Loop Transformations

Sebastian Hack
Saarland University

Compiler Construction
W2015
Loop Transformations: Example

matmul.c
Optimization Goals

- Increase locality (caches)
- Facilitate Prefetching (contiguous access patterns)
- Vectorization (SIMD instructions, contiguity, avoid divergence)
- Parallelization (shared and non-shared memory systems)
Dependences

- True (flow) dependence (RAW = read after write)
- Anti dependence (WAR = write after read)
- Output dependence (WAW = write after write)

Anti and output dependences are called **false** dependences. They only arise when we consider memory cells instead of values. SSA eliminates false dependences by renaming.

If S_j is dependent on S_i, we write $S_1 \delta S_2$. Sometimes we also indicate the kind of dependence.

\[
\begin{align*}
1: & \quad a = 1; \\
2: & \quad b = a; \\
3: & \quad a = a + b; \\
4: & \quad c = a;
\end{align*}
\]

\[
S_1 \delta^f S_2 \quad S_1 \delta^o S_3 \quad S_2 \delta^a S_3 \quad \ldots
\]
Dependences

- Must be preserved for correctness
- Impose order statement instances
- Compilers represent dependences on syntactic entities (CFG nodes, AST nodes, statements, etc.)
- Each syntactic entity then stands for all its instances
- For scalar variables this is ok
- For arrays (especially in loops) this is too coarse-grained
Dependences in Loops

\[
\text{for } i = 1 \text{ to } 3 \\
1: X[i] = Y[i] + 1 \\
2: X[i] = X[i] + X[i-1]
\]

- loop-independent flow dependence from S_1 to S_2
- loop-carried flow dependence from S_2 to S_2
- loop-carried anti dependence from S_2 to S_2
Example: GEMVER kernel

for (i=0; i < N; i++)
 for (j=0; j < N; j++)

for (k=0; k < N; k++)
 for (l=0; l < N; l++)
 \[S2: x[k] = x[k] + \beta \times A[l,k] \times y[l] \]
Dependences in Loops

for i = 1 to 3
 1: X[i] = Y[i] + 1
 2: X[i] = X[i] + X[i-1]

X[1] = X[1] + X[0]

How to determine dependences in loops?

- Conceptually, unroll loops entirely.
- Every instance has then one syntactic entity.
- Construct dependence graph.

In practice, this is infeasible: Loop bounds may not be constant; even if they were, the graph would be too big.

We need a more compact representation.
The iteration space of loop is the set of all iterations of that loop.

\[
\text{for } i = 1 \text{ to } 3 \\
1: X[i] = Y[i] + 1 \\
2: X[i] = X[i] + X[i-1]
\]

In the following, we’ll be interested in loop (nests) whose iteration space can be described by the integer points inside a polyhedron. Each iteration of a loop nest of depth \(n \) is then given by a \(n \)-dimensional iteration vector.
Dependence Distance Vectors

\[
\text{for } i = 1 \text{ to } 3 \\
\text{for } j = 1 \text{ to } 3 \\
X[i,j] = X[i,j-1] + X[i-1,j-1]
\]

One way to represent dependences are distance vectors

- If statement instance \(\vec{t} \) is dependent on instance \(\vec{s} \) the distance vector for these two instances is
 \[
 \vec{d} = \vec{t} - \vec{s}
 \]

- **Uniform** dependences are described by distance vectors that do not contain index variables.
Direction Vectors

- Used to approximate distance vectors

- Or, if dependences cannot be represented by distance vectors (non-uniform dependences)

- Vector \((\rho_1, \ldots, \rho_n)\) of “directions” \(\rho_i \in \{<, \leq, =, \geq, >, *\}\)

- Consider two statements \(s, t\) and all distance vectors of their instances. A direction vector \(\rho\) is legal for \(s\) and \(t\) if for all instances \(\vec{s}\) and \(\vec{t}\) it holds that

\[
\vec{s}[k] \rho[k] \vec{t}[k] \quad \text{forall} \quad 1 \leq k \leq n
\]

