
Syntax Analysis

Syntax Analysis
– Context-Free Grammars –

– Wilhelm/Seidl/Hack: Compiler Design, Syntactic and
Semantic Analysis–

Reinhard Wilhelm
Universität des Saarlandes

wilhelm@cs.uni-saarland.de

and
Mooly Sagiv

Tel Aviv University
sagiv@math.tau.ac.il

Syntax Analysis

Subjects

◮ Introduction
◮ The task of syntax analysis
◮ Automatic generation
◮ Error handling

◮ Context free grammars, derivations, and parse trees

◮ Pushdown automata

◮ Top-down syntax analysis

◮ Bottom-up syntax analysis - only a sketch

Syntax Analysis

“Standard” Structure
source (character string)

❄

lexical analysis finite automata

❄

source (symbol string)

❄

syntax analysis pushdown automata

❄

syntax-tree

❄

semantic-analysis attribute grammar evaluators

❄

decorated syntax-tree

❄

optimizations abstract interpretation + transformations
❄

intermediate rep.

❄...

Syntax Analysis

“Standard” Structure cont’d

❄

intermediate rep.

❄

code-generation tree automata + dynamic programming + · · ·

❄

machine-program

Syntax Analysis

Syntax Analysis (Parsing)

◮ Functionality

Input Sequence of symbols (tokens)
Output Parse tree

◮ Report syntax errors, e,g., unbalanced parentheses

◮ Create “ ‘pretty-printed” version of the program (sometimes)

◮ In many cases the tree need not be generated (one-pass
compilers)

Note: Input is considered as a word over a new (finite) alphabet,
i.e. the set of all symbol classes.

Syntax Analysis

Handling Syntax Errors

◮ Report and locate the error (symptom)

◮ Diagnose the error

◮ Correct the error

◮ Recover from the error in order to discover more errors
(without reporting too many follow up errors)

Example
a := a ∗ (b + c ∗ d ;

Syntax Analysis

The Valid Prefix Property

◮ For every word u that the parser identifies as a legal prefix,
there exists a word w such that uw is a valid program — u

has a continuation w

◮ Property of a parsing method

◮ All the parsing methods treated, i.e. LL-parsing and
LR-parsing, have the valid prefix property.

Syntax Analysis

Error Diagnosis Data

◮ Line number (may be far from the actual error)

◮ The current symbol

◮ The symbols expected in the current parser state

◮ Parser configuration

Syntax Analysis

Error Recovery

◮ Becomes less important in interactive environments

◮ Example heuristics:
◮ Search for a “significant” symbol and ignore the string up to

this symbol (panic mode)
◮ Try to “replace” symbols for common errors
◮ Refrain from reporting more than 3 subsequent errors

◮ Globally optimal solutions — For every illegal input w , find a
legal input w ′ with a “minimal distance” from w

Syntax Analysis

Example Context Free Grammar (Statement Part)

Stat → If_Stat |
While_Stat |
Repeat_Stat |
Proc_Call |
Assignment

If_Stat → if Cond then Stat_Seq else Stat_Seq fi |
if Cond then Stat_Seq fi

While_Stat → while Cond do Stat_Seq od
Repeat_Stat → repeat Stat_Seq until Cond
Proc_Call → Name (Expr_Seq)
Assignment → Name := Expr
Stat_Seq → Stat |

Stat_Seq; Stat
Expr_Seq → Expr |

Expr_Seq, Expr

Syntax Analysis

Context-Free-Grammar Definition

A context-free-grammar is a quadruple G = (VN ,VT ,P ,S) where:

◮ VN — finite set of non-terminals

◮ VT — finite set of terminals

◮ P ⊆ VN × (VN ∪ VT)
∗ — finite set of production rules

◮ S ∈ Vn — the start non-terminal

◮ A production (A, α) ∈ P is written as A → α

◮ read as ” A may be derived to α” or

◮ as ”α may be reduced to A”

Syntax Analysis

Examples

G0 = ({E ,T ,F}, {+, ∗, (,), id},P ,E)

P =
{ E → E + T | T

T → T ∗ F | F
F → (E) | id }

G1 = ({E}, {+, ∗, (,), id}, {E → E + E | E ∗ E | (E) | id},E)

G0 and G1 generate the same language.
What is the difference between the two grammars?

Syntax Analysis

Derivations

Given a context-free-grammar G = (VN ,VT ,P ,S)

◮ A derivation step ϕ =⇒ ψ

if there exist ϕ1, ϕ2 ∈ (VN ∪ VT)
∗, A ∈ VN

◮ ϕ ≡ ϕ1 A ϕ2

◮ A → α ∈ P

◮ ψ ≡ ϕ1 α ϕ2

◮ ϕ
∗

=⇒ ψ reflexive transitive closure

◮ The language defined by G

L(G) = {w ∈ V
∗

T | S
∗

=⇒ w}

Syntax Analysis

Reduced and Extended Context Free Grammars

A non-terminal A is

reachable: There exist ϕ1, ϕ2 such that S
∗

=⇒ ϕ1Aϕ2

productive: There exists w ∈ V ∗

T , A
∗

=⇒ w

Removal of unreachable and unproductive non-terminals and the
productions they occur in doesn’t change the defined language.
A grammar is reduced if it has neither unreachable nor
unproductive non-terminals.
A grammar is extended if a new startsymbol S ′ and a new
production S ′ → S are added to the grammar.
From now on, we only consider reduced and extended grammars.

Syntax Analysis

Syntax-Tree (Parse-Tree)

◮ An ordered tree.

◮ Root is labeled with S .

◮ Internal nodes are labeled by non-terminals.

◮ Leaves are labeled by terminals or by ε.

◮ For internal nodes n: Is n labeled by N and are its children
n.1, n.2, . . . , n.np labeled by N1,N2, . . . ,Nnp , then
N → N1N2 . . .Nnp ∈ P .

Syntax Analysis

Examples

E

id

E

E

E

E

id id∗ + +∗id id

E

E

E

E

id

E

++

E

id

E

E

E

E

id id+ +id id

E

E

E

E

id

E

Syntax Analysis

Leftmost (Rightmost) Derivations

Given a context-free-grammar G = (VN ,VT ,P , S)

◮ ϕ =⇒
lm

ψ if there exist ϕ1 ∈ V ∗

T , ϕ2 ∈ (VN ∪ VT)
∗, and A ∈ VN

◮ ϕ ≡ ϕ1 A ϕ2

◮ A → α ∈ P

◮ ψ ≡ ϕ1 α ϕ2 replace leftmost non-terminal

◮ ϕ =⇒
rm

ψ if there exist ϕ2 ∈ V ∗

T , ϕ1 ∈ (VN ∪ VT)
∗, and A ∈ VN

◮ ϕ ≡ ϕ1 A ϕ2

◮ A → α ∈ P

◮ ψ ≡ ϕ1 α ϕ2 replace rightmost non-terminal

◮ ϕ
∗

=⇒
lm

ψ, ϕ
∗

=⇒
rm

ψ are defined as usual

Syntax Analysis

Ambiguous Grammar

A grammar that has (equivalently)

◮ two leftmost derivations for the same string,

◮ two rightmost derivations for the same string,

◮ two syntax trees for the same string.

