Syntax Analysis

Syntax Analysis

— Context-Free Grammars —

— Wilhelm/Seidl/Hack: Compiler Design, Syntactic and
Semantic Analysis—

Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-saarland.de
and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

e
Syntax Analysis

Subjects

Introduction

v

» The task of syntax analysis
» Automatic generation
» Error handling

v

Context free grammars, derivations, and parse trees

Pushdown automata

v

v

Top-down syntax analysis

v

Bottom-up syntax analysis - only a sketch

Syntax Analysis

“Standard’’ Structure

(source (character string)

o/

| lexical analysis | finite automata

i

(source (symbol string))

| syntax analysis | pushdown automata
(syntax-tree)
!
| semantic-analysis | attribute grammar evaluators
(decorated syntax-tree)

!

| optimizations |

abstract interpretation + transformations

(intermediate rep.)

!

Syntax Analysis
“Standard” Structure cont'd

|
!
C intermediate rep.
|

i
code-generation

!
(

machine-program

| tree automata + dynamic programming +

Dac

Syntax Analysis

Syntax Analysis (Parsing)

v

Functionality

Input Sequence of symbols (tokens)
Output Parse tree

v

Report syntax errors, e,g., unbalanced parentheses

v

Create “'pretty-printed” version of the program (sometimes)

v

In many cases the tree need not be generated (one-pass
compilers)

Note: Input is considered as a word over a new (finite) alphabet,
i.e. the set of all symbol classes.

Syntax Analysis

Handling Syntax Errors

v

Report and locate the error (symptom)

v

Diagnose the error

v

Correct the error

v

Recover from the error in order to discover more errors
(without reporting too many follow up errors)

Example
a:=ax(b+cxd,

O
)
I
i
i

Syntax Analysis

The Valid Prefix Property

» For every word u that the parser identifies as a legal prefix,
there exists a word w such that uw is a valid program — u
has a continuation w

» Property of a parsing method

» All the parsing methods treated, i.e. LL-parsing and
LR-parsing, have the valid prefix property.

Syntax Analysis

Error Diagnosis Data

v

Line number (may be far from the actual error)

v

The current symbol

v

The symbols expected in the current parser state

v

Parser configuration

O
|
1

I
i

Dac

Syntax Analysis

Error Recovery

» Becomes less important in interactive environments
» Example heuristics:

» Search for a “significant” symbol and ignore the string up to
this symbol (panic mode)

» Try to “replace” symbols for common errors

» Refrain from reporting more than 3 subsequent errors

» Globally optimal solutions — For every illegal input w, find a
legal input w’ with a “minimal distance” from w

Syntax Analysis

Example Context Free Grammar (Statement Part)

Stat

If Stat

While _Stat
Repeat Stat
Proc_Call
Assignment
Stat_ Seq

Expr_Seq

_)

Liddid

1

If Stat |

While Stat |

Repeat Stat |

Proc_ Call |

Assignment

if Cond then Stat_Seq else Stat_Seq fi |
if Cond then Stat_Seq fi
while Cond do Stat_Seq od
repeat Stat_Seq until Cond
Name (Expr_Seq)

Name := Expr

Stat |

Stat_Seq; Stat

Expr |

Expr_Seq, Expr

Syntax Analysis

Context-Free-Grammar Definition

A context-free-grammar is a quadruple G = (Vy, VT, P, S) where:
» V) — finite set of non-terminals
» Vr — finite set of terminals
» P C Vy x (VU Vr)* — finite set of production rules

» S ¢ V,, — the start non-terminal

v

A production (A, a) € P is written as A — «
read as " A may be derived to o or

v

v

as "a may be reduced to A"

Syntax Analysis
Examples

Go = ({? T,F},{+,%(,),id}, P, E)

E —E+T|T
p= T S TxF|F
F —(E)|id }

G =({E}{+ () id},{E—> E+E|ExE|(E)|id},E)
Go and G generate the same language.

What is the difference between the two grammars?

Syntax Analysis

Derivations

Given a context-free-grammar G = (Vy, V1, P, S)
» A derivation step ¢ = ¥

if there exist 1,2 € (VWU VT)*, A€ Vy
> p=p1 Apr

» A a€eP

> P =prap

* . ..
» ¢ = 1) reflexive transitive closure

» The language defined by G

L(G)={weV}|S= w}

Syntax Analysis

Reduced and Extended Context Free Grammars

A non-terminal A is

reachable: There exist ¢y, @2 such that S == p1Ap;

productive: There exists w € VX, A = w

Removal of unreachable and unproductive non-terminals and the
productions they occur in doesn’t change the defined language.
A grammar is reduced if it has neither unreachable nor
unproductive non-terminals.

A grammar is extended if a new startsymbol S’ and a new
production S’ — S are added to the grammar.

From now on, we only consider reduced and extended grammars.

Syntax Analysis

Syntax-Tree (Parse-Tree)

» An ordered tree.

» Root is labeled with S.

» Internal nodes are labeled by non-terminals.
» Leaves are labeled by terminals or by e.

» For internal nodes n: Is n labeled by N and are its children
n.1,n2,...,n.n, labeled by Ni, Na,..., Ny, then
N — N1N2...an e P.

Syntax Analysis

/\
I -~
| | ‘

Syntax Analysis

Leftmost (Rightmost) Derivations

Given a context-free-grammar G = (Vy, Vi, P, S)

> I:> ¢ if there exist 1 € VI, o € (VWU VT)*, and A€ Vy

> p=p1Ap
» A>ac€cP
> Y =prag: replace leftmost non-terminal

> = ¢ if there exist o € V7, p1 € (VWU VT)*, and A€ Vy

> p=p1Ap
» A= a€P
> Y= praps replace rightmost non-terminal

) I:;> P, @ r:} 1 are defined as usual

Syntax Analysis

Ambiguous Grammar

A grammar that has (equivalently)

» two leftmost derivations for the same string,

» two rightmost derivations for the same string,
> two syntax trees for the same string.

Q>

