Instruction Selection on SSA Graphs

Sebastian Hack, Sebastian Buchwald, Andreas Zwinkau

Compiler Construction Course
Winter Term 2009/2010

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Instruction Selection

I toﬁs;c | ; | Const |

i

Instruction Selection on SSA

m "Optimal” instruction selection on trees is polynomial

SSA programs are directed graphs
—> Data dependence graphs

Translating back from SSA graphs to trees is not satisfactory
“Optimal” instruction selection is NP-complete on DAGs

The problem is common subexpressions

Doing it on graphs provides more opportunities for complex
instructions:

» Patterns with multiple results

» DAG-like patterns

Instruction Selection on SSA

m Graph Rewriting
m For every machine instruction specify:

» A set of graphs (patterns) of IR nodes
» Every pattern has associated costs

Find all matchings of the patterns in the IR graph
Pick a correct and optimal matching

Replace each pattern by corresponding machine instruction

= Result is an SSA graph with machine nodes

Graphs

Let G = (V, E) be a directed acyclic graph (DAG)

Let Op be a set of operators

Every node has a degree degv : V — Ny

Every node v € V has an operator: op : V — Op

Every operator o € Op has an arity # : Op — Ny

Let O € Op be an operator with 20 =0

Nodes with operator O denote “glue” points in the patterns (later)

Every node's degree must match the operator’s arity:
H#opv =degv

Definition (Program Graph)

A graph G is a program graph if it is acyclic and

YveV .opv#DO

Patterns

m A graph P = (V,E) is rooted if there exists a node v € Vp such that
there is a path from v to every node v/ in P

m If P is a DAG, then there is a unique root called rt P

Definition (Pattern Graph, Pattern)

A graph P is a pattern if
m it is acyclic and rooted
moprtP#0

m Note that we explicitly allow nodes with operator O in patterns

6

Equivalence of Nodes in Patterns

m Complex patterns often have common sub-patterns

m Shall be treated as equivalent

m Selecting the common sub-pattern at the Add node shall enable
selecting the complex instruction at Store and Load

~

Equivalence of Nodes in Patterns

Definition (Equivalence of nodes)

Consider two patterns P and @ and two nodes v € P, w € Q:

VAWl v=w
V(spanv Zspanw ArtP # v Art Q # w)

m Either the two nodes are identical
E v, w are no pattern roots and their spanned subgraphs are isomorphic

m span v: induced subgraph that contains all nodes reachable from v

Matching of a Node

m Let P ={P1, Ps,...} be a set of patterns
m Let G be some program graph

Definition (Matching)

A matching M, of a node v € Vi with a set of patterns P is a family of

pairs

M, = ((P,'7’l,‘)) I C {177‘P‘}

of patterns and injective graph morphisms 2; : P; — G satisfying

iel

vErany and opw # 0O = opw = opzi(w) Yw € P;

Matchings

Example

Pattern Py

Program Graph

Pattern Ppg

10

Selection

m We have computed a covering of the graph
m i.e. instruction selection possibilities
m Now, find a subset of the covering that leads to good and correct code

m Cast the problem as a mathematical optimization problem:

Partitioned Boolean Quadratic Programming (PBQP)

11

PBQP
Let Ro = Ry U {oo} and

m C; € R be cost vectors

. k; .
m (e RX x R, be cost matrices

Definition (PBQP)
Minimize

=T = =T =
E X,-~C,'J'-X_,‘+ E X; -G

1<i<j<n 1<i<n

with respect to
% €{0,1}%
X' 1=1, 1<i<n
X Cj-X<oo, 1<i<j<n

PBQP

X; are selection vectors
Exact one component is 1
This selects the component

Cost matrices relate selection of made in different selection vectors

Can be modelled as a graph:
> cost vectors are nodes
> matrices are edges
» only draw non-null matrix edges

13

PBQP as a Graph

m Colors indicate selection vectors % = (010)" and X; = (10) "
m This selection contribute the cost of 6 to the global costs
m Edge direction solely to indicate order of ij in the matrix subscript

14

Mapping Instruction Selection to PBQP

[c][o] [o]
Add Add
Add Add+Const Const

Const (50
- 0
|:||> 0 o©
oo 0
Add /100
Add-+Const \ 100

15

Mapping Instruction Selection to PBQP

Cost vectors are defined by node coverings:

Let C, be a node covering of v

The alternatives of the node are given by partitioning the coverings by

equivalence:
Cvy.
Common sub-patterns have to result in the same choice

Costs come from an external specification

16

Mapping Instruction Selection to PBQP

m Matrices have to maintain selection correctness

m Consider two alternatives
Au = (Puﬂfu) Av = (PvaZV)

at two nodes u, v

m The matrix entry for those alternatives is

oo opi t(v) =0 and 2, }(v) £t P,
c(Auy,Av) =< 0o opi,i(v) # 0O and 1, (v) 21, (v)
0 else
Id est:
m If A, selects a leaf at v, A, has to select a root

m If A, does not select a leaf, both subpatters have to be equivalent

17

Example
Program Graph

18

Example

Patterns

[0] [Cost|] [o][O]
\/ \/
Add Add [O] [Const]
[I \
LAC (Load+Add+Const) LA (Load+Add) AC (Add+Const)

19

Example
Matchings

P C, AC, LAC1, LAC,

i ST

A, AC, LA, LACy, LA,, LAC,

/N

L1, LA, LAC, Lo, LAz, LAC,

/‘T‘\ T'\

20

Example
PBQP Instance

L1
LA
LAC;

AC
LA, LA
LAC;, LAGC,
0 0 cooo
ooooOoo)

oooo oo 0

(

C
AC, LACy, LAG,

)

21

Reducing the Problem

Optimality-preserving reductions of the problem:

m Independent edges (e.g. matrix of zeroes):

o0 -> @ O

m Nodes of degree 1:
o—0 - @

m Nodes of degree 2:
o0 0o — o6 —0°

Reducing the Problem

m Heuristic Reduction:

—)
o o

Chose the local minimum at a node

m Leads to a linear algorithm
m Each reduction eliminates at least one edge

m If all edges are reduced, minimizing nodes separately is easy

Summary

Map instruction selection to an optimization problem
SSA graphs are sparse = reductions often applied
In practice: heuristic reduction rarely happens
Efficiently solvable

Convenient mechanism:

» Implementor specifies patterns and costs
» maps each pattern to an machine node
> Rest is automatic

m Criteria for pattern sets that allow for correct selections in every
program not discussed here!

Literature

[3 Sebastian Buchwald and Andreas Zwinkau.
Befehlsauswahl auf expliziten Abhangigkeitsgraphen.

Master's thesis, Universitat Karlsruhe (TH), Dec 2008.

ﬁ Erik Eckstein, Oliver Kénig, and Bernhard Scholz.
Code Instruction Selection Based on SSA-Graphs.
In SCOPES, pages 49-65, 2003.

ﬁ Hannes Jakschitsch.
Befehlsauswahl auf SSA-Graphen.

Master's thesis, Universitat Karlsruhe, November 2004.

25

