Syntax Analysis

Syntax Analysis

Recursive Equations over Grammars

— Wilhelm/Seidl/Hack: Compiler Design, Syntactic and
Semantic Analysis—

Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-saarland.de

29. Oktober 2013

Syntax Analysis

Properties of a Grammar

Sometimes need to determine properties of (constituents of) a
grammar:

» whether the grammar has useless symbols,
» what can start a word for a nonterminal,
» what can follow after a nonterminal.

Properties are expressed as recursive systems of equations.

Syntax Analysis

Reachability and Productivity

Non-terminal A is

reachable: iff there exist ¢1, 2 € VT U V) such that
S — gOlAQOQ

productive: iff there exists w € V%, A == w

» These definitions are useless for tests; they involve
quantifications over infinite sets.

» We need equivalent definitions that allow (efficient)
computation.

» Eliminate non-reachable and non-productive nonterminals from
the grammar,

» does not change the described language.

Syntax Analysis

Two-Level Definitions

1. A non-terminal Y is reachable through its occurrence in
X — p1Y o iff X is reachable,

2. A non-terminal is reachable iff it is reachable through at least
one of its occurrences,

3. S’ is reachable.

Re(S') = true

Re(X) =Vy 5 sixp, Re(Y) VX £S5

1. A non-terminal X is productive through production X — ¢ iff
all non-terminals occurring in ¢ are productive.

2. A non-terminal is productive iff it is productive through at
least one of its alternatives.

Pr(X) =Vx — A{Pr(Y)| Y € Vi occurs in a} forall X € Viy

Syntax Analysis

» These definitions translate reachability and productivity for a
given grammar into (recursive) systems of equations.
» System describes a function | : [Vy — B] — [Viy — B] with
false C true
> |teration starting with smallest element,
» Re(S') = true, Re(X) = false,¥X # S’
» Pr(X) = false, VX € Vy
» Least solution wanted to eliminate as many useless
non-terminals as possible.

Syntax Analysis

Trees, Subtrees, Tree Fragments

Parse tree

Subtree upper treefragment
for X for

X
X reachable: Set of upper tree fragments for X not empty,
X productive: Set of subtrees for X not empty.

Syntax Analysis

Recursive System of Equations

Questions: Do these recursive systems of equations have
» solutions?
» unique solutions?

They do have solutions if
» the property domain D

» is partially ordered by some relation C,

» has a uniquely defined smallest element, L,

» has a least upper bound, d; U d5, for each two elements dy, d»
and

» the functions occurring in the equations are monotonic.

Our domains are finite, all functions are monotonic.

Syntax Analysis

Fixed Point Iteration

v

Solutions are fixed points of a function

I:[Vy — D] = [Ww — DJ.

Computed iteratively starting with 1L, the function which
maps all non-terminals to L.

v

v

Evaluate equations until nothing changes.

v

Iteration is guaranteed if D has only finitely ascending chains,

We always compute least fixed points.

Syntax Analysis

Example: Productivity

Given the following grammar:

S = S

S = aX
G={S,SX,Y,Z},{a, b}, X — bS|aYbYy ,,S)

Y — bal|aZ

Z — aZX

Resulting system of equations: Fixed-point iteration

Pr(S) = Pr(X) S X Y |Z
Pr(X) = Pr(S)V Pr(Y) false | false | false | false
Pr(Y) = true V Pr(Z) = true

Pr(Z) = Pr(Z)APr(X)

Syntax Analysis

Example: Reachability

Given the grammar G = ({S,U, V., X,Y,Z},{a, b,c,d},

S—>Y
Y > YZ|Yal|b Re(S)
U—Vv < Re(U)
X e 2) Re(V)
V= Vd|d Re(X)
Z — ZX Re(Y)
Re(Z2)

Fixed-point iteration:

S U \% X Y Z

true | false | false | false | false | false

The equations:

Syntax Analysis

First and Follow Sets

Parser generators need precomputed information about sets of

» prefixes of words for non-terminals (words that can begin
words for non-terminals)

» followers of non-terminals (words that can follow a
non-terminal).

Use: Removing non-determinism from expand moves of the Pg

Syntax Analysis

Another Grammar for Arithmetic Expressions

Left-factored grammar Gy, i.e. left recursion removed.

S —» E

E — TE E generates T with a continuation E’

E' — +Ele E' generates possibly empty sequence of +Ts
T — FT T generates F with a continuation T’

T' — «Tle T’ generates possibly empty sequence of xFs
F — id|(E)

G, defines the same language as Gy and Gj.

