Global Value Numbering

Sebastian Hack
hack@cs.uni-saarland.de

8. Dezember 2015
Value Numbering

\[a := 2 \]
\[x := a + 1 \]

\[a := 3 \]
\[x := a + 1 \]

\[y := a + 1 \]

- Replace second computation of \(a + 1 \) with a copy from \(x \)
Value Numbering

- Goal: Eliminate redundant computations
- Find out if two variables have the same value at given program point
 - In general undecidable
- Potentially replace computation of latter variable with contents of the former
- Resort to Herbrand equivalence:
 - Do not consider the interpretation of operators
 - Two expressions are equal if they are structurally equal
- This lecture: A costly program analysis which finds all Herbrand equivalences in a program and a “light-weight” version that is often used in practice.
Herbrand Interpretation

- The Herbrand interpretation \mathcal{I} of an n-ary operator ω is given as

\[\mathcal{I}(\omega) : T^n \rightarrow T \quad \mathcal{I}(\omega)(t_1, \ldots, t_n) := \omega(t_1, \ldots, t_n) \]

Especially, constants are mapped to themselves.

- With a state σ that maps variables to terms $\sigma : V \rightarrow T$

we can define the Herbrand semantics $\langle t \rangle \sigma$ of a term t

\[
\langle t \rangle \sigma := \begin{cases}
\sigma(v) & \text{if } t = v \text{ is a variable} \\
\mathcal{I}(\omega)(\langle x_1 \rangle \sigma, \ldots, \langle x_n \rangle \sigma) & \text{if } t = \omega(x_1, \ldots, x_n)
\end{cases}
\]
Programs with Herbrand Semantics

- We now interpret the program with respect to the Herbrand semantics.

- For an assignment
 \[x \leftarrow t \]
 the semantics is defined by:
 \[[x \leftarrow t]\sigma := \sigma \langle t \rangle_{\sigma/x} \]

- The state after executing a path \(p : \ell_1, \ldots, \ell_n \) starting with state \(\sigma_0 \) is then:
 \[[p]\sigma_0 := ([\ell_n] \circ \cdots \circ [\ell_1])\sigma_0 \]

- Two expressions \(t_1 \) and \(t_2 \) are **Herbrand equivalent** at a program point \(\ell \) iff
 \[\forall p : r, \ldots, \ell. \langle t_1 \rangle [p]\sigma_0 = \langle t_2 \rangle [p]\sigma_0 \]
Kildall’s Analysis

- Track Herbrand equivalences with a forward data flow analysis
- A lattice element is an equivalence class of the terms and variables of the program
- The equivalence relation is a congruence relation w.r.t. to the operators in our expression language. For each operator \(\omega \), each eq. relation \(R \), and \(e, e_1, \cdots \in V \cup T \):
 \[
e R (e_1 \omega e_2) \implies e_1 R e'_1 \implies e_2 R e'_2 \implies e R (e'_1 \omega e'_2)
\]
- Two equivalence classes are joined by intersecting them
 \[
 R \sqcup S := R \cap S := \{(a, b) \mid a R b \wedge a S b\}
 \]
- \(\bot = \{(x, y) \mid x, y \in V \cup T\} \)
 - optimistically assume all variables/terms are equivalent
- Initialize with \(\top = \{(x, x) \mid x \in V \cup T\} \)
 - at the beginning, nothing is equivalent
Kildall’s Analysis

Example

\[
\begin{align*}
a & := 2 \\
x & := a + 1 \\
\end{align*}
\]

\[
\begin{align*}
a & := 3 \\
x & := a + 1 \\
\end{align*}
\]
Kildall’s Analysis
Transfer Functions

... of an assignment

\[\ell : x \leftarrow t \]

- Compute a new partition checking (in the old partition) who is equivalent if we replace \(x \) by \(t \)

\[[x \leftarrow t]^{\#} R := \{(t_1, t_2) \mid t_1[t/x] R t_2[t/x] \} \]
Kildall’s Analysis

Example

\[x := 0 \]
\[y := x + 1 \]

\[y := y + 1 \]
\[x := x + 1 \]
Kildall’s Analysis

Example

\[
\begin{align*}
 x & := 0 \\
 y & := x + 1
\end{align*}
\]

\[
\begin{align*}
 \{ [x, 0], [y, x + 1, 0 + 1] \}
\end{align*}
\]

\[
\begin{align*}
 x & := x + 1 \\
 \{ [y, x + 1] \}
\end{align*}
\]

\[
\begin{align*}
 y & := y + 1 \\
 \{ [x, y] \}
\end{align*}
\]

\[
\begin{align*}
 \{ [y, x + 1] \}
\end{align*}
\]

\[
\begin{align*}
 \{ [x, y] \}
\end{align*}
\]
Kildall’s Analysis

Comments

- Kildall’s Analysis is sound and complete. It discovers all Herbrand equivalences in the program.

- Naïve implementations suffer from exponential explosion (pathological):
 - Because the equivalence relation must be congruence, size of eq. classes can explode:

 \[R = \{ [a, b], [c, d], [e, f], [x, a + c, a + d, b + c, b + d], [y, x + e, x + f, (a + c) + e, \ldots, (b + d) + f] \} \]

- In practice: Use value graph. Do not make congruence explicit in representation.

