
computer science

saarland
university Prof. Dr. Sebastian Hack

Johannes Doerfert, B.Sc.

Compiler Construction WS15/16

Exercise Sheet 3

Exercise 3.1. Item-PDAs Revisited
Let the pushdown automaton P = ({a, b}, {q0, q1, q2, q3},∆, q0, {q3}), where

∆ = {(q0, a, q0q1), (q0, b, q0q2), (q0,#, q3), (q1, a, q1q1), (q1, b, ε), (q2, a, ε), (q2, b, q2q2)}

and # 6∈ Σ symbolizes the end of the input word, be given.
Provide a context-free grammar that generates the language L accepted by P . If possible, provide also a regular

expression for L. Otherwise provide sufficient arguments why this is not possible.

Exercise 3.2. LL(k)
A grammar is an LL(k)-grammar for some k ∈ N if whenever there exist u, x, y ∈ VT∗ with k : x = k : y, Y ∈ VN
and α, β, γ ∈ (VT ∪ VN)∗ such that

S
∗

=⇒
lm

uY α =⇒
lm

uβα
∗

=⇒
lm

ux

S
∗

=⇒
lm

uY α =⇒
lm

uγα
∗

=⇒
lm

uy

then β = γ
A language L is an LL(k)-language if there exists an LL(k)-grammar that generates L.

1. Prove that for each k ∈ N there exists a grammar which is LL(k + 1) but not LL(k).

2. Prove that for each k ∈ N an LL(k)-grammar is an LL(k + 1)-grammar.

3. Investigate the relationship between LL(0)-languages and regular languages. In particular provide the fol-
lowing information.

• {|x| | x ∈ LL(0)}, where LL(0) is the set of all LL(0)-languages.

• {|x| | x ∈ Lreg}, where Lreg is the set of all regular language.

• Which set relation holds between LL(0) and Lreg?

4. A grammar is left-recursive if it has a production of the form A→ Aµ. Show that a left-recursive grammar
is not LL(k) for any k.

Exercise 3.3. Checkable LL(k) conditions
The formal definition of an LL(k)-grammar as given in the previous exercise is not very handy for checking if a
given grammar is an LL(k)-grammar. Therefore the lecture about LL-parsing introduced some checkable LL(k)
conditions (slides 24 and 32).

• Show that an LL(k)-grammar does in general not have to be a strong LL(k)-grammar for k > 1.

• Show that an LL(1)-grammar is always also a strong LL(1)-grammar. (Prove one direction of the theorem
on slide 33 of the lecture about LL-parsing.)

• Provide a sufficient condition to find out if a given context-free grammar is an LL(k)-grammar. This con-
dition should be weaker than the check if a grammar is a strong LL(k)-grammar. Give an example where
your condition classifies a grammar as LL(k)-grammar even if it is no strong LL(k)-grammar. Remember
that the definition of an LL(k)-grammar itself is of course also a sufficient condition, but for grammars that
define infinite languages it cannot be checked.

1

Project task C. Parser
Implement a parser for C4:

• For expressions (§6.5) we handle identifier, constant, string-literal, parenthesized expression, [], function
call, ., ->, sizeof, & (unary), * (unary), - (unary), !, * (binary), + (binary), - (binary), <, ==, !=, &&,
||, ?: and =. For all other expressions only the chain productions (A→ B) are used.

• At declarations (§6.7) we only consider init-declarator-list with at most one init-declarator without initia-
lizer. The only declaration-specifiers and specifier-qualifier-list is type-specifier. type-specifier is restricted
to void, char, int and struct-or-union-specifier. The latter is only struct without type-qualifiers and
bit fields. declarator and direct-declarator are pointer (without type-qualifier-list), identifier, parenthesi-
zed declarator and function declarator with parameter-type-list. parameter-type-list is only parameter-list
without ellipses (...). All productions for parameter-declaration are considered.

• The considered statements (§6.8) are labeled-statement with an identifier, compound-statement, expression-
statement (both expression and null statements), selection-statement with if and if-else, iteration-
statement with while and every jump-statement.

• The root are external definitions (§6.9), which are handled fully except for declaration-list in function-
definition.

Remarks and hints

• Push your solution to the branch master till 17/11/15.

• For parsing your compiler will be invoked with c4 --parse test.c.

• The parser must reject all words that are not derivable from the full grammar. The parser must accept all
correct programs according to the restricted grammar.

• The grammar as given is not suitable for LL parsing in some places. Adjust the grammar in these places
accordingly.

• Don’t repeat yourself! Factorise common operations into helper functions.

• For expression parsing see slide 4 of the “Top-Down Parsing (LL)” slides. Additionally, there will be a
lecture on the practical aspects of parsing on Friday 13/11/15.

• The grammar is ambiguous for selection-statements. How is this ambiguity resolved in the language stan-
dard? How can this be treated in the implemenation of the parser?

• How to implement the k-lookahead capability in your lexer/parser?

• It is not yet required to construct an abstract syntax tree, but will be necessary for the next parts of the project.
What classes and class hierarchy for AST nodes do you need, e.g. Expression, BinaryExpression?

• Keep it simple!

2

