Lexical Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University

W2015

Saarland University, Computer Science
Subjects

- Role of lexical analysis
- Regular languages, regular expressions
- Finite-state machines
- From regular expressions to finite-state machines
- A language for specifying lexical analysis
- The generation of a scanner
- Flex
Lexical Analysis (Scanning)

■ Functionality

 Input: program as sequence of characters
 Output: program as sequence of symbols (tokens)

■ Report errors, symbols illegal in the programming language

■ Additional bookkeeping:
 - Identify language keywords and standard identifiers
 - Eliminate “whitespace”, e.g., consecutive blanks and newlines
 - Track text coordinates for error report generation
 - Construct table of all symbols occurring (symbol table)
The symbols of programming languages can be specified by regular expressions.

Examples:
- program as a sequence of characters.
- (alpha (alpha | digit)*) for identifiers
- "/*" until "*/" for comments

The recognition of input strings can be performed by a finite-state machine.

A table representation or a program for the automaton is automatically generated from a regular expression.
Automatic Generation of Lexical Analyzers cont’d

regular-expression(s) → FLEX →
input-program → scanner-program → tokenized-program
Notations

A language L is a set of words x over an alphabet Σ.

- $a_1 a_2 \ldots a_n$, a word over Σ, $a_i \in \Sigma$
- ε, The empty word
- Σ^n, The words of length n over Σ
- Σ^*, The set of finite words over Σ
- Σ^+, The set of non-empty finite words over Σ
- $x.y$, The concatenation of x and y

Language Operations

- $L_1 \cup L_2$ Union
- $L_1 L_2 = \{x.y|x \in L_1, y \in L_2\}$ Concatenation
- $\overline{L} = \Sigma^* - L$ Complement
- $L^n = \{x_1 \ldots x_n|x_i \in L, 1 \leq i \leq n\}$
- $L^* = \bigcup_{n \geq 0} L^n$ Closure
- $L^+ = \bigcup_{n \geq 1} L^n$
Regular Languages

Defined inductively

- \emptyset is a regular language over Σ
- $\{\varepsilon\}$ is a regular language over Σ
- For all $a \in \Sigma$, $\{a\}$ is a regular language over Σ
- If R_1 and R_2 are regular languages over Σ, then so are:
 - $R_1 \cup R_2$,
 - $R_1 R_2$, and
 - R_1^*
Regular Expressions and the Denoted Regular Languages

Defined inductively

- \emptyset is a regular expression over Σ denoting \emptyset.
- ε is a regular expression over Σ denoting $\{\varepsilon\}$.
- For all $a \in \Sigma$, a is a regular expression over Σ denoting $\{a\}$.
- If r_1 and r_2 are regular expressions over Σ denoting R_1 and R_2, resp., then so are:
 - $(r_1|r_2)$, which denotes $R_1 \cup R_2$,
 - (r_1r_2), which denotes R_1R_2, and
 - $(r_1)^*$, which denotes R_1^*.

- Metacharacters, $\emptyset, \varepsilon, (,), [,]$, don’t really exist, are replaced by their non-underlined versions.
- Clash between characters in Σ and metacharacters $\{(,), [,] , * \}$
<table>
<thead>
<tr>
<th>Expression</th>
<th>Language</th>
<th>Example words</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \mid b$</td>
<td>${a, b}$</td>
<td>a, b</td>
</tr>
<tr>
<td>$ab^* a$</td>
<td>${a}{b}^* {a}$</td>
<td>$aa, aba, abba, abbaa, \ldots$</td>
</tr>
<tr>
<td>$(ab)^*$</td>
<td>${ab}^*$</td>
<td>$\varepsilon, ab, abab, \ldots$</td>
</tr>
<tr>
<td>$abba$</td>
<td>${abba}$</td>
<td>$abba$</td>
</tr>
</tbody>
</table>
Automata

- process *input*

- make *transitions* from configurations to configurations;

- configurations consist of (the rest of) the input and some *memory*;

- the *memory* may be small, just one variable with finitely many values,

- but the memory may also be able to grow without bound, adding and removing values at one of its ends;