- Theoretical results (Gulwani & Necula 2004):
 - Even in acyclic programs, detecting all equivalences can lead to exponential-sized value graphs.
 - Detecting only equivalences among terms in the program is polynomial (linear-sized representation of equivalences per program point).
Strong Equivalence DAGs (SED)

A SED G is a DAG (N, E). Let N be the set of nodes of the graph. Every node n is a pair (V, t) of a set of variables and a type

$$t ::= \bot \mid c \mid \oplus(n_1, \ldots, n_k)$$

A type $\oplus(n_1, \ldots, n_k)$ indicates, that

$$\{(n, n_1), \ldots, (n, n_k)\} \in E$$

A node n in the SED stands for a set of terms $T(V, t)$

$$T(V, \bot) = V$$
$$T(V, c) = V \cup \{c\}$$
$$T(V, \oplus(n_1, \ldots, n_k)) = V \cup \{\oplus(e_1, \ldots, e_k) \mid e_i \in T(V, n_i)\}$$
Strong Equivalence DAGs (SED)

Fig. 2. This figure shows a program and the execution of our algorithm on it. Gi, shown in dotted box, represents the SED at program point Li.

In figures showing SEDs, we omit the set delimiters "{" and "}", and represent a node h{x1,...,xn},ti as h{x1,...,xn},ti.

Figure 2 shows a program and the SEDs computed by our algorithm at various points. As an example, note that Terms(Node G4(u)) = {u} \[{F(z,\vv)} | \vv \in \{x, y\} \] \[{F(F(\vv1, \vv2), \vv3) | \vv1, \vv2, \vv3 \in \{x, y\}} \]. Hence, G4 = u = F(z, x).

Note that an SED represents compactly a possibly-exponential number of equivalent terms.

3.2 The Assignment Operation

Let G be an SED that represents the Herbrand equivalences before an assignment node x := e. The SED that represents the Herbrand equivalences after the assignment node can be obtained by using the following algorithm. SED G4 in Figure 2 shows an example of the Assignment operation.

1. Assignment(G, x := e) =
2. G0 := G;
3. let hV1,t1i = GetNode(G0, e) in
4. let hV2,t2i = Node(G0)(x) in
5. if t1 = t2 then G0 := G0 {hV1,t1i, hV2,t2i};
6. G0 := G0 \[{hV1 \{x},t 1i, hV2 \{x},t 2i};
7. return G0;

The Alpern, Wegman, Zadeck (AWZ) Algorithm

- Incomplete

- Flow-insensitive
 - does not compute the equivalences for every program point but sound equivalences for the whole program

- Uses SSA
 - Control-flow joins are represented by \(\phi \)s
 - Treat \(\phi \)s like every other operator (cause for incompleteness)
 - Source of imprecision

- Interpret the SSA data dependence graph as a finite automaton and minimize it
 - Refine partitions of “equivalent states”
 - Using Hopcroft’s algorithm, this can be done in \(O(e \cdot \log e) \)
The AWZ Algorithm

- In contrast to finite automata, do not create two partitions but a class for every operator symbol
 - Note that the ϕ’s block is part of the operator
 - Two ϕs from different blocks have to be in different classes

- Optimistically place all nodes with the same operator symbol in the same class
 - Finds the least fixpoint
 - You can also start with singleton classes and merge but this will (in general) not give the least fixpoint

- Successively split class when two nodes in the class are detected not equivalent
The AWZ Algorithm

Example

\[
\begin{align*}
x &:= 0 \\
y &:= 0 \\
x &:= x + 1 \\
y &:= y + 1
\end{align*}
\]
The AWZ Algorithm

Example

\[
\begin{align*}
x_0 &:= 0 \\
y_0 &:= 0 \\
x_1 &:= \phi_2(x_2, x_0) \\
y_1 &:= \phi_2(y_2, y_0) \\
x_2 &:= x_1 + 1 \\
y_2 &:= y_1 + 1
\end{align*}
\]
The AWZ Algorithm

Example

\[\phi_2 x_1 + x_0 \]

\[\phi_2 y_1 + y_0 \]
The AWZ Algorithm

Example

\[
\phi, x_1, y_1
\]

\[
+, x_2, y_2
\]

\[
0, x_0, y_0
\]

\[
1
\]
Kildall compared to AWZ

\[
\begin{align*}
 a_0 &:= 2 \\
 x_0 &:= a_0 + 1 \\
 a_2 &:= \phi_4(a_0, a_1) \\
 x_2 &:= \phi_4(x_0, x_1) \\
 y_0 &:= a_2 + 1
\end{align*}
\]
Kildall compared to AWZ

\[
\begin{align*}
\phi_4 + y_0 &= \phi_4 \\
2 + a_2 &= 3 \\
3 + a_1 &= 1 \\
\phi_4 + x_2 &= x_2 \\
x_1 &= x_0 \\
\end{align*}
\]
Kildall compared to AWZ