
Loop Transformations

Sebastian Hack
hack@cs.uni-saarland.de

January 19, 2018

Saarland University, Computer Science

1



Loop Transformations: Example

matmul.c

2



Optimization Goals

� Increase locality (caches)

� Facilitate Prefetching (contiguous access patterns)

� Vectorization (SIMD instructions, contiguity, avoid divergence)

� Parallelization (shared and non-shared memory systems)

3



Loop Unswitching

for i = 1 to N
for j = 1 to M

if X[i] > 0
S

else
T

for i = 1 to N
if X[i] > 0

for j = 1 to M
S

else
for j = 1 to M

T

� Hoist conditional as far outside as possible

� Overhead of branch “multiplied” by the loop

� Enables other transformations (that require branch-free loop bodies)

4



Loop Peeling

for i = 1 to N
S

if N ≥ 1
S
for i = 2 to N

S

� Align trip count to a certain number (multiple of N)

� Peeling the exit condition yields a place where loop invariant code can
be executed non-redundantly

5



Index Set Splitting

for i = 1 to N
S

assert 1 ≤ M < N
for i = 1 to M

S
for i = M + 1 to N

S

� Create specialized variants for different cases
e.g. vectorization (aligned and contiguous accesses)

� Can be used to remove conditionals from loops

6



Loop Unrolling

for i = 1 to N
S

for (i = 0; i < n; i += U)
S(i+0)
S(i+1)
...
S(i+U-1)

for (; i < N; i++)
S(i)

� Create more instruction-level parallelism inside the loop

� Less specualtion on OOO processors, less branching

� Increases pressure on instruction / trace cache (code bloat)

7



Loop Fusion

for i = 1 to N
S

for i = 1 to N
T

for i = 1 to N
S
T

� Save loop control overhead
� Increase locality if both loops access same data
� Increase instruction-level parallelism
� Not always legal: Dependences must be preserved

8



Loop Interchange

for i = 1 to N
for j = 1 to M

S

for j = 1 to M
for i = 1 to N

S

� Expose more locality
� Expose parallelism
� Legality: Preserve data dependences

9



Parallelization / Vectorization

for i = 1 to N
S

parallel for i = 1 to N
S

� Loop must not carry dependence
� Vectorization nowadays uses SIMD code → strip mining

10



Strip Mining

for i = 1 to N
S

for (i = 0; i < N; i += U)
for (j = 0; j < U; j++)

S(i + j)

� Simple vectorization can be facilitated by strip mining
� For SIMD instruction sets, set U to the vector width
� Vectorize S and drop inner loop
� Add Epilogue for N % U 6= 0

11



Tiling
Original

for i = 1 to N
for j = 1 to M

S(i, j)

Strip-mined

for i = 1 to N step S
for ii = 1 to S

for j = 1 to M step T
for jj = 1 to T

S(i + ii , j + jj)

Tiled (stepping loops interchanged to the outside)

for i = 1 to N step S
for j = 1 to M step T

for ii = 1 to S
for jj = 1 to T

S(i + ii, j + jj)

� Tiling = strip-mine + interchange
� Increases locality
� Enables distribution to multiple cores

12


