{Dt}_{t/n_{np}}(X_{np}). \]

\[X_0 \]
\[x \]
\[x_i \]
\[x_{np} \]

Compute \(\text{Dt}_{t,n_i}(X_i) \) \((1 \leq i \leq n_p)\) using the operation \(R_{i}(p)[\ldots] \).
This suggests for generation time:

\[
\begin{align*}
D_t \downarrow(S) &= \{\emptyset\} \\
D_t \downarrow(X) &= \bigcup_{p[i] = X} R_{\downarrow i}(p)\{D_t \downarrow(p[0]), D_t \uparrow(p[1]), \ldots, D_t \uparrow(p[n_p])\}
\end{align*}
\]

Least fixpoint is the set of the sets of upper characteristic graphs.
GFA–Problem Upper Characteristic Graphs

- The sets of lower characteristic graphs are assumed to be computed before.
- They are constant parts of the functions $Uc_{p,i}$.
Resumee Characteristic Graphs

Characteristic graphs are:

Exact: For each characteristic graph there is at least one tree (fragment), whose individual dependency graph induces it,

Costly: There may be exponentially many of them.
Approximative Attribute Dependencies

What is the “strategic” interpretation of edges in (lower) characteristic graphs?

Evaluator visits subtree at n with b, c evaluated. Through this visit, it can

- evaluate d and e,
- not evaluate f.
What does “approximation” mean? deleting edges? adding edges?
Deleting the edge from a to f:

- Evaluator assumes, f can be evaluated when value of b is known.
- Makes a fruitless visit to the subtree at n.
- Inefficient strategy!
Adding edges from a to d and e:

- Evaluator would not visit the subtree at n with evaluated b and c and unevaluated a,
- Evaluator would only visit the subtree, when also the value of a is known.
- Visits may be delayed.
Resume:

- Reduced dependency graphs may cause fruitless visits,
- Augmented dependency graphs may delay visits,
- Added edges may introduce cycles (cause an infinite delay).
I/O–Graphs

- Are an upper bound on the lower dependencies,
- There may be I/O–graphs with no corresponding tree,
- There is one graph per nonterminal.

<table>
<thead>
<tr>
<th>bottom up-GFA-problem I/O-graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattices</td>
</tr>
<tr>
<td>part. order</td>
</tr>
<tr>
<td>bottom</td>
</tr>
<tr>
<td>transf. fct.</td>
</tr>
<tr>
<td>comb. fct.</td>
</tr>
<tr>
<td>Yields the system of equations:</td>
</tr>
</tbody>
</table>

\[
IO(X) = \bigcup_{p : p[0] = X} R^{\uparrow}(p) [IO(p[1]), \ldots, IO(p[n_p])]
\]

AG is absolutely noncircular if for all productions \(p \) the graph
\(Dp[p] [IO(p[1]), \ldots, IO(p[n_p])] \) is acyclic.
A Noncircular, but not Absolutely Noncircular AG

Its only two trees have no cyclic dependencies.

For computing $IO(X)$ $Dp(2)$ and $Dp(3)$ are unioned and inserted in $Dp(1)$ producing a cycle.