- the type of memory determines its ability to *recognize* a class of languages,
The simplest type of automaton, its memory consists of only one variable, which can store one out of finitely many values, its states.
A Non-Deterministic Finite-State Machine (NFSM)

\[M = \langle \Sigma, Q, \Delta, q_0, F \rangle \] where:

- \(\Sigma \) — finite alphabet
- \(Q \) — finite set of states
- \(q_0 \in Q \) — initial state
- \(F \subseteq Q \) — final states
- \(\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q \) — transition relation

May be represented as a transition diagram

- Nodes — States
- \(q_0 \) has a special “entry” mark
- final states doubly encircled
- An edge from \(p \) into \(q \) labeled by \(a \) if \((p, a, q) \in \Delta \)
Example: Integer and Real Constants

<table>
<thead>
<tr>
<th>Di $\in {0, 1, \ldots, 9}$</th>
<th>.</th>
<th>E</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 {1, 2}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 {1}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 {2}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 {4}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 {4}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 {6}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 {7}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 \emptyset</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$q_0 = 0$

$F = \{1, 7\}$
Finite-state machines — Scanners

Finite-state machines
■ get an input word,
■ start in their initial state,
■ make a series of transitions under the characters constituting the input word,
■ accept (or reject).

Scanners
■ get an input string (a sequence of words),
■ start in their initial state,
■ attempt to find the end of the next word,
■ when found, restart in their initial state with the rest of the input,
■ terminate when the end of the input is reached or an error is encountered.
Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner — first “non-consumed” character,
- in final state, and exists transition under the next character: make transition and remember position,
- in final state, and exists no transition under the next character: Symbol found,
- actual state not final and no transition under the next character: backtrack to last passed final state
 - There is none: Illegal string
 - Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: Example: ($a|a^*;)$
Other Example Automata

- integer-constant
- real-constant
- identifier
- string
- comments
The Language Accepted by a Finite-State Machine

- \(M = \langle \Sigma, Q, \Delta, q_0, F \rangle \)

- For \(q \in Q, w \in \Sigma^* \), \((q, w)\) is a configuration

- The binary relation \textit{step} on configurations is defined by:

 \[(q, aw) \vdash_M (p, w) \quad \text{if} \quad (q, a, p) \in \Delta \]

- The \textit{reflexive transitive closure} of \(\vdash_M \) is denoted by \(\vdash_M^* \)

- The \textit{language accepted} by \(M \)

\[
L(M) = \{w \mid w \in \Sigma^* \mid \exists q_f \in F : (q_0, w) \vdash_M^* (q_f, \varepsilon)\}
\]
Theorem

(i) For every regular language R, there exists an NFSM M, such that $L(M) = R$.
(ii) For every regular expression r, there exists an NFSM that accepts the regular language defined by r.
A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression \(r \)
- Construct an “NFSM” with one final state, \(q_f \), and the transition

\[
\begin{array}{c}
q_0 \xrightarrow{r} q_f
\end{array}
\]

- Decompose \(r \) and develop the NFSM according to the following rules

\[
\begin{align*}
q & \xrightarrow{r_1 | r_2} p \quad \Rightarrow \quad q \xrightarrow{r_1} p \xrightarrow{r_2} p \\
q & \xrightarrow{r_1 r_2} p \quad \Rightarrow \quad q \xrightarrow{r_1} q_1 \xrightarrow{r_2} p \\
q & \xrightarrow{r^*} p \quad \Rightarrow \quad q \xrightarrow{\varepsilon} q_1 \xrightarrow{r} q_2 \xrightarrow{\varepsilon} p
\end{align*}
\]

until only transitions under single characters and \(\varepsilon \) remain.
Examples

- $a(a|0)^* \text{ over } \Sigma = \{a, 0\}$

- Identifier

- String
Nondeterminism

- Several transitions may be possible under the same character in a given state
- ε-moves (next character is not read) may “compete” with non-ε-moves.
- Deterministic simulation requires “backtracking”
Deterministic Finite-State Machine (DFSM)

- No ε-transitions
- At most one transition from every state under a given character, i.e. for every $q \in Q$, $a \in \Sigma$,

$$|\{q' \mid (q, a, q') \in \Delta\}| \leq 1$$
From Non-Deterministic to Deterministic Automata

Theorem

For every NFSM, \(M = \langle \Sigma, Q, \Delta, q_0, F \rangle \) there exists a DFSM, \(M' = \langle \Sigma, Q', \delta, q'_0, F' \rangle \) such that \(L(M) = L(M') \).

