EJ/I\\I/?\F/{EL IQ\SII\]TI\)(Prof. Dr. Sebastian Hack

I—— Johannes Doerfert, B.Sc.
COMPUTER SCIENCE

Compiler Construction WS15/16

Exercise Sheet 6

Exercise 6.1. Dominance and Data Flow

Develop a data flow analysis to compute the set of dominators of each block in a control flow graph. A control flow
graph (CFQG) consists only of basic blocks and control flow edges between them. Further, a CFG has a unique start
node and each node is reachable from the start. A block A dominates a block B, if all paths from the start node
to B must go through A. A basic block is a maximal sequence of instructions, which start with a label and end in
a conditional or unconditional branch and does not contain any other label or branch. (The actual instructions do
not matter for dominance.) Consider the following aspects:

e What is the domain, which is a complete lattice, of the analysis? In particular, describe L and T.

What is the join operator LI?
e If a block A is dominated by a block B, then all predecessors of A are also dominated by B.

Each block dominates itself.

What does it mean that information is (un-)safe for this analysis?
e [s the analysis performed forwards (along the control flow) or backwards (against the control flow)?

‘What is the initialisation at each block?

e What would be the set of dominators of an unreachable block?

Draw the CFG for the following program and perform dominance analysis. Label each basic block with an upper-
case letter.

void f(void) {
if (...) {
while (...) {
if (...)
break ;
1

} else {
}
}

Exercise 6.2. Monotinicity and Ascending Chains
In the lecture we saw the following two properties of a function f:

e Monotinicity: <y — f(z) < f(y)

e Ascending Chain: z < f(x)

Show that, in general, neither implies the other.

Project task E. Semantic Analysis

Implement semantic analysis.

You can perform this either during parsing and AST construction or as a separate phase.

Semantic analysis augments ——parse and ——print-ast.

Major parts are name and type analysis. Name analysis associates identifiers with declarations. Type analysis
associates expressions with types. It encompasses the Constraints and Semantics clauses.

e If you delayed certain syntactic checks (e.g. rejectinga | | b = c), perform them now.
e The only null pointer constant, which you need to support, is literal O.
e The previous restriction and the restricted language subset ensure, that it is not necessary to evaluate the

value of any expressions during semantic analysis.

It is not necessary to accept programs, which contain functions, that return a struct or have one as parameter.
Similarily, it is not necessary to accept programs, which contain assignments of struct type.

It is not necessary to accept programs, which contain anonymous structs.

You do not need to handle ___func__.

Use int for the types ptrdiff t and size_t.

Due to the restricted language subset, type compatibility degenerates to equality.

For the error location use the location of the (first) terminal of the syntactic construct, where the error was
detected. E.g. for adding two pointers, show the location of the +. For an i £, whose condition is not scalar,
show the location of the keyword 1f.

If you are uncertain about some aspect, ask!

