Global Value Numbering

Sebastian Hack
hack@cs.uni-saarland.de

5. Dezember 2017

Saarland University, Computer Science
Value Numbering

- Replace second computation of $a + 1$ with a copy from x.

```plaintext
a := 2
x := a + 1

a := 3
x := a + 1

y := a + 1
```
Value Numbering

- Goal: Eliminate redundant computations
- Find out if two variables have the same value at given program point
 - In general undecidable
- Potentially replace computation of latter variable with contents of the former
- Resort to Herbrand equivalence:
 - Do not consider the interpretation of operators
 - Two expressions are equal if they are structurally equal

- This lecture: A costly program analysis which finds all Herbrand equivalences in a program and a “light-weight” version that is often used in practice.
The Herbrand interpretation \mathcal{I} of an n-ary operator ω is given as

$$\mathcal{I}(\omega) : T^n \rightarrow T \quad \mathcal{I}(\omega)(t_1, \ldots, t_n) := \omega(t_1, \ldots, t_n)$$

Especially, constants are mapped to themselves

With a state σ that maps variables to terms

$$\sigma : V \rightarrow T$$

we can define the Herbrand semantics $\langle t \rangle \sigma$ of a term t

$$\langle t \rangle \sigma := \begin{cases} \sigma(v) & \text{if } t = v \text{ is a variable} \\ \mathcal{I}(\omega)(\langle x_1 \rangle \sigma, \ldots, \langle x_n \rangle \sigma) & \text{if } t = \omega(x_1, \ldots, x_n) \end{cases}$$
Programs with Herbrand Semantics

- We now interpret the program with respect to the Herbrand semantics.

- For an assignment

 \[x \leftarrow t \]

 the semantics is defined by:

 \[\text{J}_{\sigma}^{x \leftarrow t} := \sigma \left[\langle t \rangle \sigma / x \right] \]

- The state after executing a path \(p : \ell_1, \ldots, \ell_n \) starting with state \(\sigma_0 \) is then:

 \[[p]_{\sigma_0} := ([\ell_n] \circ \cdots \circ [\ell_1])_{\sigma_0} \]

- Two expressions \(t_1 \) and \(t_2 \) are **Herbrand equivalent** at a program point \(\ell \) iff

 \[\forall p : r, \ldots, \ell. \langle t_1 \rangle [p]_{\sigma_0} = \langle t_2 \rangle [p]_{\sigma_0} \]
Kildall’s Analysis

- Track Herbrand equivalences with a forward data flow analysis

- A lattice element is an equivalence class of the terms and variables of the program

- The equivalence relation is a congruence relation w.r.t. to the operators in our expression language. For each operator ω, each eq. relation R, and $e, e_1, \cdots \in V \cup T$:

$$ e R (e_1 \omega e_2) \implies e_1 R e'_1 \implies e_2 R e'_2 \implies e R (e'_1 \omega e'_2) $$

- Two equivalence classes are joined by intersecting them

$$ R \sqcup S := R \cap S := \{(a, b) \mid a R b \land a S b\}$$

- $\bot = \{(x, y) \mid x, y \in V \cup T\}$

- $\top = \{(x, x) \mid x \in V \cup T\}$
Kildall’s Analysis

Example

\[
\begin{align*}
\text{\(a := 2\)} & \quad \text{\(x := a + 1\)} \\
\{[a], [x, a + 1]\} & \quad \text{\{\}} \\
\{\} & \quad \text{\{\}} \\
y := a + 1 & \\
\{[x, y, a + 1]\}
\end{align*}
\]

\[
\begin{align*}
\text{\(a := 3\)} & \quad \text{\(x := a + 1\)} \\
\{[a], [x, a + 1]\} & \quad \text{\{\}} \\
\{\} & \quad \text{\{\}} \\
y := a + 1 & \\
\{[x, y, a + 1]\}
\end{align*}
\]
Kildall’s Analysis

Transfer Functions

... of an assignment

\[\ell : x \leftarrow t \]

- Compute a new partition checking (in the old partition) who is equivalent if we replace \(x \) by \(t \)

\[[x \leftarrow t]^\# R := \{ (t_1, t_2) \mid t_1[t/x] R t_2[t/x] \} \]
Kildall’s Analysis

Example

\[
\begin{align*}
x &:= 0 \\
y &:= x + 1
\end{align*}
\]
Kildall’s Analysis

Example

\[
T
\]

\[
x := 0
\]

\[
y := x + 1
\]

\[
\{ [x], [y, x + 1] \}
\]

\[
\{ [y, x + 1] \}
\]

\[
y := y + 1
\]

\[
\{ [x, y] \}
\]

\[
x := x + 1
\]

\[
\{ [x, y] \}
\]

\[
\{ [y, x + 1] \}
\]
Kildall’s Analysis

Comments

■ Kildall’s Analysis is sound and complete
 it discovers all Herbrand equivalences in the program

■ Naïve implementations suffer from exponential explosion (pathological):
 – Because the equivalence relation must be congruence, size of eq. classes can explode:

\[
R = \{[a, b], [c, d], [e, f], [x, a + c, a + d, b + c, b + d],
\]

\[
[y, x + e, x + f, (a + c) + e, \ldots, (b + d) + f]\}

■ In practice: Use value graph.
 Do not make congruence explicit in representation.