A Scheme of a Constructive Proof (Subset Construction)

Construct a DFSM whose states are sets of states of the NFSM. The DFSM simulates all possible transition paths under an input word in parallel.

Set of new states \(\{\{q_1, \ldots, q_n\} \mid n \geq 1 \land \exists w \in \Sigma^* : (q_0, w) \vdash_M^* (q_i, \varepsilon)\} \)
The Construction Algorithm

Used in the construction: the set of \(\varepsilon\)-Successors,
\[
\varepsilon-SS(q) = \{p \mid (q, \varepsilon) \vdash^* M (p, \varepsilon)\}
\]
- Starts with \(q'_0 = \varepsilon-SS(q_0) \) as the initial DFSM state.
- Iteratively creates more states and more transitions.
- For each DFSM state \(S \subseteq Q \) already constructed and character \(a \in \Sigma \),
 \[
 \delta(S, a) = \bigcup_{q \in S} \bigcup_{(q, a, p) \in \Delta} \varepsilon-SS(p)
 \]
 if non-empty
 - add new state \(\delta(S, a) \) if not previously constructed;
 - add transition from \(S \) to \(\delta(S, a) \).
- A DFSM state \(S \) is accepting (in \(F' \)) if there exists \(q \in S \) such that \(q \in F \)
Example: \(a(a|0)^* \)
DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states and transitions.

q and p are undistinguishable (have the same acceptance behavior) iff

$$\text{for all words } w \ (q, w) \vdash^*_M \text{ and } (p, w) \vdash^*_M \text{ lead into either } F' \text{ or } Q' - F'. $$

Undistinguishability is an equivalence relation.
Goal: merge undistinguishable states \equiv consider equivalence classes as new states.
DFSM minimization algorithm

- Input a DFSM $M = \langle \Sigma, Q, \delta, q_0, F \rangle$

- Iteratively refine a partition of the set of states, where each set in the partition consists of states **so far undistinguishable**.

- Start with the partition $\Pi = \{F, Q - F\}$

- Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_1, q_2 \in S$ and $a \in \Sigma$ such that
 - $\delta(q_1, a) \in S_1$ and $\delta(q_2, a) \in S_2$ and $S_1 \neq S_2$

- Merge sets of undistinguishable states into a single state.
Example: $a(a|0)^*$
A Language for specifying lexical analyzers

$$((0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*)$$
$$((\varepsilon.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*))$$
$$((\varepsilon | E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)))$$
Descriptional Comfort

Character Classes:

Identical meaning for the DFSM (exceptions!), e.g.,

\(le = a - z \ A - Z \)
\(di = 0 - 9 \)

Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:

Identical meaning for the parser, e.g.,

Identifiers
Comparison operators
Strings
Descriptional Comfort cont’d

Sequences of regular definitions:

\[A_1 = R_1 \]
\[A_2 = R_2 \]
\[\vdots \]
\[A_n = R_n \]
Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides

2. Create an NFSM for every regular expression separately;

3. Merge all the NFSMs using ε transitions from the start state;

4. Construct a DFSM;

5. Minimize starting with partition

\[\{F_1, F_2, \ldots, F_n, Q - \bigcup_{i=1}^{n} F_i\}\]
Flex Specification

Definitions
%%%
Rules
%%%
C-Routines
Flex Example

{%
extern int line_number;
extern float atof(char *);
%
DIG [0-9]
LET [a-zA-Z]
%
[=#<>+-*] { return(*yytext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG}*\.{DIG}+(E(\+|-)?{DIG}+)?)
 { yylval.realc = atof(yytext); return(302); }
"(\|\[\^\"\]\])" { strcpy(yylval.strc, yytext); return(303); }
"<=" { return(304); }
:= { return(305); }
\.\. { return(306); }
}
ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); }
{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);
 return(310); }
[\t]+ { /* White space */ }
\n { line_number++; }
. { fprintf(stderr,
 "WARNING: Symbol \"%c\" is illegal, ignored!\n", *yytext);}
%%