- Examples
 - The distance vector \((0, 1)\) corresponds to \((=, <)\)
 - The distance vector \((1, 1)\) corresponds to \((<, <)\)
 - The distance vectors \(\{(0, i) | -n \leq i \leq n\}\) correspond to \((<, *)\)
Loop-Carried Dependences

for $i = 1$ to N
 for $j = 1$ to M
 $B[i, j+1] = B[i, j]$
 $C[i+1, j+1] = B[i, j+1]$

- Dependence on A not loop carried
- Dependence on B carried by j loop
- Dependence on C carried by i loop

Let k be the first non-$=$ entry in the direction vector of a dependence: Dependence carried by the k-the nested loop. Dependence level is k (∞ if direction vector all $=$).
Loop Unswitching

\[
\text{for } i = 1 \text{ to } N \\
\quad \text{for } j = 1 \text{ to } M \\
\quad \quad \text{if } X[i] > 0 \\
\quad \quad \quad S \\
\quad \quad \text{else} \\
\quad \quad \quad T
\]

\[
\text{for } i = 1 \text{ to } N \\
\quad \text{if } X[i] > 0 \\
\quad \quad \text{for } j = 1 \text{ to } M \\
\quad \quad \quad S \\
\quad \quad \text{else} \\
\quad \quad \quad \text{for } j = 1 \text{ to } M \\
\quad \quad \quad \quad T
\]

- Hoist conditional as far outside as possible
- Enable other transformations
Loop Peeling

for i = 1 to N
S

if N ≥ 1
S
for i = 2 to N
S

- Align trip count to a certain number (multiple of N)
- Peeled iteration is a place where loop invariant code can be executed non-redundantly
Index Set Splitting

\[
\text{for } i = 1 \text{ to } N \\
\quad \text{S}
\]

\[
\text{assert } 1 \leq M < N \\
\text{for } i = 1 \text{ to } M \\
\quad \text{S} \\
\text{for } i = M + 1 \text{ to } N \\
\quad \text{S}
\]

- Create specialized variants for different cases
 e.g. vectorization (aligned and contiguous accesses)
- Can be used to remove conditionals from loops
Loop Unrolling

\begin{verbatim}
for i = 1 to N
S
\end{verbatim}

\begin{verbatim}
for (i = 0; i < n; i += U)
 S(i+0)
 S(i+1)
 ...
 S(i+U-1)
for (; i < N; i++)
 S(i)
\end{verbatim}

- Create more instruction-level parallelism inside the loop
- Less speculation on OOO processors, less branching
- Increases pressure on instruction / trace cache (code bloat)
Loop Fusion

\[
\begin{align*}
\text{for } i &= 1 \text{ to } N \\
&\quad S \\
\text{for } i &= 1 \text{ to } N \\
&\quad T
\end{align*}
\]

- Save loop control overhead
- Increase locality if both loops access same data
- Increase instruction-level parallelism
- Important after inlining library functions
- Not always legal: Dependences must be preserved
Loop Interchange

\[
\begin{align*}
\text{for } i = 1 \text{ to } N & \quad \text{for } j = 1 \text{ to } M \\
& \quad S \\
\quad \text{for } j = 1 \text{ to } M & \quad \text{for } i = 1 \text{ to } N \\
& \quad S
\end{align*}
\]

- Expose more locality
- Expose parallelism
- Legality: Preserve data dependences, direction vector \((<, >)\) forbidden
Parallelization / Vectorization

\[
\text{for } i = 1 \text{ to } N \quad \text{parallel for } i = 1 \text{ to } N
\]

- Loop must not carry dependence
- Vectorization nowadays uses SIMD code -> strip mining
Strip Mining

\[
\text{for } i = 1 \text{ to } N \\
S(i)
\]

\[
\text{for } (i = 0; i < n; i += U) \\
\text{for } (j = 0; i < U; j++) \\
S(i + j)
\]

- strip-mine + interchange = tiling
- Vectorization is a kind of strip mining