■ Theoretical results (Gulwani & Necula 2004):
 – Even in acyclic programs, detecting all equivalences can lead to exponential-sized value graphs
 – Detecting only equivalences among terms in the program is polynomial (linear-sized representation of equivalences per program point)
Strong Equivalence DAGs (SED)

A **SED** G is a DAG (N, E). Let N be the set of nodes of the graph. Every node n is a pair (V, t) of a set of variables and a type1

$$t ::= \bot | c | \oplus(n_1, \ldots, n_k)$$

A type $\oplus(n_1, \ldots, n_k)$ indicates, that

$$\{(n, n_1), \ldots, (n, n_k)\} \in E$$

A node $n = (V, t)$ in the SED stands for a set of terms $T(n)$

$$T((V, \bot)) = V$$
$$T((V, c)) = V \cup \{c\}$$
$$T((V, \oplus(n_1, \ldots, n_k))) = V \cup \{\oplus(e_1, \ldots, e_k) \mid e_i \in T(n_i)\}$$

1Note that \bot does not denote the “empty set of states” here
Fig. 2. This figure shows a program and the execution of our algorithm on it.

G_i, shown in dotted box, represents the SED at program point L_i.

In figures showing SEDs, we omit the set delimiters "{" and "}, and represent a node $h\{x_1,..,x_n\}, t_i$ as $h\{x_1,..,x_n\}, t_i$.

Figure 2 shows a program and the SEDs computed by our algorithm at various points. As an example, note that $\text{Terms}(\text{Node } G_4(\text{u})) = \{\text{u}\} \big\{\text{F}(z, x) | x, y \notin \{x, y\}\big\} \big\{\text{F}(\text{F}(\text{F}(\text{F}(\text{F}(z, 1), 2), 3), 2), 2) | x, y \notin \{x, y\}\big\}$. Hence, $G_4| = \text{u} = \text{F}(z,x)$.

Note that an SED represents compactly a possibly-exponential number of equivalent terms.

3.2 The Assignment Operation

Let G be an SED that represents the Herbrand equivalences before an assignment node $x := e$. The SED that represents the Herbrand equivalences after the assignment node can be obtained by using the following algorithm.

G_4 in Figure 2 shows an example of the Assignment operation.

```plaintext
Assignment(G, x := e) =
1 $G_0 := G$
2 let $h V_1, t_1 = \text{GetNode}(G_0, e)$
3 let $h V_2, t_2 = \text{Node}(G_0(x))$
4 if $t_1 = t_2$ then $G_0 := G_0\{h V_1, t_1, h V_2, t_2\}$;
5 $G_0 := G_0 \big\{h V_1 \big\{x\}, t_1, h V_2 \big\{x\}, t_2\big\}$
6 return $G_0$
```

The Alpern, Wegman, Zadeck (AWZ) Algorithm

- Incomplete

- Flow-insensitive
 - does not compute the equivalences for every program point but sound equivalences for the whole program

- Uses SSA
 - Control-flow joins are represented by ϕs
 - Treat ϕs like every other operator (cause for incompleteness)
 - Source of imprecision

- Interpret the SSA data dependence graph as a finite automaton and minimize it
 - Refine partitions of “equivalent states”
 - Using Hopcroft’s algorithm, this can be done in $O(e \cdot \log e)$
The AWZ Algorithm

- In contrast to finite automata, do not create two partitions but a class for every operator symbol
 - Note that the ϕ’s block is part of the operator
 - Two ϕs from different blocks have to be in different classes

- Optimistically place all nodes with the same operator symbol in the same class
 - Finds the least fixpoint
 - You can also start with singleton classes and merge but this will (in general) not give the least fixpoint

- Successively split class when two nodes in the class are detected not equivalent
The AWZ Algorithm

Example

\[
\begin{align*}
x & := 0 \\
y & := 0
\end{align*}
\]

\[
\begin{align*}
x & := x + 1 \\
y & := y + 1
\end{align*}
\]
The AWZ Algorithm

Example

\[
\begin{align*}
 x_0 &:= 0 \\
 y_0 &:= 0 \\
 x_1 &:= \phi_2(x_2, x_0) \\
 y_1 &:= \phi_2(y_2, y_0) \\
 x_2 &:= x_1 + 1 \\
 y_2 &:= y_1 + 1
\end{align*}
\]
The AWZ Algorithm

Example

\[\phi_2 \]

\[x_1 \]

\[x_2 \]

\[0 \]

\[x_0 \]

\[1 \]

\[y_1 \]

\[y_2 \]

\[0 \]

\[y_0 \]

\[1 \]
The AWZ Algorithm

Example

\[x_1, y_1 \]

\[x_2, y_2 \]

\[0 \]

\[1 \]
Kildall compared to AWZ

\[a_0 := 2 \]
\[x_0 := a_0 + 1 \]

\[a_1 := 3 \]
\[x_1 := a_1 + 1 \]

\[a_2 := \phi_4(a_0, a_1) \]
\[x_2 := \phi_4(x_0, x_1) \]
\[y_0 := a_2 + 1 \]
Kildall compared to AWZ
Kildall compared to AWZ