Syntax Analysis

The FIRST; Sets

S—E
E— TE
A production N — « is applicable for symbols E' — +E|e
that "begin” « T — FT’
T — xTle

» Example: Arithmetic Expressions, Grammar G, F — id|(E)

» production F — id is applied when current symbol is id
» production F — (E) is applied when current symbol is (
» production T — F is applied when current symbol is id or (

» Formal definition:

FIRSTi(a) = {1:w|a = w,w € V}}

Syntax Analysis

The FOLLOW; Sets

S—E
E— TE
A production N — € is applicable for symbols E' — +E|e
that “can follow” N in some derivation T — FT’
T — xTle

» Example: Arithmetic Expressions, Grammar G, F — id|(E)

» The production E’ — ¢ is applied for symbols # and)
» The production T’ — € is applied for symbols #,) and +

» Formal definition:

FOLLOW;(N) = {a € V7|3a,7: S = aNay}

Syntax Analysis

Definitions

Let k >1
k-prefix of aword w = a1 ... a,

ai...a, if n<k
k:w= .
ai...ax otherwise

k-concatenation
K VEx V= VEK defined by u®gv = k : uv
extended to languages
k:L={k:w|welL}
L@kl = {x®ky | x € L1,y € La}.
vk = |k Vi set of words of length at most & ...

VT# = V<k U Vk L{#} ... possibly terminated by #-.

Syntax Analysis

Properties

Let k> 1,and L1, Ly, L3 C V=k,

a) Li®w(La®kls) = (Li®klo)Dils
b) Ll@k{s} = {6}@/(1_1 =kl

c) Lioklo=0 iff Li=0VLi=0
d) ee Lidly iff eclineels
e) k: (L1L2) =k: L&k : Ly

Syntax Analysis

FIRSTy and FOLLOW;

FIRSTx : (VU Vr)* — 27" where x
FIRSTi(a) = {k:u| o = u}

. : — —
set of k—prefixes of terminal words for a < FRST,(X) < FOLLOWA(X)

FOLLOW, : Viy — 2"7# where
FOLLOW,(X) = {w|S == BX~ and w € FIRST(7)}

set of k—prefixes of terminal words that may immediately follow X

Syntax Analysis

FIRS T

Theorem
FIRSTW(Z1, Zs, ..., Zy) =
FIRSTi(Z) @k FIRSTi(22) @k . . . @k FIRSTi(Z,)

The recursive system of equations for FIRSTy is
FIRST,(X) = XU

FIRST(() VX € Vi
— a}
FIRSTy(a) = {a} Vae Vt

(Fik)

Syntax Analysis

FIRST, Example

Grammar G, below defines the same language as Gy and Gj.

0: § — E 3: Ef — 4E 6:
1: E — TE' 4. T — FT'

2: E = ¢ 5. T —

The equations FIRST; for grammar Gy:

£

7
8:

T/
F
F

%
—
%

xT

(E)
id

Syntax Analysis

Grammar G, below defines the same language as Gy and G;

0: S — E 3: E - 4E 6: T =
1: E —» TE 4: T — FT'" 7: F —
2: E > ¢ 5. TN — ¢ 8: F —

The equations FIRST; for grammar Gy:

FIRST,(S) = FIRSTy(E)

FIRSTL(E) = FIRSTy(T)®1FIRST.(E’)
FIRST:(T) = FIRSTy(F)&1 FIRSTy(T')
FIRST,(T') = {e} U {x}®1FIRSTy(T)
FIRSTy(F) = {ld} U {(}®&1FIRST1(E)®1{)}

Syntax Analysis
lteration

Iterative computation of the FIRST; sets:
| S| E[E| T T]F
0 010 0 0 0

Syntax Analysis

FOLLOW;

U

The system of equations for FOLLOW is
FOLLOW,(X) =
{Y = p1Xp2}
FOLLOW(S) = {#}
(Fok)

FIRSTy(p2)@x FOLLOW,(Y) VX € Vi -

Syntax Analysis

FOLLOW, Example

Regard grammar Gy. The system of equations is:

FOLLOWA(S) = {#}

FOLLOW;(E) = FOLLOW;(S) U FOLLOW;(E') U {)}@1FOLLOW,(F)
FOLLOW;(E') = FOLLOW,(E)

FOLLOWA(T) = {e,+}®1FOLLOW;(E) U FOLLOW;(T')
FOLLOW;(T') = FOLLOW4(T)

FOLLOWL(F) = {e,*}®1FOLLOW;(T)

Iterative computation of the FOLLOW; sets:
s | E[E | T[T]|F|
{#} 010 0 0 0

